首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R Kitahara  H Yamada  K Akasaka 《Biochemistry》2001,40(45):13556-13563
High-pressure 15N/1H two-dimensional NMR spectroscopy has been utilized to study conformational fluctuation of a 76-residue protein ubiquitin at pH 4.5 at 20 degrees C. The on-line variable pressure cell technique is used in conjunction with a high-field NMR spectrometer operating at 750 MHz for 1H in the pressure range between 30 and 3500 bar. Large, continuous and reversible pressure-induced 1H and 15N chemical shifts were observed for 68 backbone amide groups, including the 7.52 ppm 15N shift of Val70 at 3500 bar, indicating a large-scale conformational change of ubiquitin with pressure. On the basis of the analysis of sigmoid-shaped pressure shifts, we conclude that ubiquitin exists as an equilibrium mixture of two major folded conformers mutually converting at a rate exceeding approximately 10(4) s(-1) at 20 degrees C at 2000 bar. The second conformer exists at a population of approximately 15% (DeltaG(0) = 4.2 kJ/mol) and is characterized with a significantly smaller partial molar volume (DeltaV(0) = -24 mL/mol) than that of the well-known basic native conformer. The analysis of 1H and 15N pressure shifts of individual amide groups indicates that the second conformer has a loosened core structure with weakened hydrogen bonds in the five-stranded beta-sheet. Furthermore, hydrogen bonds of residues 67-72 belonging to beta5 are substantially weakened or partially broken, giving increased freedom of motion for the C-terminal segment. The latter is confirmed by the significant decrease in 15N[1H] nuclear Overhauser effect for residues beyond 70 at high pressure. Since the C-terminal carboxyl group constitutes the reactive site for producing a multi-ubiquitin structure, the finding of the second folded conformer with a substantially altered conformation and mobility in the C-terminal region will shed new light on the reaction mechanism of ubiquitin.  相似文献   

2.
High pressure 1H/15N two-dimensional NMR spectroscopy has been used to study conformational fluctuation in bovine beta-lactoglobulin at pH 2.0 and 36 degrees C. Pressure dependencies of 1H and 15N chemical shifts and cross-peak intensities were analyzed at more than 80 independent atom sites between 30 and 2000 bar. Unusually large and non-linear chemical shift pressure dependencies are found for residues centering in the hydrophobic core region, suggesting the existence of low-lying excited native states (N') of the protein. Measurement of 1H/15N cross-peak intensities at individual amide sites as a function of pressure suggests that unfolding events occur independently in two sides of the beta-barrel, i.e. the hydrophobic core side (betaF-H) (producing I2) and the non-core side (betaB-E) (producing I1). At 1 bar the stability is higher for the core region (DeltaG0 = 6.5(+/-2.0) kcal/mol) than for the non-core region (4.6(+/-1.3) kcal/mol), but at high pressure the stability is reversed due to a larger DeltaV value of unfolding for the core region (90.0(+/-35.2) ml/mol) than that for the non-core region (57.4(+/-14.4) ml/mol), possibly due to an uneven distribution of cavities. The DeltaG0 profile along the amino acid sequence obtained from the pressure experiment is found to coincide well with that estimated from hydrogen exchange experiments. Altogether, the high pressure NMR experiment has revealed a variety of fluctuating conformers of beta-lactoglobulin, notably N, N', I1, I2 and the totally unfolded conformer U. Fluctuation of N to I1 and I2 conformers with open barrel structures could be a common design of lipocalin family proteins which bind various hydrophobic compounds in its barrel structure.  相似文献   

3.
Abstract

We have performed NPT molecular dynamics simulations (Langevin Piston Method) on two types of solvated proteins-‘denaturation-unfavorable’ protein (insulin) and ‘denaturation-favorable protein’ (ribonuclease A) at high pressure (from 1 bar up to 20 kbar). The method is based on the extended system formalism introduced by Andersen, where the deterministic equations of motion for the piston degree of freedom are replaced by Langevin equation. We report the structural changes of proteins (ribonuclease A and insulin) and water molecules through radius of gyration, solvent accessible surface area, hydrogen bond pattern, and the topology of water clusters connected by the hydrogen bonded circular network. The solvent accessibility of ribonuclease A is mainly decreased by hydrophilic residues rather than hydrophobic residues under high pressure. From the results of hydrogen bond analysis, we have found that α-helix is more stable than β-sheet under high pressure. In addition, from the analysis of the water cluster, we have observed that for ribonuclease A, 5-membered ring structure is more favorable than 6-membered ring at higher pressure. However, for insulin, the ratio of 5 to 6-ring is constant over the pressure ranges for which we have performed MD simulation. This indicates that the water structure around insulin does not change under high pressure.  相似文献   

4.
The effects of hydrostatic pressure on creatine kinase activity and conformation were investigated using either the high-pressure stopped-flow method in the pressure range 0.1-200 MPa for the activity determination, or the conventional activity measurement and fluorescence spectroscopy up to 650 MPa. The changes in creatine kinase activity and intrinsic fluorescence show a total or partial reversibility after releasing pressure, depending on both the initial value of the high pressure applied and on the presence or absence of guanidine hydrochloride. The study on 8-anilinonaphthalene-1-sulfonate binding to creatine kinase under high pressure indicates that the hydrophobic core of creatine kinase was progressively exposed to the solvent at pressures above 300 MPa. This data shows that creatine kinase is inactivated at low pressure, preceding both the enzyme dissociation and the unfolding of the hydrophobic core occurring at higher pressure. Moreover, in agreement with the recently published structure of the dimer, it can be postulated that the multistate transitions of creatine kinase induced both by pressure and guanidine denaturation are in direct relationship with the existence of hydrogen bonds which maintain the dimeric structure of the enzyme.  相似文献   

5.
The application of high hydrostatic pressure is an effective tool to promote dissolution and refolding of protein from aggregates and inclusion bodies while minimizing reaggregation. In this study we explored the mechanism of high-pressure protein refolding by quantitatively assessing the magnitude of the protein-protein interactions both at atmospheric and elevated pressures for T4 lysozyme, in solutions containing various amounts of guanidinium hydrochloride. At atmospheric pressure, the protein- protein interactions are most attractive at moderate guanidinium hydrochloride concentrations (approximately 1-2 molar), as indicated by a minimum in B(22) values. In contrast, at a pressure of 1,000 bar no minimum in B(22) values is observed, indicating that high pressures colloidally stabilize protein against aggregation. Finally, experimental values of refractive index increments as a function of pressure indicate that at high pressures, wetting of the hydrophobic surfaces is favored, resulting in a reduction of the hydrophobic effect. This reduction in the hydrophobic effect reduces the driving force for aggregation of (partially) unfolded protein.  相似文献   

6.
We have studied the influence of pressure on structure and dynamics of a small protein belonging to the enzymatic catalysis: the bovine pancreatic trypsin inhibitor (BPTI). Using a copper-beryllium high-pressure cell, we have performed small angle neutron scattering (SANS) experiment on NEAT spectrometer at HMI (Berlin, Germany). In the SANS configuration, the evolution of the radius of gyration and of the shape of the protein under pressures up to 6,000 bar has been studied. When increasing pressure from atmospheric pressure up to 6,000 bar, the pressure effects on the global structure of BPTI result on a reduction of the radius of gyration from 13.4 A down to 12.0 A. Between 5,000 and 6,000 bar, some transition already detected by FTIR [N. Takeda, K. Nakano, M. Kato, Y. Taniguchi, Biospectroscopy, 4, 1998, pp. 209-216] is observed. The pressure effect is not reversible because the initial value of the radius of gyration is not recovered after pressure release. By extending the range of wave-vectors to high q, we have observed a change of the form factor (shape) of the BPTI under pressure. At atmospheric pressure BPTI exhibits an ellipsoidal form factor that is characteristic of the native state. When the pressure is increased from atmospheric pressure up to 6,000 bar, the protein keeps its ellipsoidal shape. The parameters of the ellipsoid vary and the transition detected between 5,000 and 6,000 bar in the form factor of BPTI is in agreement with the FTIR results. After pressure release, the form factor of BPTI is characteristic of an ellipsoid of revolution with a semi-axis a, slightly elongated with respect to that of the native one, indicating that the pressure-induced structural changes on the protein are not reversible. The global motions and the internal dynamics of BPTI protein have been investigated in the same pressure range by quasi-elastic neutron scattering experiments on IN5 time-of-flight spectrometer at ILL (Grenoble, France). The diffusion coefficients D and the internal relaxation times of BPTI deduced from the analysis of the intermediate scattering functions show a slowing down of protein dynamics when increasing pressure.  相似文献   

7.
Transesterification of (+/-)-menthol using propionic acid anhydride and Candida rugosa lipase was performed in chloroform and water at different pressures (1, 10, 50, and 100 bar) to study the pressure dependence of enantioselectivity E. As a result, E significantly decreased with increasing pressure from E = 55 (1 bar) to E = 47 (10 bar), E = 37 (50 bar), and E = 9 (100 bar). To rationalize the experimental findings, molecular dynamics simulations of Candida rugosa lipase were carried out. Analyzing the lipase geometry at 1, 10, 50, and 100 bar revealed a cavity in the Candida rugosa lipase. The cavity leads from a position on the surface distinct from the substrate binding site to the core towards the active site, and is limited by F415 and the catalytic H449. In the crystal structure of the Candida rugosa lipase, this cavity is filled with six water molecules. The number of water molecules in this cavity gradually increased with increasing pressure: six molecules in the simulation at 1 bar, 10 molecules at 10 bar, 12 molecules at 50 bar, and 13 molecules at 100 bar. Likewise, the volume of the cavity progressively increased from about 1864 A(3) in the simulation at 1 bar to 2529 A(3) at 10 bar, 2526 A(3) at 50 bar, and 2617 A(3) at 100 bar. At 100 bar, one water molecule slipped between F415 and H449, displacing the catalytic histidine side chain and thus opening the cavity to form a continuous water channel. The rotation of the side chain leads to a decreased distance between the H449-N epsilon and the (+)-menthyl-oxygen (nonpreferred enantiomer) in the acyl enzyme intermediate, a factor determining the enantioselectivity of the lipase. Although the geometry of the preferred enantiomer is similar in all simulations, the geometry of the nonpreferred enantiomer gets gradually more reactive. This observation correlates with the gradually decreasing enantioselectivity E.  相似文献   

8.
Fluorescence depolarization studies were made on dimyristoylphosphatidylcholine liposomes containing four kinds of dansylated poly(gamma-benzyl-L-glutamate) with different degrees of polymerization or hydrocarbon chain lengths under high pressure at up to 981 bar (1 bar = 10 MPa). Potassium chloride promoted the aggregation of the synthetic peptides in liposomal bilayers at both atmospheric and high pressure. The chain lengths of the hydrocarbons of the peptides had more influence than their degrees of polymerization on aggregation.  相似文献   

9.
We sought to determine whether hydrostatic pressure contributed to bradycardia and hypoventilation in hyperbaria. Eight men were studied during exercise at 50, 150, and 250 W while breathing 1) air at 1 bar, 2) helium-oxygen (He-O(2)) at 5.5 bar, 3) sulfur hexafluoride-oxygen (SF(6)-O(2)) at 1.3 bar, and 4) nitrogen-oxygen (N(2)-O(2)) at 5.5 bar. Gas densities were pairwise identical in 1) and 2), and 3) and 4), respectively. Increased hydrostatic pressure to 5.5 bar resulted in a modest but significant relative bradycardia on the order of 6 beats/min, in both the absence [1) vs. 2), P = 0. 0015] and presence [3) vs. 4), P = 0.029] of gases that are both denser than normal and mildly narcotic. In contrast, ventilatory responses appeared not to be influenced by hydrostatic pressure. Also, the combined exposure to increased gas density and mild-to-moderate inert gas narcosis at a given hydrostatic pressure [1) vs. 3), 2) vs. 4)] caused bradycardia (P = 0.032 and 0.061, respectively) of similar magnitude as 5.5-bar hydrostatic pressure. At the same time there was relative hypoventilation at the two higher workloads. We conclude that heart rate control, but not ventilatory control, is sensitive to relatively small increases in hydrostatic pressure.  相似文献   

10.
The unfolding of the blue-copper protein azurin from Pseudomonas aeruginosa by guanidine hydrochloride, under nonreducing conditions, has been studied by fluorescence techniques and circular dichroism. The denaturation transition may be fitted by a simple two-state model. The total free energy change from the native to the unfolded state was 9.4 +/- 0.4 kcal.mol-1, while a lower value (6.4 +/- 0.4 kcal.mol-1) was obtained for the metal depleted enzyme (apo-azurin) suggesting that the copper atom plays an important stabilization role. Azurin and apo-azurin were practically unaffected by hydrostatic pressure up to 3000 bar. Site-directed mutagenesis has been used to destabilize the hydrophobic core of azurin. In particular either hydrophobic residue Ile7 or Phe110 has been substituted with a serine. The free energy change of unfolding by guanidinium hydrochloride, resulted to be 5.8 +/- 0.3 kcal.mol-1 and 4.8 +/- 0.3 kcal.mol-1 for Ile7Ser and Phe110Ser, respectively, showing that both mutants are much less stable than the wild-type protein. The mutated apoproteins could be reversible denatured even by high pressure, as demonstrated by steady-state fluorescence measurements. The change in volume associated to the pressure-induced unfolding was estimated to be -24 mL.mol-1 for Ile7Ser and -55 mL.mol-1 for Phe110Ser. These results show that the tight packing of the hydrophobic residues that characterize the inner structure of azurin is fundamental for the protein stability. This suggests that the proper assembly of the hydrophobic core is one of the earliest and most crucial event in the folding process, bearing important implication for de novo design of proteins.  相似文献   

11.
The kinetics of cyanide binding to chloroperoxidase were studied using a high-pressure stopped-flow technique at 25 degrees C and pH 4.7 in a pressure range from 1 to 1000 bar. The activation volume change for the association reaction is delta V not equal to + = -2.5 +/- 0.5 ml/mol. The total reaction volume change, determined from the pressure dependence of the equilibrium constant, is delta V degrees = -17.8 +/- 1.3 ml/mol. The effect of temperature was studied at 1 bar yielding delta H not equal to + = 29 +/- 1 kJ/mol, delta S not equal to + = -58 +/- 4 J/mol per K. Equilibrium studies give delta H degrees = -41 +/- 3 kJ/mol and delta S degrees = -59 +/- 10 J/mol per K. Possible contributions to the binding process are discussed: changes in spin state, bond formation and conformation changes in the protein. An activation volume analog of the Hammond postulate is considered.  相似文献   

12.
The effect of the pressure on the structure and stability of the D-Galactose/D-Glucose binding protein (GGBP) from Escherichia coli was studied by steady-state and time-resolved fluorescence spectroscopy, and the ability of glucose ligand to stabilize the GGBP structure was also investigated. Steady-state fluorescence experiments showed a marked quenching of fluorescence emission of GGBP in the absence of glucose. Instead, the presence of glucose seems to stabilize the structure of GGBP at low and moderate pressure values. Time-resolved fluorescence measurements showed that the GGBP taumean in the absence of glucose varies significantly up to 600 bar, while in the presence of the ligand it is almost unaffected by pressure increase up to 600 bar. The effect of the pressure on GGBP was also studied by molecular dynamics simulations. The simulation data support the spectroscopic results and confirm that the presence of glucose is able to contrast the negative effects of pressure on the protein structure. Taken together, the spectroscopic and computer simulation studies suggest that at pressure values up to 2000 bar the structure of GGBP in the absence of glucose remains folded, but a significant perturbation of the protein secondary structures can be detected. The binding of glucose reduces the negative effect of pressure on protein structure and confers protection from perturbation especially at moderate pressure values.  相似文献   

13.
We studied the pressure-induced folding/unfolding transition of staphylococcal nuclease (SN) over a pressure range of approximately 1-3 kilobars at 25 degrees C by small-angle neutron scattering and molecular dynamics simulations. We find that applying pressure leads to a twofold increase in the radius of gyration derived from the small-angle neutron scattering spectra, and P(r), the pair distance distribution function, broadens and shows a transition from a unimodal to a bimodal distribution as the protein unfolds. The results indicate that the globular structure of SN is retained across the folding/unfolding transition although this structure is less compact and elongated relative to the native structure. Pressure-induced unfolding is initiated in the molecular dynamics simulations by inserting water molecules into the protein interior and applying pressure. The P(r) calculated from these simulations likewise broadens and shows a similar unimodal-to-bimodal transition with increasing pressure. The simulations also reveal that the bimodal P(r) for the pressure-unfolded state arises as the protein expands and forms two subdomains that effectively diffuse apart during initial stages of unfolding. Hydrophobic contact maps derived from the simulations show that water insertions into the protein interior and the application of pressure together destabilize hydrophobic contacts between these two subdomains. The findings support a mechanism for the pressure-induced unfolding of SN in which water penetration into the hydrophobic core plays a central role.  相似文献   

14.
Additivity of functional group contributions to protein-ligand binding is a very popular concept in medicinal chemistry as the basis of rational design and optimized lead structures. Most of the currently applied scoring functions for docking build on such additivity models. Even though the limitation of this concept is well known, case studies examining in detail why additivity fails at the molecular level are still very scarce. The present study shows, by use of crystal structure analysis and isothermal titration calorimetry for a congeneric series of thrombin inhibitors, that extensive cooperative effects between hydrophobic contacts and hydrogen bond formation are intimately coupled via dynamic properties of the formed complexes. The formation of optimal lipophilic contacts with the surface of the thrombin S3 pocket and the full desolvation of this pocket can conflict with the formation of an optimal hydrogen bond between ligand and protein. The mutual contributions of the competing interactions depend on the size of the ligand hydrophobic substituent and influence the residual mobility of ligand portions at the binding site. Analysis of the individual crystal structures and factorizing the free energy into enthalpy and entropy demonstrates that binding affinity of the ligands results from a mixture of enthalpic contributions from hydrogen bonding and hydrophobic contacts, and entropic considerations involving an increasing loss of residual mobility of the bound ligands. This complex picture of mutually competing and partially compensating enthalpic and entropic effects determines the non-additivity of free energy contributions to ligand binding at the molecular level.  相似文献   

15.
In this study for the first time the effect of high-pressure CO2 on the coacervation of alpha-elastin was investigated using analytical techniques including light spectroscopy and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic imaging and circular dichroism (CD) spectroscopy. The coacervation behavior of alpha-elastin, a protein biopolymer, was determined at temperatures below 40 degrees C and pressures lower than 180 bar. At these conditions elevated pressures did not disrupt the ability of alpha-elastin to coacervate. It was feasible to monitor the presence of amide I, II, and III bands for alpha-elastin at high-pressure CO2 using ATR-FTIR imaging. At a constant temperature the peak absorption was substantially enhanced by increasing the pressure of the system. CD analysis demonstrated the preservation of secondary structure attributes of alpha-elastin exposed to dense gas CO2 at the pressure range investigated in this study. The lower critical solution temperature of alpha-elastin was dramatically decreased from 37 to 16 degrees C when the CO2 pressure increased from 1 to 50 bar, without a significant change after that. Carbon dioxide at high pressures also impeded the reversible coacervation of alpha-elastin solution. These effects were predominantly associated with the lowered pH of the aqueous solution and maybe the interaction between CO2 and hydrophobic domains of alpha-elastin.  相似文献   

16.
Kitahara R  Sareth S  Yamada H  Ohmae E  Gekko K  Akasaka K 《Biochemistry》2000,39(42):12789-12795
A high-pressure (15)N/(1)H two-dimensional NMR study has been carried out on folate-bound dihydrofolate reductase (DHFR) from Escherichia coli in the pressure range between 30 and 2000 bar. Several cross-peaks in the (15)N/(1)H HSQC spectrum are split into two with increasing pressure, showing the presence of a second conformer in equilibrium with the first. Thermodynamic analysis of the pressure and temperature dependencies indicates that the second conformer is characterized by a smaller partial molar volume (DeltaV = -25 mL/mol at 15 degrees C) and smaller enthalpy and entropy values, suggesting that the second conformer is more open and hydrated than the first. The splittings of the cross-peaks (by approximately 1 ppm on (15)N axis at 2000 bar) arise from the hinges of the M20 loop, the C-helix, and the F-helix, all of which constitute the major binding site for the cofactor NADPH, suggesting that major differences in conformation occur in the orientations of the NADPH binding units. The Gibbs free energy of the second, open conformer is 5.2 kJ/mol above that of the first at 1 bar, giving an equilibrium population of about 10%. The second, open conformer is considered to be crucial for NADPH binding, and the NMR line width indicates that the upper limit for the rate of opening is 20 s(-)(1) at 2000 bar. These experiments show that high pressure NMR is a generally useful tool for detecting and analyzing "open" structures of a protein that may be directly involved in function.  相似文献   

17.
The recent work is surveyed which leads to the suggestions that the conformation of globular proteins in solution corresponds to a dynamic ensemble of rapidly interconverting spatial structures, that clusters of hydrophobic amino acid side chains have an important role in the architecture of protein molecules, and that mechanistic aspects of protein denaturation can be correlated with internal mobility seen in the native conformation. These conclusions resulted originally from high resolution 1H nuclear magnetic resonance (NMR) studies of aromatic ring mobility, exchange of interior amide protons and thermal denaturation of the basic pancreatic trypsin inhibitor and a group of related proteins. Various new approaches to further characterize proteins in solution have now been taken and preliminary data are presented. These include computer graphics to outline hydrophobic clusters in globular protein structures, high resolution 1H-NMR experiments at variable hydrostatic pressure and 13C-NMR relaxation measurements. At the present early stage of these new investigations it appears that the hydrophobic cluster model for globular proteins is compatible with the data obtained.  相似文献   

18.
1. Leucine aminopeptidase (EC 3-4-11-1) from bovine eye lens was spin-labeled at the most reactive thiol groups with 2,2,6,6-tetramethyl-4-[2-iodoacetamido]-piperidine-1-oxyl. 2. Electron spin resonance spectra show two spectral parts corresponding to two local conformational states in the environment of bound label. One state (A) exhibits a strong immobilizing effect on the mobility of the bound label whereas the other one (B) immobilizes weakly. Independently on the degree of labeling a ratio of A:B approximately 4:1 was estimated. In B a hydrophobic environment of label was observed. 3. Treatment of leucine aminopeptidase by 6.2 M urea leads to the following structural changes. a) An additional weakly immobilizing conformational state (B') with reduced hydrophobic interactions and increased mobility representing an unfolded conformational state appears. B' shows a time-dependent increase of its extent at the expense of B and A' (half conversion time about 0.5 h). The extent of this conformational change is larger, if the enzyme is additionally complexed with Mn2+. b) Mn2+ complexed with the protein is partly released producting hydrated Mn2+. c) After withdrawal of urea the observed conformational changes in leucine aminopeptidase are fully reversible, giving the initial ratio of A:B approximately 4:1 even after long incubation. 4. 6.2 M urea is not able to destroy the strongly immobilizing conformational state A completely.  相似文献   

19.
The effect of chemical (urea) and physical (temperature and high pressure) denaturation on the structural properties of soybean lipoxygenase-1 (LOX1) was analyzed through dynamic fluorescence spectroscopy and circular dichroism. We show that the fluorescence decay of the native protein could be fitted by two lorentzian distributions of lifetimes, centered at 1 and 4 ns. The analysis of the urea-denatured protein suggested that the shorter distribution is mostly due to the tryptophan residues located in the N-terminal domain of LOX1. We also show that a pressure of 2400 bar and a temperature of 55 degrees C brought LOX-1 to a state similar to a recently described stable intermediate "I." Analysis of circular dichroism spectra indicated a substantial decrease of alpha-helix compared with beta-structure under denaturing conditions, suggesting a higher stability of the N-terminal compared with the C-terminal domain in the denaturation process.  相似文献   

20.
The structure of a membrane-embedded alpha-helical reference protein, the M13 major coat protein, is characterized under different conditions of hydrophobic mismatch using fluorescence resonance energy transfer in combination with high-throughput mutagenesis. We show that the structure is similar in both thin (14:1) and thick (20:1) phospholipid bilayers, indicating that the protein does not undergo large structural rearrangements in response to conditions of hydrophobic mismatch. We introduce a "helical fingerprint" analysis, showing that amino acid residues 1-9 are unstructured in both phospholipid bilayers. Our findings indicate the presence of pi-helical domains in the transmembrane segment of the protein; however, no evidence is found for a structural adaptation to the degree of hydrophobic mismatch. In light of current literature, and based on our data, we conclude that aggregation (at high protein concentration) and adjustment of the tilt angle and the lipid structure are the dominant responses to conditions of hydrophobic mismatch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号