首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
MOTIVATION: To evaluate microarray data, clustering is widely used to group biological samples or genes. However, problems arise when comparing heterologous databases. As the clustering algorithm searches for similarities between experiments, it will most likely first separate the data sets, masking relationships that exist between samples from different databases. RESULTS: We developed a program, Venn Mapper, to calculate the statistical significance of the number of co-occurring differentially expressed genes in any of the two experiments. For proof of principle, we analysed a heterologous data set of 170 microarrays including breast and prostate cancer microarray analyses. Significant overlap was found in an unsupervised analysis between metastasized prostate cancer and metastasized breast cancer and BRCA mutated breast cancer. A comparison between single microarray data and the averaged breast and prostate data sets was also evaluated. This analysis suggests that genes expressed higher in stromal cells are also implicated in metastatic prostate cancer and BRCA mutated breast cancer. The Venn Mapper program identifies overlaps between samples from heterologous data sets and directly extracts the genes responsible for the overlap. From this information novel biological hypotheses may be addressed. AVAILABILITY: Venn Mapper is freely available on http://www.erasmusmc.nl/gatcplatform. SUPPLEMENTARY INFORMATION: http://www.erasmusmc.nl/gatcplatform/vennmapper.html.  相似文献   

3.
The rapid development of microarray technologies has led to a similar progression in gene expression analysis methods, gene expression applications, and gene expression databases. Public gene expression databases enable any researcher to examine expression of their favorite genes across a wide variety of samples, download sample data for development of new analysis methods, or answer broad questions about gene expression regulation, among other applications. A wide variety of public gene expression databases exist, and they vary in their content, analysis capabilities, and ease of use. This review highlights the current features and describes examples of two broad categories of mammalian microarray databases: tissue gene expression databases and data warehouses.  相似文献   

4.
Fuzzy J-Means and VNS methods for clustering genes from microarray data   总被引:4,自引:0,他引:4  
MOTIVATION: In the interpretation of gene expression data from a group of microarray experiments that include samples from either different patients or conditions, special consideration must be given to the pleiotropic and epistatic roles of genes, as observed in the variation of gene coexpression patterns. Crisp clustering methods assign each gene to one cluster, thereby omitting information about the multiple roles of genes. RESULTS: Here, we present the application of a local search heuristic, Fuzzy J-Means, embedded into the variable neighborhood search metaheuristic for the clustering of microarray gene expression data. We show that for all the datasets studied this algorithm outperforms the standard Fuzzy C-Means heuristic. Different methods for the utilization of cluster membership information in determining gene coregulation are presented. The clustering and data analyses were performed on simulated datasets as well as experimental cDNA microarray data for breast cancer and human blood from the Stanford Microarray Database. AVAILABILITY: The source code of the clustering software (C programming language) is freely available from Nabil.Belacel@nrc-cnrc.gc.ca  相似文献   

5.
Oncomine 是目前世界上最大的癌基因芯片数据库和综合数据挖掘平台之一,该数据库整合了GEO、TCGA和已发表文献来源的RNA和DNA-seq数据。数据库目前含有715个基因表达数据集(datasheet)、86 733个人体肿瘤组织和正常组织样本的信息,且有新的数据不断更新。Oncomine 数据库囊括的肿瘤类型有19种,包括:膀胱癌、脑/中枢神经系统肿瘤、乳腺癌、宫颈癌、结直肠癌、食管癌、胃癌、头/颈肿瘤、肾癌、白血病、肝癌、肺癌、淋巴瘤、黑色素瘤、骨髓瘤、卵巢癌、胰腺癌、前列腺癌、肉瘤。本文就如何利用Oncomine数据库,进行肿瘤组织中癌基因表达差异性分析以及基因共表达分析、癌基因在肿瘤组织中的表达及拷贝数分析、多组研究数据集的荟萃分析(meta analysis)、以及癌基因表达与患者生存率关系等进行分析。通过该数据库可以对肿瘤癌基因进行研究前的筛查,有利于发现新的肿瘤生物标记物或治疗靶点,为临床科学研究奠定一定的理论基础。  相似文献   

6.
One important problem in genomic research is to identify genomic features such as gene expression data or DNA single nucleotide polymorphisms (SNPs) that are related to clinical phenotypes. Often these genomic data can be naturally divided into biologically meaningful groups such as genes belonging to the same pathways or SNPs within genes. In this paper, we propose group additive regression models and a group gradient descent boosting procedure for identifying groups of genomic features that are related to clinical phenotypes. Our simulation results show that by dividing the variables into appropriate groups, we can obtain better identification of the group features that are related to the phenotypes. In addition, the prediction mean square errors are also smaller than the component-wise boosting procedure. We demonstrate the application of the methods to pathway-based analysis of microarray gene expression data of breast cancer. Results from analysis of a breast cancer microarray gene expression data set indicate that the pathways of metalloendopeptidases (MMPs) and MMP inhibitors, as well as cell proliferation, cell growth, and maintenance are important to breast cancer-specific survival.  相似文献   

7.
Mixture modelling of gene expression data from microarray experiments   总被引:5,自引:0,他引:5  
MOTIVATION: Hierarchical clustering is one of the major analytical tools for gene expression data from microarray experiments. A major problem in the interpretation of the output from these procedures is assessing the reliability of the clustering results. We address this issue by developing a mixture model-based approach for the analysis of microarray data. Within this framework, we present novel algorithms for clustering genes and samples. One of the byproducts of our method is a probabilistic measure for the number of true clusters in the data. RESULTS: The proposed methods are illustrated by application to microarray datasets from two cancer studies; one in which malignant melanoma is profiled (Bittner et al., Nature, 406, 536-540, 2000), and the other in which prostate cancer is profiled (Dhanasekaran et al., 2001, submitted).  相似文献   

8.

Background  

A routine goal in the analysis of microarray data is to identify genes with expression levels that correlate with known classes of experiments. In a growing number of array data sets, it has been shown that there is an over-abundance of genes that discriminate between known classes as compared to expectations for random classes. Therefore, one can search for novel classes in array data by looking for partitions of experiments for which there are an over-abundance of discriminatory genes. We have previously used such an approach in a breast cancer study.  相似文献   

9.
当两组样本间基因表达的差异程度较低或样本量较少时,采用通常的错误发现率(falsediscovery rate,FDR)控制水平(如5%或10%),可能无法识别足够多的差异表达基因以进行后续的功能富集分析。然而,功能富集分析对差异表达基因中的错误发现具有一定的稳健性。所以,采用较低的FDR控制水平(即允许较高的FDR)识别差异表达基因,可能可以可靠地发现疾病相关功能。本文分析了5套研究乳腺癌转移的基因表达谱,通过其中差异表达信号较强的3套数据,论证了即使差异表达基因的FDR达到25%,功能富集分析的结果仍具有较高的稳健性。然后,在另外2套差异表达信号微弱的数据中,采用25%的FDR控制水平筛选差异表达基因来进行功能富集分析,并与前述3套数据的功能富集结果做比较。结果显示,采用较低的FDR控制水平筛选差异表达基因,仍然可以可靠地识别乳腺癌转移相关功能。分析结果也提示,在乳腺癌转移过程中,一些功能较为宽泛的生物学过程(如细胞分裂、细胞周期和DNA复制等)整体受到了扰动,反映出乳腺癌转移是一种涉及广泛基因表达改变的系统性疾病。  相似文献   

10.
Z-score transformation has been successfully used as a normalisation procedure for microarray data generated using radioactively labelled probes with spotted cDNA arrays. One of the advantages of the z-score transformation method is that it provides a way of standardising data across a wide range of experiments and allows the comparison of microarray data independent of the original hybridisation intensities. The feasibility of applying z-score transformation to other types of linear microarray data, specifically that generated using fluorescently labelled probes with Affymetrix chips, was tested in three separate scenarios and is discussed here. In the first scenario, Affymetrix data from the NCBI (National Center for Biotechnology Information) GEO (Gene Expression Omnibus) database was used to demonstrate that z-score transformation preserved the essential phylogenetic grouping between primate species' fibroblast gene expression baseline measurements. The second scenario employed z-score transformation on data consisting of a series of genes spiked-in at known concentrations and arrayed in a Latin square format. We were able to reconstruct the entire set of spike-in concentration curves without prior knowledge of their format by using z-score transformation as the normalisation process. Finally, we show that z-score transformed data maintains the integrity of separate samples from different experiments and laboratories, as demonstrated by accurate grouping of clustered data according to sample identity. We conclude that data normalised by z-score transformation can be easily used with Affymetrix data without noticeable loss of information content. Z-score transformation provides a useful tool for comparisons between experiments and between laboratories that use the Affymetrix platform.  相似文献   

11.
Static expression experiments analyze samples from many individuals. These samples are often snapshots of the progression of a certain disease such as cancer. This raises an intriguing question: Can we determine a temporal order for these samples? Such an ordering can lead to better understanding of the dynamics of the disease and to the identification of genes associated with its progression. In this paper we formally prove, for the first time, that under a model for the dynamics of the expression levels of a single gene, it is indeed possible to recover the correct ordering of the static expression datasets by solving an instance of the traveling salesman problem (TSP). In addition, we devise an algorithm that combines a TSP heuristic and probabilistic modeling for inferring the underlying temporal order of the microarray experiments. This algorithm constructs probabilistic continuous curves to represent expression profiles leading to accurate temporal reconstruction for human data. Applying our method to cancer expression data we show that the ordering derived agrees well with survival duration. A classifier that utilizes this ordering improves upon other classifiers suggested for this task. The set of genes displaying consistent behavior for the determined ordering are enriched for genes associated with cancer progression.  相似文献   

12.
《Genomics》2022,114(2):110264
Cancer is one of the major causes of human death per year. In recent years, cancer identification and classification using machine learning have gained momentum due to the availability of high throughput sequencing data. Using RNA-seq, cancer research is blooming day by day and new insights of cancer and related treatments are coming into light. In this paper, we propose PanClassif, a method that requires a very few and effective genes to detect cancer from RNA-seq data and is able to provide performance gain in several wide range machine learning classifiers. We have taken 22 types of cancer samples from The Cancer Genome Atlas (TCGA) having 8287 cancer samples and 680 normal samples. Firstly, PanClassif uses k-Nearest Neighbour (k-NN) smoothing to smooth the samples to handle noise in the data. Then effective genes are selected by Anova based test. For balancing the train data, PanClassif applies an oversampling method, SMOTE. We have performed comprehensive experiments on the datasets using several classification algorithms. Experimental results shows that PanClassif outperform existing state-of-the-art methods available and shows consistent performance for two single cell RNA-seq datasets taken from Gene Expression Omnibus (GEO). PanClassif improves performances of a wide variety of classifiers for both binary cancer prediction and multi-class cancer classification. PanClassif is available as a python package (https://pypi.org/project/panclassif/). All the source code and materials of PanClassif are available at https://github.com/Zwei-inc/panclassif.  相似文献   

13.

Background

Microarray gene expression data are accumulating in public databases. The expression profiles contain valuable information for understanding human gene expression patterns. However, the effective use of public microarray data requires integrating the expression profiles from heterogeneous sources.

Results

In this study, we have compiled a compendium of microarray expression profiles of various human tissue samples. The microarray raw data generated in different research laboratories have been obtained and combined into a single dataset after data normalization and transformation. To demonstrate the usefulness of the integrated microarray data for studying human gene expression patterns, we have analyzed the dataset to identify potential tissue-selective genes. A new method has been proposed for genome-wide identification of tissue-selective gene targets using both microarray intensity values and detection calls. The candidate genes for brain, liver and testis-selective expression have been examined, and the results suggest that our approach can select some interesting gene targets for further experimental studies.

Conclusion

A computational approach has been developed in this study for combining microarray expression profiles from heterogeneous sources. The integrated microarray data can be used to investigate tissue-selective expression patterns of human genes.
  相似文献   

14.
Yi Y  Mirosevich J  Shyr Y  Matusik R  George AL 《Genomics》2005,85(3):401-412
Microarray technology can be used to assess simultaneously global changes in expression of mRNA or genomic DNA copy number among thousands of genes in different biological states. In many cases, it is desirable to determine if altered patterns of gene expression correlate with chromosomal abnormalities or assess expression of genes that are contiguous in the genome. We describe a method, differential gene locus mapping (DIGMAP), which aligns the known chromosomal location of a gene to its expression value deduced by microarray analysis. The method partitions microarray data into subsets by chromosomal location for each gene interrogated by an array. Microarray data in an individual subset can then be clustered by physical location of genes at a subchromosomal level based upon ordered alignment in genome sequence. A graphical display is generated by representing each genomic locus with a colored cell that quantitatively reflects its differential expression value. The clustered patterns can be viewed and compared based on their expression signatures as defined by differential values between control and experimental samples. In this study, DIGMAP was tested using previously published studies of breast cancer analyzed by comparative genomic hybridization (CGH) and prostate cancer gene expression profiles assessed by cDNA microarray experiments. Analysis of the breast cancer CGH data demonstrated the ability of DIGMAP to deduce gene amplifications and deletions. Application of the DIGMAP method to the prostate data revealed several carcinoma-related loci, including one at 16q13 with marked differential expression encompassing 19 known genes including 9 encoding metallothionein proteins. We conclude that DIGMAP is a powerful computational tool enabling the coupled analysis of microarray data with genome location.  相似文献   

15.
16.
The application of DNA microarray technology for analysis of gene expression creates enormous opportunities to accelerate the pace in understanding living systems and identification of target genes and pathways for drug development and therapeutic intervention. Parallel monitoring of the expression profiles of thousands of genes seems particularly promising for a deeper understanding of cancer biology and the identification of molecular signatures supporting the histological classification schemes of neoplastic specimens. However, the increasing volume of data generated by microarray experiments poses the challenge of developing equally efficient methods and analysis procedures to extract, interpret, and upgrade the information content of these databases. Herein, a computational procedure for pattern identification, feature extraction, and classification of gene expression data through the analysis of an autoassociative neural network model is described. The identified patterns and features contain critical information about gene-phenotype relationships observed during changes in cell physiology. They represent a rational and dimensionally reduced base for understanding the basic biology of the onset of diseases, defining targets of therapeutic intervention, and developing diagnostic tools for the identification and classification of pathological states. The proposed method has been tested on two different microarray datasets-Golub's analysis of acute human leukemia [Golub et al. (1999) Science 286:531-537], and the human colon adenocarcinoma study presented by Alon et al. [1999; Proc Natl Acad Sci USA 97:10101-10106]. The analysis of the neural network internal structure allows the identification of specific phenotype markers and the extraction of peculiar associations among genes and physiological states. At the same time, the neural network outputs provide assignment to multiple classes, such as different pathological conditions or tissue samples, for previously unseen instances.  相似文献   

17.
MOTIVATION: Chromosomal copy number changes (aneuploidies) are common in cell populations that undergo multiple cell divisions including yeast strains, cell lines and tumor cells. Identification of aneuploidies is critical in evolutionary studies, where changes in copy number serve an adaptive purpose, as well as in cancer studies, where amplifications and deletions of chromosomal regions have been identified as a major pathogenetic mechanism. Aneuploidies can be studied on whole-genome level using array CGH (a microarray-based method that measures the DNA content), but their presence also affects gene expression. In gene expression microarray analysis, identification of copy number changes is especially important in preventing aberrant biological conclusions based on spurious gene expression correlation or masked phenotypes that arise due to aneuploidies. Previously suggested approaches for aneuploidy detection from microarray data mostly focus on array CGH, address only whole-chromosome or whole-arm copy number changes, and rely on thresholds or other heuristics, making them unsuitable for fully automated general application to gene expression datasets. There is a need for a general and robust method for identification of aneuploidies of any size from both array CGH and gene expression microarray data. RESULTS: We present ChARM (Chromosomal Aberration Region Miner), a robust and accurate expectation-maximization based method for identification of segmental aneuploidies (partial chromosome changes) from gene expression and array CGH microarray data. Systematic evaluation of the algorithm on synthetic and biological data shows that the method is robust to noise, aneuploidal segment size and P-value cutoff. Using our approach, we identify known chromosomal changes and predict novel potential segmental aneuploidies in commonly used yeast deletion strains and in breast cancer. ChARM can be routinely used to identify aneuploidies in array CGH datasets and to screen gene expression data for aneuploidies or array biases. Our methodology is sensitive enough to detect statistically significant and biologically relevant aneuploidies even when expression or DNA content changes are subtle as in mixed populations of cells. AVAILABILITY: Code available by request from the authors and on Web supplement at http://function.cs.princeton.edu/ChARM/  相似文献   

18.

Background

One of the major goals in gene and protein expression profiling of cancer is to identify biomarkers and build classification models for prediction of disease prognosis or treatment response. Many traditional statistical methods, based on microarray gene expression data alone and individual genes' discriminatory power, often fail to identify biologically meaningful biomarkers thus resulting in poor prediction performance across data sets. Nonetheless, the variables in multivariable classifiers should synergistically interact to produce more effective classifiers than individual biomarkers.

Results

We developed an integrated approach, namely network-constrained support vector machine (netSVM), for cancer biomarker identification with an improved prediction performance. The netSVM approach is specifically designed for network biomarker identification by integrating gene expression data and protein-protein interaction data. We first evaluated the effectiveness of netSVM using simulation studies, demonstrating its improved performance over state-of-the-art network-based methods and gene-based methods for network biomarker identification. We then applied the netSVM approach to two breast cancer data sets to identify prognostic signatures for prediction of breast cancer metastasis. The experimental results show that: (1) network biomarkers identified by netSVM are highly enriched in biological pathways associated with cancer progression; (2) prediction performance is much improved when tested across different data sets. Specifically, many genes related to apoptosis, cell cycle, and cell proliferation, which are hallmark signatures of breast cancer metastasis, were identified by the netSVM approach. More importantly, several novel hub genes, biologically important with many interactions in PPI network but often showing little change in expression as compared with their downstream genes, were also identified as network biomarkers; the genes were enriched in signaling pathways such as TGF-beta signaling pathway, MAPK signaling pathway, and JAK-STAT signaling pathway. These signaling pathways may provide new insight to the underlying mechanism of breast cancer metastasis.

Conclusions

We have developed a network-based approach for cancer biomarker identification, netSVM, resulting in an improved prediction performance with network biomarkers. We have applied the netSVM approach to breast cancer gene expression data to predict metastasis in patients. Network biomarkers identified by netSVM reveal potential signaling pathways associated with breast cancer metastasis, and help improve the prediction performance across independent data sets.  相似文献   

19.
MOTIVATION: DNA microarray technologies make it possible to simultaneously monitor thousands of genes' expression levels. A topic of great interest is to study the different expression profiles between microarray samples from cancer patients and normal subjects, by classifying them at gene expression levels. Currently, various clustering methods have been proposed in the literature to classify cancer and normal samples based on microarray data, and they are predominantly data-driven approaches. In this paper, we propose an alternative approach, a model-driven approach, which can reveal the relationship between the global gene expression profile and the subject's health status, and thus is promising in predicting the early development of cancer. RESULTS: In this work, we propose an ensemble dependence model, aimed at exploring the group dependence relationship of gene clusters. Under the framework of hypothesis-testing, we employ genes' dependence relationship as a feature to model and classify cancer and normal samples. The proposed classification scheme is applied to several real cancer datasets, including cDNA, Affymetrix microarray and proteomic data. It is noted that the proposed method yields very promising performance. We further investigate the eigenvalue pattern of the proposed method, and we discover different patterns between cancer and normal samples. Moreover, the transition between cancer and normal patterns suggests that the eigenvalue pattern of the proposed models may have potential to predict the early stage of cancer development. In addition, we examine the effects of possible model mismatch on the proposed scheme.  相似文献   

20.
MOTIVATION: Microarray and gene chip technology provide high throughput tools for measuring gene expression levels in a variety of circumstances, including cellular response to drug treatment, cellular growth and development, tumorigenesis, among many other processes. In order to interpret the large data sets generated in experiments, data analysis techniques that consider biological knowledge during analysis will be extremely useful. We present here results showing the application of such a tool to expression data from yeast cell cycle experiments. RESULTS: Originally developed for spectroscopic analysis, Bayesian Decomposition (BD) includes two features which make it useful for microarray data analysis: the ability to assign genes to multiple coexpression groups and the ability to encode biological knowledge into the system. Here we demonstrate the ability of the algorithm to provide insight into the yeast cell cycle, including identification of five temporal patterns tied to cell cycle phases as well as the identification of a pattern tied to an approximately 40 min cell cycle oscillator. The genes are simultaneously assigned to the patterns, including partial assignment to multiple patterns when this is required to explain the expression profile. AVAILABILITY: The application is available free to academic users under a material transfer agreement. Go to http://bioinformatics.fccc.edu/ for more details.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号