首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA synthesis was examined in ultraviolet (uv)-irradiated ICR 2A frog cells in which either pyrimidine dimers or nondimer photoproducts represented the major class of DNA lesions. Dimers were induced by exposure of cells to 254 nm uv, while nondimer photoproducts were induced by irradiation of cells with uv produced by a fluorescent sunlamp (FSL) that was filtered through 48A Mylar (removes wavelengths less than 310 nm). The FSL-irradiated cultures were also treated with photoreactivating light (PRL) which removed most of the small number of dimers induced by the irradiation, leaving a relatively pure population of nondimer photoproducts. In addition, cells were exposed to 60Co gamma rays. The cultures were pulse-labeled and the size distribution of the DNA synthesized was estimated using both sucrose gradient sedimentation and alkaline step elution. Using either of these techniques, it was found that the presence of dimers resulted in a reduction principally in the synthesis of high molecular weight (MW) DNA. In contrast, nondimer photoproducts caused a strong inhibition in the synthesis of low MW DNA, as was also observed in gamma-irradiated cells. Hence the induction of pyrimidine dimers in DNA mainly affected the elongation of replicons, whereas nondimer lesions primarily caused an inhibition of replicon initiation.  相似文献   

2.
In order to calculate the relative cytotoxicity and mutagenicity of (5-6) cyclobutane pyrimidine dimers and (6-4) photoproducts, we have measured survival and mutation induction in UV-irradiated excision-deficient E. coli uvrA cells, with or without complete photoreactivation of the (5-6) dimers. Radioimmunoassays with specificity for (5-6) dimers or (6-4) photoproducts have shown that maximum photoreactivation eliminates all of the (5-6) dimers produced up to 10 Jm-2 254-nm light, while it has no effect on (6-4) photoproducts. These results were confirmed by measuring the frequency of T4 endonuclease V-sensitive sites. Based on the best fit equations for survival and mutation induction, we have found that the calculated cytotoxicity of (6-4) photoproducts is similar to that of (5-6) dimers; however, the former is much more mutagenic than the latter.  相似文献   

3.
Radioimmunoassays that detect pyrimidine-pyrimidone (6-4) photoproducts and cyclobutane dimers were used to determine the relative induction of these photoproducts in nucleosomal (core) and internucleosomal (linker) DNA in human cell chromatin irradiated with UV light. Cyclobutane dimers were formed in equal amounts/nucleotide in core and linker DNA, whereas (6-4) photoproducts occurred with 6-fold greater frequency/nucleotide in linker DNA.  相似文献   

4.
Ultraviolet light irradiation of DNA results in the formation of two major types of photoproducts, cyclobutane dimers and 6-4' [pyrimidin-2'-one] -pyrimidine photoproducts. The enzyme T4 DNA polymerase possesses a 3' to 5' exonuclease activity and hydrolyzes both single and double stranded DNA in the absence of deoxynucleotide triphosphate substrates. Here we describe the use of T4 DNA polymerase associated exonuclease for the detection and quantitation of UV light-induced damage on both single and double stranded DNA. Hydrolysis of UV-irradiated single or double stranded DNA by the DNA polymerase associated exonuclease is quantitatively blocked by both cyclobutane dimers and (6-4) photoproducts. The enzyme terminates digestion of UV-irradiated DNA at the 3' pyrimidine of both cyclobutane dimers and (6-4) photoproducts. For a given photoproduct site, the induction of cyclobutane dimers was the same for both single and double stranded DNA. A similar relationship was also found for the induction of (6-4) photoproducts. These results suggest that the T4 DNA polymerase proofreading activity alone cannot remove these UV photoproducts present on DNA templates, but instead must function together with enzymes such as the T4 pyrimidine dimer-specific endonuclease in the repair of DNA photoproducts. The T4 DNA polymerase associated exonuclease should be useful for the analysis of a wide variety of bulky, stable DNA adducts.  相似文献   

5.
A polyclonal antiserum raised against UV-irradiated DNA can be used to assay cyclobutane pyrimidine dimers and Pyr(6-4)Pyo photoproducts specifically by changing the nature of the 32P-labelled antigen. Pyr(6-4)Pyo photoproducts were removed faster than cyclobutane dimers in UV-irradiated human, hamster and mouse cells. Xeroderma pigmentosum cells from complementation groups A, C and D were deficient in the repair of both lesions.  相似文献   

6.
Using a transient gene expression assay to measure host cell reactivation, the effects of cyclobutane dimer and noncyclobutane dimer uv photoproducts on expression of a reporter gene were examined in normal and repair-deficient Chinese hamster ovary (CHO) cell lines. Ultraviolet damage in plasmid pRSV beta gal DNA, containing the Escherichia coli beta-galactosidase gene, resulted in reduced reporter gene expression in both uv-hypersensitive mutant CHO cell lines UV5 and UV61 relative to wild-type, parental AA8 cells. However, the effects of uv irradiation of transfected plasmid DNA on gene activity were reduced in UV61, a mutant with normal (6-4) photoproduct repair, compared to UV5, which is deficient in (6-4) photoproduct repair; this reduction correlated with the intermediate uv-hypersensitivity of UV61. Selective removal of cyclobutane dimers by in vitro photoreactivation of uv-irradiated plasmid DNA prior to transfection substantially increased reporter gene activity in both uv-hypersensitive mutant cell lines. This increase was significantly greater in UV61 than in UV5, consistent with UV5 being deficient in repair of both (6-4) photoproducts and cyclobutane dimers. These results suggest that unrepaired (6-4) photoproducts in transfected pRSV beta gal plasmid DNA are responsible for a significant fraction of the reduction in transient gene expression observed in recipient uv-hypersensitive CHO cell mutants.  相似文献   

7.
Douki T  Cadet J 《Biochemistry》2001,40(8):2495-2501
Bipyrimidine photoproducts induced in DNA by UVB radiation include cyclobutane dimers, (6-4) photoproducts, and their related Dewar valence isomers. Even though these lesions have been extensively studied, their rate of formation within DNA is still not known for each possible bipyrimidine site (TT, TC, CT, and CC). Using a method based on the coupling of liquid chromatography to mass spectrometry, we determined the distribution of the 12 possible bipyrimidine photoproducts within isolated and cellular DNA. TT and TC were found to be the most photoreactive sequences, whereas lower amounts of damage were produced at CT and CC sites. In addition to this quantitative aspect, sequence effects were observed on the relative yield of (6-4) adducts with respect to cyclobutane pyrimidine dimers. Another interesting result is the lack of formation of Dewar valence isomers in detectable amounts within the DNA of cells exposed to low doses of UVB radiation. The photoproduct distribution obtained does not fully correlate with the UV mutation spectrum. A major striking observation deals with the low yield of cytosine-cytosine photoproducts which are likely to be associated with the UV-specific CC to TT tandem mutation.  相似文献   

8.
The effect of purified Escherichia coli DNA photolyase on the UV light-induced pyrimidine-pyrimidone (6-4) photoproduct and cyclobutane pyrimidine dimer was investigated in vitro using enzyme purified from cells carrying the cloned phr gene (map position, 15.7 min). Photoproducts were examined both as site-specific lesions in end-labeled DNA and as chromatographically identified products in uniformly labeled DNA. E. coli DNA photolyase removed cyclobutane dimers but had no activity on pyrimidine-pyrimidone (6-4) photoproducts. Photoreactivation can therefore be used to separate the biological effects of these two UV light-induced molecular lesions.  相似文献   

9.
We used a simian virus 40-based shuttle vector plasmid, pZ189, to determine the role of pyrimidine cyclobutane dimers in UV light-induced mutagenesis in monkey cells. The vector DNA was UV irradiated and then introduced into monkey cells by transfection. After replication, vector DNA was recovered from the cells and tested for mutations in its supF suppressor tRNA marker gene by transformation of Escherichia coli carrying a nonsense mutation in the beta-galactosidase gene. When the irradiated vector was treated with E. coli photolyase prior to transfection, pyrimidine cyclobutane dimers were removed selectively. Removal of approximately 90% of the pyrimidine cyclobutane dimers increased the biological activity of the vector by 75% and reduced its mutation frequency by 80%. Sequence analysis of 72 mutants recovered indicated that there were significantly fewer tandem double-base changes and G X C----A X T transitions (particularly at CC sites) after photoreactivation of the DNA. UV-induced photoproducts remained (although at greatly reduced levels) at all pyr-pyr sites after photoreactivation, but there was a relative increase in photoproducts at CC and TC sites and a relative decrease at TT and CT sites, presumably due to a persistence of (6-4) photoproducts at some CC and TC sites. These observations are consistent with the fact that mutations were found after photoreactivation at many sites at which only cyclobutane dimers would be expected to occur. From these results we conclude that UV-induced pyrimidine cyclobutane dimers are mutagenic in DNA replicated in monkey cells.  相似文献   

10.
Bipyrimidine cyclobutane dimers and 6-4'-(pyrimidin-2'-one)-pyrimidine photoproducts are the major adducts formed in DNA following exposure to ultraviolet light. The relationship between the type and frequency of UV-induced DNA damage and the effects of such damage on DNA replication were investigated. UV-irradiated M13 phage DNA was employed in polymerization reactions with the Kenow fragment of Escherichia coli DNA polymerase I. The locations and frequencies of polymerase termination events occurring within a defined sequence of M13 DNA were compared with measurements of the locations and frequencies of UV-induced DNA damage of the same DNA sequence by using UV-specific enzymatic and chemical methods. The results indicate that both cyclobutane dimers and (6-4) photoproducts quantitatively block polymerization by DNA polymerase I.  相似文献   

11.
We compared the removal of pyrimidine(6-4)pyrimidone photoproducts [(6-4) photoproducts] and cyclobutane pyrimidine dimers (CPDs) from the genome of repair-proficient Escherichia coli, using monoclonal antibodies specific for each type of lesion. We found that (6-4) photoproducts were removed at a higher rate than CPDs in the first 30 min following a moderate UV dose (40 J/m2). The difference in rates was less than that typically reported for cultured mammalian cells, in which the removal of (6-4) photoproducts is far more rapid than that of CPDs.  相似文献   

12.
Ultraviolet radiation (UVR)-induced photoproducts can be measured by a number of methods. The newly developed 32P-postlabelling method is feasible in molecular epidemiological studies due to its sensitivity, specificity and little amount DNA needed. We applied the 32P-postlabelling method to investigate the induction and repair of photoproducts (cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts) after UVR in human skin in situ and studied the effects of age, skin type and gender. The study included 30 subjects aged 32-78 years. The photoproduct induction levels varied 7- to 15-fold between the individuals tested. All four types of photoproducts were induced at a higher frequency in the older population (>/=50 years) than in the younger population (<50 years). Individuals with skin type I and II had a higher CPD induction frequency than individuals with skin type III and IV. In both cases, the differences in thymidylyl (3'-5') thymidylyl (3'-5')-2'-deoxycytidine induction reached statistical significant levels (p<0.05). Photoproduct repair rates 24 h and 48 h after UV irradiation showed a large inter-individual variation. No clear effects of age, skin type or gender on DNA repair could be detected. Our data suggest that UV-induced DNA photoproduct levels increase with age.  相似文献   

13.
UV-induced pyrimidine(6-4)pyrimidone photoproducts in DNA of mammalian cells are apparently repaired much more rapidly than cyclobutane dimers. Since only immunological assays for (6-4) photoproducts have been sensitive enough for repair measurements, it was possible that these apparently rapid repair kinetics reflected a change in physical conformation of antibody-binding sites, resulting in epitope loss rather than excision. To discriminate between these possibilities, we developed a procedure to photochemically convert (6-4) photoproducts to single-strand breaks in UV-irradiated DNA with a background low enough to permit repair measurements. Analysis of a specific DNA sequence indicated that photoinduced alkali-labile sites (PALS) were induced with the same site-specificity as (6-4) photoproducts. Normal human and xeroderma pigmentosum (XP) variant cells rapidly excised (6-4) photoproducts measured as PALS, but little repair was seen in cells from XP complementation group A. These repair kinetics corresponded to those determined in the same samples by radioimmunoassay of (6-4) photoproducts. Thus we conclude that the rapid repair of (6-4) photoproducts observed in UV-irradiated human cells is not the result of a conformational change resulting in epitope loss, but reflects excision of this photoproduct from DNA.  相似文献   

14.
Exposure of DNA to uv radiation results in the formation of a number of photoproducts including the cyclobutyl pyrimidine dimers. At low uv fluences the concentrations of these dimeric compounds are only a small fraction of the corresponding DNA pyrimidine concentration (e.g., as low as 0.02% or less of the total thymine content). Sensitive methods of analysis are therefore required for accurate determinations. Analytical methodology based upon HPLC fractionation and electrophore labeling followed by GC/electron capture detection (ECD) has been developed to quantitate these species. Separation of thymine-thymine, thymine-uracil, and uracil-uracil from the monomeric bases and from other constituents present in acid-hydrolyzed DNA is achieved by reversed-phase HPLC. Isolation of the dimeric fractions is followed by off-line derivatization to form pentafluorobenzyl products for analysis by GC/ECD. All active hydrogens are alkylated, yielding products with high response factors and detection limits in the low femtomole range. The overall analytical scheme for the determination of pyrimidine dimers in DNA is presented.  相似文献   

15.
Using DNA sequencing techniques, action spectra were prepared for the site-specific induction of cyclobutane pyrimidine dimers and hot-alkali sites (probably mostly 5-hydroxy-6-4-(5'-methylpyrimidine-2'-one)-dihydrothymine) in a DNA of defined sequence. The spectra for the formation of two different photoproducts were indistinguishable from each other. However, the absolute rates of induction of dimers and hot-alkali sites were different from each other, and varied from site to site. At 254, 270, and 290 nm, the spectra correlate with the action spectrum of DNA. At longer wavelengths (313 and 334 nm), the action spectra diverge from the DNA spectrum, with the efficiency of formation of both photoproducts being greater than the DNA spectrum.  相似文献   

16.
A partial revertant (RH1-26) of the UV-sensitive Chinese hamster V79 cell mutant V-H1 (complementation group 2) was isolated and characterized. It was used to analyze the mutagenic potency of the 2 major UV-induced lesions, cyclobutane pyrimidine dimers and (6-4) photoproducts. Both V-H1 and RH1-26 did not repair pyrimidine dimers measured in the genome overall as well as in the active hprt gene. Repair of (6-4) photoproducts from the genome overall was slower in V-H1 than in wild-type V79 cells, but was restored to normal in RH1-26. Although V-H1 cells have a 7-fold enhanced mutagenicity, RH1-26 cells, despite the absence of pyrimidine dimer repair, have a slightly lower level of UV-induced mutagenesis than observed in wild-type V79 cells. The molecular nature of hprt mutations and the DNA-strand specificity were similar in V79 and RH1-26 cells but different from that of V-H1 cells. Since in RH1-26 as well as in V79 cells most hprt mutations were induced by lesions in the non-transcribed DNA strand, in contrast to the transcribed DNA strand in V-H1, the observed mutation-strand bias suggests that normally (6-4) photoproducts are preferentially repaired in the transcribed DNA strand. The dramatic influence of the impaired (6-4) photoproduct repair in V-H1 on UV-induced mutability and the molecular nature of hprt mutations indicate that the (6-4) photoproduct is the main UV-induced mutagenic lesion.  相似文献   

17.
18.
The effects of short wave ultraviolet (UV)-induced DNA lesions on the catalytic activity of Drosophila melanogaster topoisomerase II were investigated. The presence of these photoproducts impaired the enzyme's ability to relax negatively supercoiled pBR322 plasmid molecules. As determined by DNA photolyase-catalyzed photoreactivation experiments, enzyme inhibition was due to the presence of cyclobutane pyrimidine dimers in the DNA. When 10-20 cyclobutane dimers were present per plasmid, the initial velocity of topoisomerase II-catalyzed DNA relaxation was inhibited approximately 50%. Decreased relaxation activity correlated with an inhibition of the DNA strand passage step of the enzyme's catalytic cycle. In contrast, UV-induced photoproducts did not alter the prestrand passage DNA cleavage/religation equilibrium of topoisomerase II either in the absence or presence of antineoplastic agents. Results of the present study demonstrate that the repair of cyclobutane pyrimidine dimers is important for the efficient catalytic function of topoisomerase II.  相似文献   

19.
Chinese hamster ovary cells and two UV-hypersensitive derivatives were used to determine the importance of DNA excision repair for split-dose recovery. In the wild-type cells 75% of the maximum theoretical recovery was observed when the fractions were delivered at 2-h intervals. Very little recovery was evident in the two hypersensitive cell lines. Using radioimmunoassays specific for (6-4)photoproducts and cyclobutane dimers, the ability of UV-irradiated repair-deficient cells representing 5 complementation groups to repair these 2 photoproducts was determined. Removal of antibody-binding sites specific for (6-4)photoproducts was 80% complete in 6 h and was defective in the UV-sensitive cells. In contrast, only 20-60% of antibody-binding sites specific for cyclobutane dimers were removed 18 h post-irradiation, and the extent of removal was the same in normal and defective cell lines. We conclude that repair of (6-4)photoproducts accounts for split-dose recovery. In addition, we conclude that a consequence of DNA repair in CHO cells is modification rather than removal of cyclobutane dimers.  相似文献   

20.
Chronic exposure to sunlight may induce skin damage such as photoaging and photocarcinogenesis. These harmful effects are mostly caused by ultraviolet-B (UVB) rays. Yet, less is known about the contribution of low UVB doses to skin damage. The aim of this study was to determine the tissue changes induced by repeated exposure to a suberythemal dose of UVB radiation. Human keratinocytes in monolayer cultures and in skin equivalent were irradiated daily with 8 mJ/cm2 of UVB. Then structural, ultrastructural, and biochemical alterations were evaluated. The results show that exposure to UVB led to a generalized destabilization of the epidermis structure. In irradiated skin equivalents, keratinocytes displayed differentiated morphology and a reduced capacity to proliferate. Ultrastructural analysis revealed, not only unusual aggregation of intermediate filaments, but also disorganized desmosomes and larger mitochondria in basal cells. UVB irradiation also induced the secretion of metalloproteinase-9, which may be responsible for degradation of type IV collagen at the basement membrane. DNA damage analysis showed that both single and repeated exposure to UVB led to formation of (6-4) photoproducts and cyclobutane pyrimidine dimers. Although the (6-4) photoproducts were repaired within 24 h after irradiation, cyclobutane pyrimidine dimers accumulated over the course of the experiment. These studies demonstrate that, even at a suberythemal dose, repeated exposure to UVB causes significant functional and molecular damage to keratinocytes, which might eventually predispose to skin cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号