首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 142 毫秒
1.
The objective of the present study was to elucidate whether remobilized N from lower leaves is involved in causing the drop in N(2) fixation during pod-filling in common bean (Phaseolus vulgaris L). Moreover, we addressed the question of whether remobilized N from lower leaves would reach the nodules. Nodulated common bean plants were grown in a growth chamber in quartz sand. During a 2-week period, at vegetative and at reproductive growth, 50% of the leaves (lower part) were either excised or individually darkened, thereby removing the same photosynthetic capacity yet allowing N to be remobilized from the darkened leaves. Moreover, at the vegetative growth period, three lower leaves per plants were (15)N labelled by applying (15)NH(4)NO(3) prior to imposing the darkening treatment. Leaf darkening at vegetative growth induced N remobilization as well as reduced N(2)-fixation rates and growth. Leaf excision at reproductive growth enhanced N(2) fixation. Changes in N(2)-fixation rates were in all cases the result of altered growth rates, while the % N in the whole plant and in various plant parts remained conserved. Directly after leaf labelling, but also at the end of the vegetative growth period, substantial amounts of (15)N from the leaves could be recovered in nodules in the control, and in higher amounts in the leaf-darkening treatment. It is proposed that nitrogen from leaves circulates within the plant via nodules, and that the strength or composition of this circular flow may be the signal for a putative N-feedback effect.  相似文献   

2.
Nitrate reductase (NR, NADH:nitrate oxidoreductase, EC 1.6.6.1) activity from leaves of barley (Hordeum vulgare L. cv. Hassan) is rapidly and reversibly inactivated during a light-dark transition. A hyperbolic correlation exists between in vivo rates of CO2 fixation and extractable NR activity from the leaves, and feeding hexose and hexosephosphate protects against the dark-inactivation; indicating that carbon-assimilation products are regulatory factors of NR activity mediating both the light-dark modulation and its dependence upon CO2 fixation. To corroborate this point, the effect of inhibiting CO2 fixation on NR activity in barley leaves has been analyzed. Glycolaldehyde (50 mM), an inhibitor of the regeneration phase of the Calvin cycle, was fed through the transpiration stream and inhibited CO2 fixation by more than 80% at the same time as it produced a parallel inhibition of NR light-activation. Feeding mannose (10 mM), inhibited CO2 fixation by 35% but did not affect NR activity in illuminated leaves and completely protected against dark-inactivation. Interestingly, feeding inorganic phosphate, Pi, (10 mM) alone or together with mannose also protected NR activity against dark-inactivation. The mannose effect could be interpreted in terms of accumulation of mannose 6-phosphate, an analog of glucose 6-phosphate. After feeding either 10 mM glucose or dihydroxyacetone phosphate, NR activity from darkened leaves was significantly higher than that of darkened control leaves fed with water (P< 0.03). These treatments, as well as Pi feeding, also produce some increase in extractable NR activity from illuminated leaves. The results indicate that factors increasing the levels of hexose- and triose-phosphate have positive effects on NR activation, supporting the contention that the NR activation system is sensitive to carbon-assimilation products.  相似文献   

3.
This study investigated the impacts of the biocontrol agent Malacorhinus irregularis Jacoby (Coleoptera, Chrysomelidae) on the weed Mimosa pigra L. (Mimosaceae). We used controlled experiments to determine whether larvae of different developmental stages can destroy mimosa seedlings, whether larvae can survive and develop when feeding on root nodules, whether larvae prefer root nodules or seedlings, and the importance of N2 fixation to mimosa. One third instar larva destroyed a mean of 1.6 seedlings overall, although this varied with larval density. First instar larvae spent more time on seedlings than on nodules, but final instar larvae spent more time on nodules. Larvae survived and developed on root nodules and on seedlings. Mimosa plants growing in pots only produced high numbers of root nodules when growing in low N conditions, indicating that mimosa responds to soil low N status by increasing symbiotic N2 fixation. The higher N content in mimosa leaves than leaves of native plants from north Australian wetlands, and the ability to vigorously nodulate in conditions with a low N supply suggest that mimosa relies on N2 fixation during times of low soil N availability and at sites with low N status. We propose that Malacorhinus below ground herbivory on root nodules and seedlings complements the above ground herbivory of other established biocontrol agents against mimosa.  相似文献   

4.
Phosphoenolpyruvate carboxylase (PEPC; EC4.1.1.31) plays a key role during C(4) photosynthesis. The enzyme is activated by metabolites such as glucose-6-phosphate and inhibited by malate. This metabolite sensitivity is modulated by the reversible phosphorylation of a conserved serine residue near the N terminus in response to light. The phosphorylation of PEPC is modulated by a protein kinase specific to PEPC (PEPC-PK). To explore the role PEPC-PK plays in the regulation of C(4) photosynthetic CO(2) fixation, we have transformed Flaveria bidentis (a C(4) dicot) with antisense or RNA interference constructs targeted at the mRNA of this PEPC-PK. We generated several independent transgenic lines where PEPC is not phosphorylated in the light, demonstrating that this PEPC-PK is essential for the phosphorylation of PEPC in vivo. Malate sensitivity of PEPC extracted from these transgenic lines in the light was similar to the malate sensitivity of PEPC extracted from darkened wild-type leaves but greater than the malate sensitivity observed in PEPC extracted from wild-type leaves in the light, confirming the link between PEPC phosphorylation and the degree of malate inhibition. There were, however, no differences in the CO(2) and light response of CO(2) assimilation rates between wild-type plants and transgenic plants with low PEPC phosphorylation, showing that phosphorylation of PEPC in the light is not essential for efficient C(4) photosynthesis for plants grown under standard glasshouse conditions. This raises the intriguing question of what role this complexly regulated reversible phosphorylation of PEPC plays in C(4) photosynthesis.  相似文献   

5.
Nitrate reductase (NR, NADH:nitrate oxidoreductase, EC 1.6.6.1) from barley (Hordeum vulgare L. cv. Hassan) leaves was inactivated during a light-dark transition, losing approx. 50% of activity after 30 min of darkness. The dark inactivation was reversed by illumination of the seedlings, the kinetics of reactivation being similar to those of inactivation. High extractable NR activity and significant differences between illuminated and darkened leaves were observed in media containing EDTA and inorganic phosphate (Pi). Addition of Ca2+ ions during extraction and assay decreased NR activity from illuminated and darkened leaves, enhancing the light-dark difference. While no clear correlation could be found between irradiance and NR activity, a hyperbolic correlation appeared between extractable NR activity and in-vivo rates of CO2 fixation, indicating that NR activation follows saturation kinetics with respect to CO2 fixation. Furthermore, hexoses and hexose-phosphates fed to the leaves via the transpiration stream protected against the dark-inactivation of NR. The results indicate that carbon-assimilation products are regulatory factors of NR activity in barley leaves, mediating both the light-dark modulation of NR and its dependence upon CO2 fixation.  相似文献   

6.
Effects of drought on nitrogen fixation in soybean root nodules   总被引:3,自引:0,他引:3  
Soybean plants [Glycine max (L.) Merr.] were grown in silica sand and were drought stressed for a 4 week period during reproductive development and without any mineral N supply in order to maximize demand for fixed nitrogen. A strain of Bradyrhizobium japonicum that forms large quantities of polysaccharide in nodules was used to determine whether or not the supply of reduced carbon to bacteroids limits nitrogenase activity. A depression of 30–40% in nitrogen content in leaves and pods of stressed plants indicated a marked decline in nitrogen fixation activity during the drought period. A 50% increase in the accumulation of bacterial polysaccharide in nodules accompanied this major decrease in nitrogen fixation activity and this result indicates that the negative impact of drought on nodules was not due to a depression of carbon supply to bacteroids. The drought treatment resulted in a statistically significant increase in N concentration in leaves and pods. Because N concentration and chlorophyll concentration in leaves were not depressed, there was no evidence of nitrogen deficiency in drought‐stressed plants, and this result indicates that the negative impact of drought on nodule function was not the cause of the depression of shoot growth. At the end of the drought period, the concentration of carbohydrates, amino nitrogen, and ureides was significantly increased in nodules on drought‐stressed plants. The overall results support the view that, under drought conditions, nitrogen fixation activity in nodules was depressed because demand for fixed N to support growth was lower.  相似文献   

7.
Altered environmental conditions may change populations of arbuscular mycorrhizal fungi and thereby affect mycorrhizal functioning. We investigated whether 8 yr of free-air CO2 enrichment has selected fungi that differently influence the nutrition and growth of host plants. In a controlled pot experiment, two sets of seven randomly picked single spore isolates, originating from field plots of elevated (60 Pa) or ambient CO2 partial pressure (pCO2), were inoculated on nodulated Trifolium repens (white clover) plants. Fungal isolates belonged to the Glomus claroideum or Glomus intraradices species complex, and host plants were clonal micropropagates derived from nine genets. Total nitrogen (N) concentration was increased in leaves of plants inoculated with fungal isolates from elevated-pCO2 plots. These isolates took up nearly twice as much N from the soil as isolates from ambient-pCO2 plots and showed much greater stimulation of biological N2 fixation. The morpho-species identity of isolates had a more pronounced effect on N2 fixation and on root length colonized than isolate identity. We conclude that rising atmospheric pCO2 may select for fungal strains that will help their host plants to meet increased N demands.  相似文献   

8.
Mobilization of N from leaves of barley (Hordeum vulgare L.) during water stress, and the role of proline as a mobilized species, were examined in plants at the three-leaf stage. The plants responded to water stress by withdrawing about 25% of the total reduced N from the leaf blades via phloem translocation. Most of this N loss was during the first 2 days while translocation of 14C-photosynthate out of the stressed blade still remained active. Free proline accumulation in the blade was initially slow, and became more rapid during the 2nd day of stress. Although a major free amino acid, proline accounted for only about 5% of the total N (soluble + insoluble) retained in severely stressed blades. When the translocation pathway in water-stressed leaves was interrupted just below the blade by a heat girdle, a cold jacket, or by blade excision, N loss from the blade was prevented and proline began to accumulate rapidly on 1st day of stress. Little free proline accumulated in the blades until after the ability to translocate was lost. Proline was, however, probably not a major species of N translocated during stress, because proline N accumulation in heat-girdled stressed leaves was five times slower than the rate of total N export from intact blades.  相似文献   

9.
King CA  Purcell LC 《Plant physiology》2005,137(4):1389-1396
Decreased N2 fixation in soybean (Glycine max) L. Merr. during water deficits has been associated with increases in ureides and free amino acids in plant tissues, indicating a potential feedback inhibition by these compounds in response to drought. We evaluated concentrations of ureides and amino acids in leaf and nodule tissue and the concurrent change in N2 fixation in response to exogenous ureides and soil-water treatments for the cultivars Jackson and KS4895. Exogenous ureides applied to the soil and water-deficit treatments inhibited N2 fixation by 85% to 90%. Mn fertilization increased the apparent catabolism of ureides in leaves and hastened the recovery of N2 fixation following exogenous ureide application for both cultivars. Ureides and total free amino acids in leaves and nodules increased during water deficits and coincided with a decline in N2 fixation for both cultivars. N2 fixation recovered to 74% to 90% of control levels 2 d after rewatering drought-stressed plants, but leaf ureides and total nodule amino acids remained elevated in KS4895. Asparagine accounted for 82% of the increase in nodule amino acids relative to well-watered plants at 2 d after rewatering. These results indicate that leaf ureides and nodule asparagine do not feedback inhibit N2 fixation. Compounds whose increase and decrease in concentration mirrored the decline and recovery of N2 fixation included nodule ureides, nodule aspartate, and several amino acids in leaves, indicating that these are potential candidate molecules for feedback inhibition of N2 fixation.  相似文献   

10.
Leport  Laurent  Kandlbinder  Andrea  Baur  Bernhard  Kaiser  Werner M. 《Planta》1996,198(4):495-501
Phosphoenolpyruvate (PEP) carboxylation was measured as dark 14CO2 fixation in leaves and roots (in vivo) or as PEP carboxylase (PEPCase) activity in desalted leaf and roof extracts (in vitro) from Pisum sativum L. cv. Kleine Rheinländerin. Its relation to the malate content and to the nitrogen source (nitrate or ammonium) was investigated. In tissue from nitrate-grown plants, PEP carboxylation varied diurnally, showing an increase upon illumination and a decrease upon darkening. Diurnal variations in roots were much lower than in leaves. Fixation rates in leaves remained constantly low in continuous darkness or high in continuous light. Dark CO2 fixation of leaf slices also decreased when leaves were preilluminated for 1 h in CO2-free air, suggesting that the modulation of dark CO2 fixation was related to assimilate availability in leaves and roots. Phosphoenolpyruvate carboxylase activity was also measured in vitro. However, no difference in maximum enzyme activity was found in extracts from illuminated or darkened leaves, and the response to substrate and effectors (PEP, malate, glucose-6-phosphate, pH) was also identical. The serine/threonine protein kinase inhibitors K252b, H7 and staurosporine, and the protein phosphatase 2A inhibitors okadaic acid and cantharidin, fed through the leaf petiole, did not have the effects on dark CO2 fixation predicted by a regulatory system in which PEPCase is modulated via reversible protein phosphorylation. Therefore, it is suggested that the diurnal modulation of PEP carboxylation in vivo in leaves and roots of pea is not caused by protein phosphorylation, but rather by direct allosteric effects. Upon transfer of plants to ammonium-N or to an N-free nutrient solution, mean daily malate levels in leaves decreased drastically within 4–5 d. At that time, the diurnal oscillations of PEP carboxylation in vivo disappeared and rates remained at the high light-level. The coincidence of the two events suggests that PEPCase was de-regulated because malate levels became very low. The drastic decrease of leaf malate contents upon transfer of plants from nitrate to ammonium nutrition was apparently not caused by increased amino acid or protein synthesis, but probably by higher decarboxylation rates.Abbreviations CAM crassulacean acid metabolism - PEP Phosphoenolpyruvate - PEPCase phosphoenolpyruvate carboxylase - PP protein phosphatase - PK protein kinase This work was supported by the Deutsche Forschungsgemeinschaft. B. Baur was a recipient of a doctoral grant, and L. Leport recipient of a post-doctoral grant of the DFG. The skilled technical assistance of Eva Wirth and Maria Lesch is gratefully acknowledged.  相似文献   

11.
The aim of this work was to examine the effect upon photosynthetic capacity of short-term exposure (up to 10 h) to low temperatures (5° C) of darkened leaves of barley (Hordeum vulgare L.) plants. The carbohydrate content, metabolite status and the photosynthetic rate of leaves were measured at low temperature, high light and higher than ambient CO2. Under these conditions we could detect whether previous exposure of leaves to low temperature overcame the limitation by phosphate which occurs in leaves of plants not previously exposed to low temperatures. The rates of CO2 assimilation measured at 8° C differed by as much as twofold, depending upon the pretreatment. (i) Leaves from plants which had previously been darkened for 24 h had a low content of carbohydrate, had the lowest CO2-assimilation rates at low temperature, and photosynthesis was limited by carbohydrate, as shown by a large stimulation of photosynthesis by feeding glucose, (ii) Leaves from plants which had previously been illuminated for 24 h and which contained large carbohydrate reserves showed an accumulation of phosphorylated intermediates and higher CO2-assimilation rates at low temperature, but nevertheless remained limited by phosphate, (iii) Maximum rates of CO2 assimilation at low temperature were observed in leaves which had intermediate reserves of carbohydrate or in leaves which were rich in carbohydrate and which were also fed phosphate. It is suggested that carbohydrate reserves potentiate the system for the achievement of high rates of photosynthesis at low temperatures by accumulation of photosynthetic intermediates such as hexose phosphates, but that this potential cannot be realised if, at the same time, carbohydrate accumulation is itself leading to feedback inhibition of photosynthesis. This work was supported by the Agricultural and Food Research Council, UK (Research grant PG50/67) and by the Science and Engineering Reserach Council, UK. C.A.L. was supported by the British Council, by an Overseas Research Student Award and by the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil.  相似文献   

12.
Pea plants (Pisum sativum L. cv. Alaska) were inoculated individually with one of 15 Rhizobium leguminosarum strains and grown under uniform environmental conditions in the absence of combined N. Differences in effectiveness of the Rhizobium strains produced plants with differing rates of whole plant apparent N2 fixation and total N content at the same morphological stage of development. Plants were analyzed to determine interactions between N2 fixation, N allocation, apparent photosynthesis, and growth. Total leaf N increased linearly with total N2 fixation (R2 = 0.994). The proportion of total N allocated to leaves, the per cent N content of individual leaves, and the photosynthetic efficiency of individual leaves showed a curvilinear response with increasing plant N content. Differences in allocation patterns of leaf N between plants with low and high N content resulted in differences in the relationship between total N content and plant dry weight. Results from this study show that N2 fixation interacts with leaf photosynthetic efficiency and plant growth in a manner that is dependent upon the allocation of symbiotically fixed N.  相似文献   

13.
The dynamic assembly and disassembly of microtubules (MTs) is essential for cell function. Although leaf senescence is a well-documented process, the role of the MT cytoskeleton during senescence in plants remains unknown. Here, we show that both natural leaf senescence and senescence of individually darkened Arabidopsis (Arabidopsis thaliana) leaves are accompanied by early degradation of the MT network in epidermis and mesophyll cells, whereas guard cells, which do not senesce, retain their MT network. Similarly, entirely darkened plants, which do not senesce, retain their MT network. While genes encoding the tubulin subunits and the bundling/stabilizing MT-associated proteins (MAPs) MAP65 and MAP70-1 were repressed in both natural senescence and dark-induced senescence, we found strong induction of the gene encoding the MT-destabilizing protein MAP18. However, induction of MAP18 gene expression was also observed in leaves from entirely darkened plants, showing that its expression is not sufficient to induce MT disassembly and is more likely to be part of a Ca(2+)-dependent signaling mechanism. Similarly, genes encoding the MT-severing protein katanin p60 and two of the four putative regulatory katanin p80s were repressed in the dark, but their expression did not correlate with degradation of the MT network during leaf senescence. Taken together, these results highlight the earliness of the degradation of the cortical MT array during leaf senescence and lead us to propose a model in which suppression of tubulin and MAP genes together with induction of MAP18 play key roles in MT disassembly during senescence.  相似文献   

14.
The activity of xanthine dehydrogenase (XDH; EC 1.2.3.37), a key enzyme of purine catabolism leading to the synthesis of ureides, was investigated in cell-free extracts of illuminated or darkened tobacco ( Nicotiana tabacum L. cv. xanthi) leaves. Whereas the in vivo enzyme activity measured on leaf discs was lower in light than in darkness, cell-free extracts from illuminated or darkened leaves exhibited the same maximum velocity around 30 pmol (mg fresh weight)-1 h-2. The kinetic constants of the enzyme for the substrate and for the cofactor did not change in relation to illumination of leaves, the Km for hypoxanthine being about 30 μM and that for NAD+ 13 μM. Extracts run on polyacrylamide gel electrophoresis showed only one band of XDH activity which was identical whether the plants were illuminated or not. The molecular weight of the native enzyme from both extracts was estimated to be 320 000 dalton. Dithiothreitol treatment of leaf extracts could not mimick the effect of light on XDH activity in leaves. A direct effect of light on the activity of that flavoprotein could not be observed specifically in relation to the light treatment of cotyledons of Pharbitis nil prior to the enzyme extraction. A cycloheximide-trealment of cotyledons of Pharbitis nil decreased the in vivo XDH activity. But the inhibition of the enzyme activity was similar whether the plants were in conditions inducing an increase of activity or not, indicating that quantitative changes of the enzyme protein are not involved in the variations of the in vivo enzyme activity. The results are discussed in relation to the conditions prevailing in the in vitro and the in vivo enzyme activity measurements. It is suggested that light might affect the XDH activity in leaves through the modifications of cell environment.  相似文献   

15.
Trifolium repens L. was grown to test the following hypotheses: when P is deficient (i) N2 fixation decreases as a result of the plant's adaptation to the low N demand, regulated by an N feedback mechanism, and (ii) the decrease in the photosynthetic capacity of the leaves does not limit N2 fixation. Severe P deficiency prevented nodulation or stopped nodule growth when the P deficiency occurred after the plants had formed nodules. At low P, the proportion of whole-plant-N derived from symbiotic N2 fixation decreased, whereas specific N2 fixation increased and compensated partially for poor nodulation. Leaf photosynthesis was reduced under P deficiency due to low Vc,max and Jmax. Poor growth or poor performance of the nodules was not due to C limitation, because (i) the improved photosynthetic performance at elevated pCO2 had no effect on the growth and functioning of the nodules, (ii) starch accumulated in the leaves, particularly under elevated pCO2, and (iii) the concentration of WSC in the nodules was highest under P deficiency. Under severe P deficiency, the concentrations of whole-plant-N and leaf-N were the highest, indicating that the assimilation of N exceeded the amount of N required by the plant for growth. This was clearly demonstrated by a strong increase in asparagine concentrations in the roots and nodules under low P supply. This indicates that nodulation and the proportion of N derived from symbiotic N2 fixation are down-regulated by an N feedback mechanism.  相似文献   

16.
Senescence is an active process allowing the reallocation of valuable nutrients from the senescing organ towards storage and/or growing tissues. Using Arabidopsis thaliana leaves from both whole darkened plants (DPs) and individually darkened leaves (IDLs), we investigated the fate of mitochondria and chloroplasts during dark-induced leaf senescence. Combining in vivo visualization of fates of the two organelles by three-dimensional reconstructions of abaxial parts of leaves with functional measurements of photosynthesis and respiration, we showed that the two experimental systems displayed major differences during 6 d of dark treatment. In whole DPs, organelles were largely retained in both epidermal and mesophyll cells. However, while the photosynthetic capacity was maintained, the capacity of mitochondrial respiration decreased. In contrast, IDLs showed a rapid decline in photosynthetic capacity while maintaining a high capacity for mitochondrial respiration throughout the treatment. In addition, we noticed an unequal degradation of organelles in the different cell types of the senescing leaf. From these data, we suggest that metabolism in leaves of the whole DPs enters a 'stand-by mode' to preserve the photosynthetic machinery for as long as possible. However, in IDLs, mitochondria actively provide energy and carbon skeletons for the degradation of cell constituents, facilitating the retrieval of nutrients. Finally, the heterogeneity of the degradation processes involved during senescence is discussed with regard to the fate of mitochondria and chloroplasts in the different cell types.  相似文献   

17.
A method was developed for the purification of phosphoenolpyruvate carboxylase from darkened maize leaves so that the enzyme retained its sensitivity to inhibition by malate. The procedure depended on the prevention of proteolysis by the inclusion of chymostatin in the buffers used during the purification. The purified enzyme was indistinguishable from that in crude extracts as judged by native polyacrylamide-gel electrophoresis. SDS/polyacrylamide-gel electrophoresis followed by immunoblotting, and Superose 6 gel filtration. Gel-filtration studies showed that the purified enzyme and the enzyme in extracts of darkened or illuminated leaves showed a concentration-dependent dissociation of tetrameric into dimeric forms. Purified phosphoenolpyruvate carboxylase and enzyme in crude extracts from darkened leaves were equally sensitive to inhibition by malate (Ki approx. 0.30 mM) under conditions where it existed in the tetrameric or dimeric forms, but the enzyme in crude extracts from illuminated leaves was less sensitive to malate inhibition (Ki approx. 0.95 mM) whether it was present as a tetramer or as a dimer. It is concluded that changes in the oligomerization state of phosphoenolpyruvate carboxylase are not directly involved in its regulation by light.  相似文献   

18.
Sucrose-phosphate synthase (SPS) purified from spinach leaves harvested in the dark, was activated by mammalian protein phosphatase 2A (PP2A). Activation of SPS in a fraction from darkened spinach leaves was largely prevented by either okadaic acid or microcystin-LR (specific inhibitors of PP1 and PP2A), while inhibitor-2 (a PP1 inhibitor) or Mg2+ (essential for PP2C) were ineffective. In vivo, okadaic add and microcystin-LR prevented the light-induced activation of SPS and decreased sucrose biosynthesis and CO2 fixation. It is concluded that PP2A is the major SPS phosphatase in spinach. This study is the first to employ microcystin-LR for modulating protein phosphorylation in vivo.  相似文献   

19.
The nodulating soybean (Enrei) and its non-nodulating mutant (EN 1282) were grown in outdoor plots for 2 years (1994: extraordinary dry, high temperature, 1995: ordinary year). Carbon and nitrogen accumulation, delta 13C and delta 15N values in plant parts and xylem fluids and delta 15N values in the water-extractable soil N were analysed throughout the growing period. Plant growth in 1994 was rapid during the early growth stages, but no pods were produced. In 1995, plant growth was normal and pods were formed. The delta 13C values of the leaves were less negative in 1994 than in 1995 and the nodulated plants showed less negative delta 13C values than non-nodulated plants in both years. The delta 13C values of the leaves during the vegetative phase were positively correlated to the leaf N concentrations. Leaf N concentrations in their turn were influenced by nodulation and weather conditions and/or soil available N. The delta 15N values in the plants and xylem fluids were lower in the nodulated soybean than in non-nodulated soybean in both years, and estimates of the contribution of N2 fixation in nodulated plants based on plant top delta 15N values were 7-14% in 1994 and 37-63% in 1995. The delta 13C values of xylem fluids did not differ between nodulated and non-nodulated plants. Thus, the expected contribution by phosphopenolpyruvate carboxylase-mediated CO2 fixation in the root nodules to plant C-incorporation could not have been significant.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号