首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Simple, reliable, and efficient concentration of poliovirus from tap water was obtained with two types of electropositive filter media, one of which is available in the form of a pleated cartridge filter (Virozorb 1MDS). Virus adsorption from tap water between pH 3.5 and 7.5 was more efficient with electropositive filters than with Filterite filters. Elution of adsorbed viruses was more efficient with beef extract in glycine, pH 9.5, than with glycine-NaOH, pH 11.0. In paired comparative studies, electropositive filters, with adsorption at pH 7.5 and no added polyvalent cation salts, gave less variable virus concentration efficiencies than did Filterite filters with adsorption at pH 3.5 plus added MgCl2. Recovery of poliovirus from 1,000-liter tap water volumes was approximately 30% efficient with both Virozorb 1MDS and Filterite pleated cartridge filters, but the former were much simpler to use. The virus adsorption behavior of these filters appears to be related to their surface charge properties, with more electropositive filters giving more efficient virus adsorption from tap water at higher pH levels.  相似文献   

2.
Poliovirus concentration from tap water with electropositive adsorbent filters   总被引:10,自引:0,他引:10  
Simple, reliable, and efficient concentration of poliovirus from tap water was obtained with two types of electropositive filter media, one of which is available in the form of a pleated cartridge filter (Virozorb 1MDS). Virus adsorption from tap water between pH 3.5 and 7.5 was more efficient with electropositive filters than with Filterite filters. Elution of adsorbed viruses was more efficient with beef extract in glycine, pH 9.5, than with glycine-NaOH, pH 11.0. In paired comparative studies, electropositive filters, with adsorption at pH 7.5 and no added polyvalent cation salts, gave less variable virus concentration efficiencies than did Filterite filters with adsorption at pH 3.5 plus added MgCl2. Recovery of poliovirus from 1,000-liter tap water volumes was approximately 30% efficient with both Virozorb 1MDS and Filterite pleated cartridge filters, but the former were much simpler to use. The virus adsorption behavior of these filters appears to be related to their surface charge properties, with more electropositive filters giving more efficient virus adsorption from tap water at higher pH levels.  相似文献   

3.
Effects of humic materials on virus recovery from water.   总被引:2,自引:2,他引:0       下载免费PDF全文
Humic and fulvic acids were tested for their ability to interfere with virus recovery by microporous filters. Two electropositively charged types of filter (Seitz S and Zeta Plus 60S) were used to concentrate poliovirus in the presence of humic materials. Humic acid inhibited virus adsorption, but even at the highest humic acid concentrations tested (200 mg/liter), 30 to 40% of the virus was recovered by the filters. Fulvic acid, tested with Zeta Plus filters, did not affect virus recovery. For comparison, two electronegatively charged filter types were tested (Cox and Balston). These two types of filter were more sensitive to interference at lower concentrations of humic acid than the more positively charged filters. With Balston filters, at humic acid concentrations above 10 mg/liter, most of the virus was recovered in the filtrate. Fulvic acid, tested with Balston filters, did not interfere with virus recovery. With the electropositively charged filters, the humic materials adsorbed efficiently, even at high input concentrations. Interference with virus adsorption occurred at humic acid concentrations which were below the level of saturation of the filters. In addition, in high-volume experiments, humic acid led to premature blockage of the filters. The efficiency of virus recovery by a second concentration step, organic flocculation of the filter eluate, was tested. For all the filter types tested, this procedure was not affected by the presence of humic or fulvic acid in the input water.  相似文献   

4.
Humic and fulvic acids were tested for their ability to interfere with virus recovery by microporous filters. Two electropositively charged types of filter (Seitz S and Zeta Plus 60S) were used to concentrate poliovirus in the presence of humic materials. Humic acid inhibited virus adsorption, but even at the highest humic acid concentrations tested (200 mg/liter), 30 to 40% of the virus was recovered by the filters. Fulvic acid, tested with Zeta Plus filters, did not affect virus recovery. For comparison, two electronegatively charged filter types were tested (Cox and Balston). These two types of filter were more sensitive to interference at lower concentrations of humic acid than the more positively charged filters. With Balston filters, at humic acid concentrations above 10 mg/liter, most of the virus was recovered in the filtrate. Fulvic acid, tested with Balston filters, did not interfere with virus recovery. With the electropositively charged filters, the humic materials adsorbed efficiently, even at high input concentrations. Interference with virus adsorption occurred at humic acid concentrations which were below the level of saturation of the filters. In addition, in high-volume experiments, humic acid led to premature blockage of the filters. The efficiency of virus recovery by a second concentration step, organic flocculation of the filter eluate, was tested. For all the filter types tested, this procedure was not affected by the presence of humic or fulvic acid in the input water.  相似文献   

5.
Fu J  Mao P  Han J 《Trends in biotechnology》2008,26(6):311-320
Patterned regular sieves and filters with comparable molecular dimensions hold great promise as an alternative to conventional polymeric gels and fibrous membranes to improve biomolecule separation. Recent developments of microfabricated nanofluidic sieves and filters have demonstrated superior performance for both analytical and preparative separation of various physiologically relevant macromolecules, including proteins. The insights gained from designing these artificial molecular sieves and filters, along with the promising results gathered from their first applications, serve to illustrate the impact that they can have on improving future separation of complex biological samples. Further development of artificial sieves and filters with more elaborate geometrical constraints and tailored surface functionality is believed to provide more promising ideals and results for biomolecule separation, which has great implications for proteomic research and biomarker discovery.  相似文献   

6.
It has been recognized recently that the standard field technique for the diagnosis of urinary schistosomiasis, urine filtration using reusable polyamide mesh filters, may give false-positive findings because filters cannot be washed adequately in all circumstances. In this study the alternative filtration method using polycarbonate membrane filters was tested, and the same problem existed. A variety of more vigorous washing procedures was field tested with the conclusion that polycarbonate filters can be washed adequately for reuse by a simple procedure that includes boiling for 5 min in tap water prior to washing with detergent.  相似文献   

7.
Electronegative microporous filters composed of epoxyfiberglass (Filterite) were treated with cationic polymers to enhance their virus-adsorbing properties. This novel and inexpensive approach to microporous filter modification entails soaking filters in an aqueous solution of a cationic polymer such as polyethyleneimine (PEI) for 2 h at room temperature and then allowing the filters to air dry overnight on absorbent paper towels. PEI-treated filters were evaluated for coliphage (MS2, T2, and phi X174) and enterovirus (poliovirus type 1 and coxsackievirus type B5) adsorption from buffer at pH 3.5 to 9.0 and for indigenous coliphages from unchlorinated secondary effluent at ambient pH. Adsorbed viruses were recovered with 3% beef extract (pH 9). Several other cationic polymers were used to modify epoxyfiberglass filters and were evaluated for their ability to concentrate viruses from water. Zeta potentials of disrupted filter material indicated that electronegative epoxyfiberglass filters were made more electropositive when treated with cationic polymers. In general, epoxyfiberglass filters treated with cationic polymers were found to adsorb a greater percentage of coliphages and enteroviruses than were untreated filters.  相似文献   

8.
Electronegative microporous filters composed of epoxyfiberglass (Filterite) were treated with cationic polymers to enhance their virus-adsorbing properties. This novel and inexpensive approach to microporous filter modification entails soaking filters in an aqueous solution of a cationic polymer such as polyethyleneimine (PEI) for 2 h at room temperature and then allowing the filters to air dry overnight on absorbent paper towels. PEI-treated filters were evaluated for coliphage (MS2, T2, and phi X174) and enterovirus (poliovirus type 1 and coxsackievirus type B5) adsorption from buffer at pH 3.5 to 9.0 and for indigenous coliphages from unchlorinated secondary effluent at ambient pH. Adsorbed viruses were recovered with 3% beef extract (pH 9). Several other cationic polymers were used to modify epoxyfiberglass filters and were evaluated for their ability to concentrate viruses from water. Zeta potentials of disrupted filter material indicated that electronegative epoxyfiberglass filters were made more electropositive when treated with cationic polymers. In general, epoxyfiberglass filters treated with cationic polymers were found to adsorb a greater percentage of coliphages and enteroviruses than were untreated filters.  相似文献   

9.
Tricking filters are biofilm reactors commonly used for biological removal of nitrogen and organic matter. A review of published and unpublished material on the function, microbiology, design and operation of trickling filters is given. This is followed by more general dynamic biofilm reactor modelling, i.e. models for rotating biological contactors, different types of biofilters, moving beds as well as trickling filters.  相似文献   

10.
The aim of this research was to assess the role of the macrophyte Phragmites australis (Cav.) Trin. ex Steud. in experimental temporarily flooded vertical-flow wetland filters treating urban runoff. For 2 years, hydrated nickel and copper nitrate were added to sieved road runoff to simulate contaminated primary treated urban runoff. During the first year, 5-day biochemical oxygen demand (BOD) removal efficiencies were lower in planted filters than in unplanted filters. However, the BOD removal performances of all filters were virtually similar irrespective of the planting regime during the second year. The nutrient removal performance of planted filters was more efficient and stable throughout the season particularly after the filters matured compared to that of unplanted filters. A substantial amount of nitrogen was also removed by harvesting P. australis, though metals were not, when compared to those retained in the filters. Furthermore, higher concentrations of nickel in the effluent were recorded in the planted filters, despite their ability to take up the heavy metals. P. australis provided undesirable conditions for precipitation of Ni by lowering the pH in the processes. Finally, after applying shock loadings of Cu, higher Cu outflow concentrations were recorded for planted in comparison to unplanted filters.  相似文献   

11.
Methods for collection and counting of 3H-labeled DNA on nitrocellulose and glass fiber filters have been investigated. The findings are of potential importance in determining the amount of radioactivity in DNA as well as other macromolecules. The highest counting efficiencies were observed using glass fiber filters, NCS for dissolving DNA, and a toluene seintillation mixture for counting. However, glass fiber filters, even with large amounts of co-precipitant albumin, failed to collect all of low molecular weight (approx 185,000 daltons) DNA. Thus, in many applications nitrocellulose filters proved to be more advantageous.  相似文献   

12.
The ability of electropositively charged filters to recover yeasts and lactic acid bacteria from a variety of beverages was evaluated. Filtration through 'Zeta plus', grade O5S, filters recovered nearly all of the yeast contaminants from table wines, sherry and port. Recovery of yeasts from cream liqueurs and egg-based beverages was also good but it was not possible to filter drinks containing orange juice, even through filters with nominal pore sizes of 2 to 10 micron. Lactic acid bacteria proved more difficult to recover than yeasts, even though smaller pore-sized filters (1 to 4 micron) were employed. However, a sufficiently high percentage of bacteria were recovered to justify use of these filters for quality assurance. The advantage of concentrating contaminants by using charged filters, and the influence of product composition on the efficiency of microbial adsorption are discussed. The growth of wine-spoiling yeasts and lactic acid bacteria were not inhibited by water- or ethanol-soluble extracts of the filter material.  相似文献   

13.
The ability of electropositively charged filters to recover yeasts and lactic acid bacteria from a variety of beverages was evaluated. Filtration through 'Zeta plus', grade OSS, filters recovered nearly all of the yeast contaminants from table wines, sherry and port. Recovery of yeasts from cream liqueurs and egg-based beverages was also good but it was not possible to filter drinks containing orange juice, even through filters with nominal pore sizes of 2 to 10 μm. Lactic acid bacteria proved more difficult to recover than yeasts, even though smaller pore-sized filters (1 to 4 μm) were employed. However, a sufficiently high percentage of bacteria were recovered to justify use of these filters for quality assurance. The advantage of concentrating contaminants by using charged filters, and the influence of product composition on the efficiency of microbial adsorption are discussed. The growth of wine-spoiling yeasts and lactic acid bacteria were not inhibited by water- or ethanol-soluble extracts of the filter material.  相似文献   

14.
Autoclave and ethylene oxide-sterilized membrane filters manufactured by Gelman, Millipore, and Sartorius were field tested for their recovery of total coliforms, fecal coliforms, fecal streptococci, and heterotrophs. The data were analyzed by using split-plot analysis of variance and significance tests. Membranes were also tested for pH and toxicity using Escherichia coli. The mean data summaries indicated that Gelman membrane filters generally produced the highest counts during the field studies. Statistical analyses of the March data showed that there were significant differences between membrane filters at 1% level; however, statistical analyses of June data revealed no significant differences except in total coliform recoveries. Toxicity tests at 35 C indicated that Gelman and Millipore autoclaved membrane filters were able to recover 92% of the test organisms. Toxicity tests performed at 44.5 C revealed that no membranes were able to recover more than 40% of the test organisms. Since differences were found in the ability of the three brands of membrane filters to recover bacteria from natural and controlled sources, membrane filters from different manufacturers cannot be readily interchanged. There is a need for a standardized procedure for testing bacterial recovery by membrane filters.  相似文献   

15.
16.
In recent years, increasing the level of suppressiveness by the addition of antagonistic bacteria in slow filters has become a promising strategy to control plant pathogens in the recycled solutions used in soilless cultures. However, knowledge about the microflora that colonize the filtering columns is still limited. In order to get information on this issue, the present study was carried out over a 4-year period and includes filters inoculated or not with suppressive bacteria at the start of the filtering process (two or three filters were used each year). After 9 months of filtration, polymerase chain reaction (PCR)–single strand conformation polymorphism analyses point out that, for the same year of experiment, the bacterial communities from control filters were relatively similar but that they were significantly different between the bacteria-amended and control filters. To characterize the changes in bacterial communities within the filters, this microflora was studied by quantitative PCR, community-level physiological profiles, and sequencing 16SrRNA clone libraries (filters used in year 1). Quantitative PCR evidenced a denser bacterial colonization of the P-filter (amended with Pseudomonas putida strains) than control and B-filter (amended with Bacillus cereus strains). Functional analysis focused on the cultivable bacterial communities pointed out that bacteria from the control filter metabolized more carbohydrates than those from the amended filters whose trophic behaviors were more targeted towards carboxylic acids and amino acids. The bacterial communities in P- and B-filters both exhibited significantly more phylotype diversity and markedly distinct phylogenetic compositions than those in the C-filter. Although there were far fewer Proteobacteria in B- and P-filters than in the C-filter (22% and 22% rather than 69% of sequences, respectively), the percentages of Firmicutes was much higher (44% and 55% against 9%, respectively). Many Pseudomonas species were also found in the bacterial communities of the control filter. The persistence of the amended suppressive-bacteria in the filters is discussed with regards to the management of suppressive microflora in soilless culture.  相似文献   

17.
Virus filtration is becoming increasingly prominent in biopharmaceutical recovery processes as a robust method to remove a broad range of virus types. Increasing batch sizes will require large numbers of individual virus filter elements operating in parallel. Before adopting a more complex strategy for managing the integrity testing of large assemblies of virus filters, it is important to understand the sensitivity of the forward flow diffusion test for a single filter and for multiple filters in a single housing. An approach has been developed to estimate the largest hole that could consistently go undetected in a single filter within a larger assembly of virus filters. The integrity test limited minimum log reduction value (LRV) is determined based on the size of the hole as a function of the number of filters in the housing. This minimum LRV is shown to be largely insensitive to the number of filters within the housing. The likelihood of such damage occurring is expected to be very low. This analysis suggests there is minimal benefit to placing filters in individual housings or to adjusting the test specification to compensate for larger numbers of filters in a given housing. Biotechnol. Bioeng. 2009;103: 574–581. © 2009 Wiley Periodicals, Inc.  相似文献   

18.
Microporous filters that are more electropositive than the negatively charged filters currently used for virus concentrations from water by filter adsorption-elution methods were evaluated for poliovirus recovery from tap water. Zeta Plus filters composed of diatomaceous earth-cellulose-"charge-modified" resin mixtures and having a net positive charge of up to pH 5 to 6 efficiently adsorbed poliovirus from tap water at ambient pH levels 7.0 to 7.5 without added multivalent cation salts. The adsorbed virus were eluted with glycine-NaOH, pH 9.5 to 11.5. Electropositive asbestos-cellulose filters efficiently adsorbed poliovirus from tap water without added multivalent cation salts between pH 3.5 and 9.0, and the absorbed viruses could be eluted with 3% beef extract, pH 9, but not with pH 9.5 to 11.5 glycine-NaOH. Under water quality conditions in which poliovirus recoveries from large volumes of water were less than 5% with conventional negatively charged filters and standard methods, recoveries with Zeta Plus filters averaged 64 and 22.5% for one- and two-stage concentration procedures, respectively. Electropositive filters appear to offer distinct advantages over conventional negatively charged filters for concentrating enteric viruses from water, and their behavior tends to confirm the importance of electrostatic forces in virus recovery from water by microporous filter adsorption-elution methods.  相似文献   

19.
Microporous filters that are more electropositive than the negatively charged filters currently used for virus concentrations from water by filter adsorption-elution methods were evaluated for poliovirus recovery from tap water. Zeta Plus filters composed of diatomaceous earth-cellulose-"charge-modified" resin mixtures and having a net positive charge of up to pH 5 to 6 efficiently adsorbed poliovirus from tap water at ambient pH levels 7.0 to 7.5 without added multivalent cation salts. The adsorbed virus were eluted with glycine-NaOH, pH 9.5 to 11.5. Electropositive asbestos-cellulose filters efficiently adsorbed poliovirus from tap water without added multivalent cation salts between pH 3.5 and 9.0, and the absorbed viruses could be eluted with 3% beef extract, pH 9, but not with pH 9.5 to 11.5 glycine-NaOH. Under water quality conditions in which poliovirus recoveries from large volumes of water were less than 5% with conventional negatively charged filters and standard methods, recoveries with Zeta Plus filters averaged 64 and 22.5% for one- and two-stage concentration procedures, respectively. Electropositive filters appear to offer distinct advantages over conventional negatively charged filters for concentrating enteric viruses from water, and their behavior tends to confirm the importance of electrostatic forces in virus recovery from water by microporous filter adsorption-elution methods.  相似文献   

20.
A filtration technique has been developed for study of the uptake of [14C]methylamine by Azotobacter vinelandii. This dual filter arrangement requires a precision microporous polycarbonate film which overlays a paper filter. Cellular uptake of radioactivity is terminated by vacuum filtration of the reaction mixture onto the polycarbonate filter without dilution or washing. Filtration was complete in 0.7 s with retention of less than 0.2% of the extracellular radioactivity. The dual filter method gave 20-fold higher levels for intracellular methylamine than filtration followed by washing. Without washing, nitrocellulose filters retained 18 times more extracellular [3H]sorbitol and 80 times more extracellular [14C]methylamine than polycarbonate filters. Use of an underlying paper filter did not significantly improve the performance of nitrocellulose filters. However, addition of a paper filter reduced extracellular methylamine and sorbitol retention on polycarbonate filters by 77 and 86%, respectively. This method is generally applicable to measurement of the uptake of highly permeant molecules by cells and subcellular organelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号