首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Cells maintain genomic stability by the coordination of DNA-damage repair and cell-cycle checkpoint control. In replicating cells, DNA damage usually activates intra-S-phase checkpoint controls, which are characterized by delayed S-phase progression and increased Rad53 phosphorylation. We show that in budding yeast, the intra-S-phase checkpoint controls, although functional, are not activated by the topoisomerase I inhibitor camptothecin (CPT). In a CPT-hypersensitive mutant strain that lacks the histone 2A (H2A) phosphatidylinositol-3-OH kinase (PI(3)K) motif at Ser 129 (h2a-s129a), the hypersensitivity was found to result from a failure to process full-length chromosomal DNA molecules during ongoing replication. H2A Ser 129 is not epistatic to the RAD24 and RAD9 checkpoint genes, suggesting a non-checkpoint role for the H2A PI(3)K site. These results suggest that H2A Ser 129 is an essential component for the efficient repair of DNA double-stranded breaks (DSBs) during replication in yeast, particularly of those DSBs that do not induce the intra-S-phase checkpoint.  相似文献   

2.
Ubiquitin mediated degradation of cyclin D1 following the G1/S transition counters its mitogen-dependent accumulation during G1 phase of the cell cycle. Although the cellular machinery responsible for this process has been identified, how this regulatory pathway interfaces to cellular stress responses, often referred to as checkpoints, remains to be established. One intensely investigated checkpoint is the cellular response to DNA damage. When DNA damage is sensed, the corresponding DNA damage checkpoint triggers the inhibition of CDK-dependent cell cycle progression, with arrest coordinated by induction of CDK inhibitors and rapid degradation of specific cyclins, such as cyclin D1. In recent work, we identified a phosphorylation- and Fbx4-dependent cyclin D1 degradation mechanism in response to genotoxic stress.18 This work revealed that loss of cyclin D1 regulation compromises the intra-S-phase response to DNA damage, promoting genomic instability and sensitization of cells to S-phase chemotherapy, highlighting a potential therapeutic strategy for cancers exhibiting cyclin D1 accumulation.  相似文献   

3.
DNA double-strand breaks caused by ionizing radiation have been shown to induce G1/S,intra-S-phase, and G2/M cell-cycle checkpoints. However, analysis of the immediate inductionof G1/S checkpoint at a cellular level has been hampered by the inability to distinguish cells thatwere already replicating DNA at the time of damage from cells that entered S phase followingthe DNA damage. We have developed a novel strategy for assessing the initiation of the G1/Scheckpoint following γ-irradiation within asynchronous, low passage, primary mouse embryonicfibroblast cultures (MEFs) using a staggered CldU/IdU double-labelling protocol. Contrary tothe current model of the G1/S checkpoint, we found that 65% of late-G1 primary MEFs stillproceed into S phase after a γ-irradiation dose of 5 Gy. The delayed p53-dependent G1/Scheckpoint is intact in these cells, and a G2/M checkpoint that over 90% effective was inducedwithin 1 h and maintained through 6 h post-irradiation. Furthermore, these cells also exhibitedan intra-S-phase replication slow-down, as there is a decrease in the S/G2 transition frequency ofprimary MEFs following ?-irradiation. The absence of an immediate G1/S checkpoint inprimary MEFs suggests that in late G1 these cells may predominantly respond to DNA damageat the level of individual replication origins, rather than by inducing a complete shut-down of Sphaseentry.  相似文献   

4.
DNA damaging agents induce a conserved intra-S-phase checkpoint that inhibits DNA replication in eukaryotic cells. To better understand this checkpoint and its role in determining the efficacy of antitumor drugs that damage DNA, we examined the effects of adozelesin, a DNA-alkylating antitumor agent that has a profound inhibitory effect on initiation of DNA replication in mammals, on the replication of Saccharomyces cerevisiae chromosomes. Adozelesin inhibited initiation of S. cerevisiae DNA replication by inducing an intra-S-phase DNA damage checkpoint. This inhibitory effect was abrogated in orc2-1 cells containing a temperature-sensitive mutation in a component of the origin recognition complex (ORC) that also causes a defect in initiation. The orc2-1 mutation also caused a defect in a checkpoint that regulates the activation of origins in late S phase in cells treated with hydroxyurea. Defects in both initiation and checkpoint regulation in the orc2-1 strain were suppressed by deletion of a gene encoding a putative acetyltransferase, SAS2. Adozelesin also induced a cellular response that requires a function of ORC in G(1). A similar G(1)-specific response in mammals may contribute to the cytotoxic and antitumor properties of this and other DNA-damaging drugs.  相似文献   

5.
In response to DNA damage and replication pausing, eukaryotes activate checkpoint pathways that prevent genomic instability by coordinating cell cycle progression with DNA repair. The intra-S-phase checkpoint has been proposed to protect stalled replication forks from pathological rearrangements that could result from unscheduled recombination. On the other hand, recombination may be needed to cope with either stalled forks or double-strand breaks resulting from hydroxyurea treatment. We have exploited fission yeast to elucidate the relationship between replication fork stalling, loading of replication and recombination proteins onto DNA, and the intra-S checkpoint. Here, we show that a functional recombination machinery is not essential for recovery from replication fork arrest and instead can lead to nonfunctional fork structures. We find that Rad22-containing foci are rare in S-phase cells, but peak in G2 phase cells after a perturbed S phase. Importantly, we find that the intra-S checkpoint is necessary to avoid aberrant strand-exchange events during a hydroxyurea block.  相似文献   

6.
Cohesin complexes mediate sister chromatid cohesion. Cohesin also becomes enriched at DNA double‐strand break sites and facilitates recombinational DNA repair. Here, we report that cohesin is essential for the DNA damage‐induced G2/M checkpoint. In contrast to cohesin's role in DNA repair, the checkpoint function of cohesin is independent of its ability to mediate cohesion. After RNAi‐mediated depletion of cohesin, cells fail to properly activate the checkpoint kinase Chk2 and have defects in recruiting the mediator protein 53BP1 to DNA damage sites. Earlier work has shown that phosphorylation of the cohesin subunits Smc1 and Smc3 is required for the intra‐S checkpoint, but Smc1/Smc3 are also subunits of a distinct recombination complex, RC‐1. It was, therefore, unknown whether Smc1/Smc3 function in the intra‐S checkpoint as part of cohesin. We show that Smc1/Smc3 are phosphorylated as part of cohesin and that cohesin is required for the intra‐S checkpoint. We propose that accumulation of cohesin at DNA break sites is not only needed to mediate DNA repair, but also facilitates the recruitment of checkpoint proteins, which activate the intra‐S and G2/M checkpoints.  相似文献   

7.
8.
Cell cycle checkpoints and their impact on anticancer therapeutic strategies   总被引:15,自引:0,他引:15  
Cells contain numerous pathways designed to protect them from the genomic instability or toxicity that can result when their DNA is damaged. The p53 tumor suppressor is particularly important for regulating passage through G1 phase of the cell cycle, while other checkpoint regulators are important for arrest in S and G2 phase. Tumor cells often exhibit defects in these checkpoint proteins, which can lead to hypersensitivity; proteins in this class include ataxia-telangiectasia mutatated (ATM), Meiotic recanbination 11 (Mre11), Nijmegen breakage syndrome 1 (Nbs 1), breast cancer susceptibility genes 1 and 2 (BRCA1), and (BRCA2). Consequently, tumors should be assessed for these specific defects, and specific therapy prescribed that has high probability of inducing response. Tumors defective in p53 are frequently considered resistant to apoptosis, yet this defect also provides an opportunity for targeted therapy. When their DNA is damaged, p53-defective tumor cells preferentially arrest in S or G2 phase where they are susceptible to checkpoint inhibitors such as caffeine and UCN-01. These inhibitors preferentially abrogate cell cycle arrest in p53-defective cells, driving them through a lethal mitosis. Wild type p53 can prevent abrogation of arrest by elevating levels of p21(waf1) and decreasing levels of cyclins A and B. During tumorigenesis, tumor cells frequently loose checkpoint controls and this facilitates the development of the tumor. However, these defects also represent an Achilles heel that can be targeted to improve current therapeutic strategies.  相似文献   

9.
The WEE1 and ATM AND RAD3-RELATED (ATR) kinases are important regulators of the plant intra-S-phase checkpoint; consequently, WEE1KO and ATRKO roots are hypersensitive to replication-inhibitory drugs. Here, we report on a loss-of-function mutant allele of the FASCIATA1 (FAS1) subunit of the chromatin assembly factor 1 (CAF-1) complex that suppresses the phenotype of WEE1- or ATR-deficient Arabidopsis (Arabidopsis thaliana) plants. We demonstrate that lack of FAS1 activity results in the activation of an ATAXIA TELANGIECTASIA MUTATED (ATM)- and SUPPRESSOR OF GAMMA-RESPONSE 1 (SOG1)-mediated G2/M-arrest that renders the ATR and WEE1 checkpoint regulators redundant. This ATM activation accounts for the telomere erosion and loss of ribosomal DNA that are described for fas1 plants. Knocking out SOG1 in the fas1 wee1 background restores replication stress sensitivity, demonstrating that SOG1 is an important secondary checkpoint regulator in plants that fail to activate the intra-S-phase checkpoint.  相似文献   

10.
Eukaryotic cells slow their progression through S phase upon DNA damage. The mechanism that leads to this slowing is called the intra-S-phase checkpoint. Previous studies demonstrated that in the fission yeast Schizosaccharomyces pombe this checkpoint is mediated by a pathway that includes Rad3 (similar to human ATR and ATM) and Cds1 (similar to human Chk1 and Chk2). Here we present evidence that a major downstream target of this pathway is the cyclin-dependent kinase, Cdc2. We also present evidence suggesting that the intra-S-phase checkpoint makes a relatively minor contribution to the survival of cells with damaged DNA.  相似文献   

11.
Osman F  Tsaneva IR  Whitby MC  Doe CL 《Genetics》2002,160(3):891-908
Elevated mitotic recombination and cell cycle delays are two of the cellular responses to UV-induced DNA damage. Cell cycle delays in response to DNA damage are mediated via checkpoint proteins. Two distinct DNA damage checkpoints have been characterized in Schizosaccharomyces pombe: an intra-S-phase checkpoint slows replication and a G(2)/M checkpoint stops cells passing from G(2) into mitosis. In this study we have sought to determine whether UV damage-induced mitotic intrachromosomal recombination relies on damage-induced cell cycle delays. The spontaneous and UV-induced recombination phenotypes were determined for checkpoint mutants lacking the intra-S and/or the G(2)/M checkpoint. Spontaneous mitotic recombinants are thought to arise due to endogenous DNA damage and/or intrinsic stalling of replication forks. Cells lacking only the intra-S checkpoint exhibited no UV-induced increase in the frequency of recombinants above spontaneous levels. Mutants lacking the G(2)/M checkpoint exhibited a novel phenotype; following UV irradiation the recombinant frequency fell below the frequency of spontaneous recombinants. This implies that, as well as UV-induced recombinants, spontaneous recombinants are also lost in G(2)/M mutants after UV irradiation. Therefore, as well as lack of time for DNA repair, loss of spontaneous and damage-induced recombinants also contributes to cell death in UV-irradiated G(2)/M checkpoint mutants.  相似文献   

12.
Chk1 is implicated in several checkpoints of the cell cycle acting as a key player in the signal transduction pathway activated in response to DNA damage and crucial for the maintenance of genomic stability. Chk1 also plays a role in the mitotic spindle checkpoint, which ensures the fidelity of mitotic segregation during mitosis, preventing chromosomal instability and aneuploidy. Mad2 is one of the main mitotic checkpoint components and also exerts a role in the cellular response to DNA damage. To investigate a possible crosslink existing between Chk1 and Mad2, we studied Mad2 protein levels after Chk1 inhibition either by specific siRNAs or by a specific and selective Chk1 inhibitor (PF-00477736), and we found that after Chk1 inhibition, Mad2 protein levels decrease only in tumor cells sensitive to Chk1 depletion. We then mapped six Chk1’s phosphorylatable sites on Mad2 protein, and found that Chk1 is able to phosphorylate Mad2 in vitro on more than one site, while it is incapable of phoshorylating the Mad2 form mutated on all six phosphorylatable sites. Moreover our studies demonstrate that Chk1 co-localizes and physically associates with Mad2 in cells both under unstressed conditions and after DNA damage, thus providing new and interesting evidence on Chk1 and Mad2 crosstalk in the DNA damage checkpoint and in the mitotic spindle checkpoint.  相似文献   

13.
Excess production of nitric oxide and reactive nitrogen intermediates causes nitrosative stress on cells. Schizosaccharomyces pombe was used as a model to study the cell cycle regulation under nitrosative stress response. We discovered a novel intra-S-phase checkpoint that is activated in S. pombe under nitrosative stress. The mechanism for this intra-S-phase checkpoint activation is distinctly different than previously reported for genotoxic stress in S. pombe by methyl methane sulfonate. Our flow cytometry data established the fact that Wee1 phosphorylates Cdc2 Tyr15 which leads to replication slowdown in the fission yeast under nitrosative stress. We checked the roles of Rad3, Rad17, Rad26, Swi1, Swi3, Cds1, and Chk1 under nitrosative stress but those were not involved in the activation of the DNA replication checkpoint. Rad24 was found to be involved in intra-S-phase checkpoint activation in S. pombe under nitrosative stress but that was independent of Cdc25.  相似文献   

14.
The integrity of the genome is threatened by DNA damage that blocks the progression of replication forks. Little is known about the genomic locations of replication fork stalling, and its determinants and consequences in vivo. Here we show that bulky DNA damaging agents induce localized fork stalling at yeast replication origins, and that localized stalling is dependent on proximal origin activity and is modulated by the intra-S-phase checkpoint. Fork stalling preceded the formation of sister chromatid junctions required for bypassing DNA damage. Despite DNA adduct formation, localized fork stalling was abrogated at an origin inactivated by a point mutation and prominent stalling was not detected at naturally-inactive origins in the replicon. The intra-S-phase checkpoint contributed to the high-level of fork stalling at early origins, while checkpoint inactivation led to initiation, localized stalling and chromatid joining at a late origin. Our results indicate that replication forks initially encountering a bulky DNA adduct exhibit a dual nature of stalling: a checkpoint-independent arrest that triggers sister chromatid junction formation, as well as a checkpoint-enhanced arrest at early origins that accompanies the repression of late origin firing. We propose that the initial checkpoint-enhanced arrest reflects events that facilitate fork resolution at subsequent lesions.  相似文献   

15.
The intra-S-phase checkpoint is a signaling pathway that induces slow DNA replication in the presence of DNA damage. In humans, defects in this checkpoint pathway might account for phenotypes seen in autosomal recessive diseases including ataxia telangiectasia-like disorder and Nijmegen breakage syndrome, where MRN complex components, Mre11 and Nbs1, are mutated. Here we provide evidence that the equivalent budding yeast complex, MRX (Mre11/Rad50/Xrs2), is not required for the intra-S-phase checkpoint in response to DNA alkylation damage, but is required in the presence of double-stranded DNA breaks. These data indicate, at least in budding yeast, that alternate pathways enforce replication slowing depending on the particular DNA lesion.  相似文献   

16.
DNA mismatch repair (MMR) deficiency in human cancers is associated with resistance to a spectrum of clinically active chemotherapy drugs, including 6-thioguanine (6-TG). We and others have shown that 6-TG-induced DNA mismatches result in a prolonged G2/M cell cycle arrest followed by apoptosis in MMR(+) human cancer cells, although the signaling pathways are not clearly understood. In this study, we found that prolonged (up to 4 days) treatment with 6-TG (3microM) resulted in a progressive phosphorylation of Chk1 and Chk2 in MMR(+) HeLa cells, correlating temporally with a drug-induced G2/M arrest. Transfection of HeLa cells with small interfering RNA (siRNA) against the ataxia telangiectasia-related (ATR) kinase or against the Chk1 kinase destroyed the G2/M checkpoint and enhanced the apoptosis following 6-TG treatment. On the other hand, the induction of a G2/M population by 6-TG was similar in ATM(-/-) and ATM(+) human fibroblasts, suggesting that the ATM-Chk2 pathway does not play a major role in this 6-TG response. Our results indicate that 6-TG DNA mismatches activate the ATR-Chk1 pathway in the MMR(+) cells, resulting in a G2/M checkpoint response  相似文献   

17.
Chk1 plays a key role in the DNA replication checkpoint and in preserving genomic integrity. Previous studies have shown that reduced Chk1 function leads to defects in the checkpoint response and is closely associated with tumorigenesis. Here, we report that glucose deprivation caused the degradation of Chk1 protein without perturbing cell cycle progression. The induction of Chk1 degradation in response to glucose deprivation was observed in various cancer cell lines and in normal human fibroblasts. Therefore, it appears to be a universal phenomenon in mammalian cells. A specific proteasome inhibitor blocked glucose deprivation-induced Chk1 degradation. Ubiquitination of Chk1 was detected, indicating that the proteasome-ubiquitin pathway mediates Chk1 degradation upon glucose deprivation. Mechanistic studies have demonstrated that ATR-dependent phosphorylation of Chk1 at the Ser317 and Ser345 sites is not required, suggesting that the molecular mechanism for Chk1 degradation upon glucose deprivation is distinct from genotoxic stress-induced degradation. Under conditions of glucose deprivation, the cells manifested a defective checkpoint response to replication stress, camptothecin or hydroxyurea. The forced expression of Myc-Chk1 partially rescued the defective response to the replication block upon glucose deprivation. Taken together, our results indicate that glucose deprivation induces ubiquitin-mediated Chk1 degradation and defective checkpoint responses, implying its potential role in genomic instability and tumor development.  相似文献   

18.
Canman CE 《Current biology : CB》2003,13(12):R488-R490
The recently identified checkpoint mediator MDC1 facilitates recruitment of DNA repair proteins to damaged sites and establishment of the intra-S-phase cell-cycle checkpoint. Increasing evidence suggests that proteins like MDC1 provide the framework necessary for transducing signals from DNA double-strand breaks.  相似文献   

19.
The ribosomal DNA origin binding protein Tif1p regulates the timing of rDNA replication and is required globally for proper S-phase progression and division of the Tetrahymena thermophila macronucleus. Here, we show that Tif1p safeguards chromosomes from DNA damage in the mitotic micronucleus and amitotic macronucleus. TIF1p localization is dynamically regulated as it moves into the micro- and macronucleus during the respective S phases. TIF1 disruption mutants are hypersensitive to hydroxyurea and methylmethanesulfonate, inducers of DNA damage and intra-S-phase checkpoint arrest in all examined eukaryotes. TIF1 mutants incur double-strand breaks in the absence of exogenous genotoxic stress, destabilizing all five micronuclear chromosomes. Wild-type Tetrahymena elicits an intra-S-phase checkpoint response that is induced by hydroxyurea and suppressed by caffeine, an inhibitor of the apical checkpoint kinase ATR/MEC1. In contrast, hydroxyurea-challenged TIF1 mutants fail to arrest in S phase or exhibit caffeine-sensitive Rad51 overexpression, indicating the involvement of TIF1 in checkpoint activation. Although aberrant micro- and macronuclear division occurs in TIF1 mutants and caffeine-treated wild-type cells, TIF1p bears no similarity to ATR or its substrates. We propose that TIF1 and ATR function in the same epistatic pathway to regulate checkpoint responses in the diploid mitotic micronucleus and polyploid amitotic macronucleus.  相似文献   

20.
Checkpoint kinase 2 (Chk2) is one of the critical kinases governing the cell cycle checkpoint, DNA damage repair, and cell apoptosis in response to DNA damaging signals. In the present report, we demonstrate that Chk2 kinase is degraded at the protein level in response to cisplatin through ubiquitin-proteasome pathway. This degradation was independent of the Thr68 phosphorylation, ATM kinase, and BRCA1 tumor suppressor. Examination of Chk2 protein revealed a decreased expression of Chk2 protein in cisplatin-resistant ovarian cancer cell lines, suggesting that degradation or decreased expression of Chk2 is partially responsible for chemo-resistance. Site-directed mutation of the putative destruction box in the Chk2 protein did not affect the Chk2 degradation induced by cisplatin. Therefore, these results are the first to indicate a novel mechanism of regulating Chk2 in cisplatin-induced resistance of cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号