共查询到20条相似文献,搜索用时 15 毫秒
1.
A combination of fluorescence in situ hybridization, microprofiles, denaturing gradient gel electrophoresis of PCR-amplified 16S ribosomal DNA fragments, and 16S rRNA gene cloning analysis was applied to investigate successional development of sulfate-reducing bacteria (SRB) community structure and in situ sulfide production activity within a biofilm growing under microaerophilic conditions (dissolved oxygen concentration in the bulk liquid was in the range of 0 to 100 microM) and in the presence of nitrate. Microelectrode measurements showed that oxygen penetrated 200 microm from the surface during all stages of biofilm development. The first sulfide production of 0.32 micromol of H(2)S m(-2) s(-1) was detected below ca. 500 microm in the 3rd week and then gradually increased to 0.70 micromol H(2)S m(-2) s(-1) in the 8th week. The most active sulfide production zone moved upward to the oxic-anoxic interface and intensified with time. This result coincided with an increase in SRB populations in the surface layer of the biofilm. The numbers of the probe SRB385- and 660-hybridized SRB populations significantly increased to 7.9 x 10(9) cells cm(-3) and 3.6 x 10(9) cells cm(-3), respectively, in the surface 400 microm during an 8-week cultivation, while those populations were relatively unchanged in the deeper part of the biofilm, probably due to substrate transport limitation. Based on 16S rRNA gene cloning analysis data, clone sequences that related to Desulfomicrobium hypogeium (99% sequence similarity) and Desulfobulbus elongatus (95% sequence similarity) were most frequently found. Different molecular analyses confirmed that Desulfobulbus, Desulfovibrio, and Desulfomicrobium were found to be the numerically important members of SRB in this wastewater biofilm. 相似文献
2.
3.
We successfully isolated a novel aerobic chemolithotrophic sulfur-oxidizing bacterium, designated strain SO07, from wastewater biofilms growing under microaerophilic conditions. For isolation, the use of elemental sulfur (S(0)), which is the most abundant sulfur pool in the wastewater biofilms, as the electron donor was an effective measure to establish an enrichment culture of strain SO07 and further isolation. 16S rRNA gene sequence analysis revealed that newly isolated strain SO07 was affiliated with members of the genus Halothiobacillus, but it was only distantly related to previously isolated species (89% identity). Strain SO07 oxidized elemental sulfur, thiosulfate, and sulfide to sulfate under oxic conditions. Strain SO07 could not grow on nitrate. Organic carbons, including acetate, propionate, and formate, could not serve as carbon and energy sources. Unlike other aerobic sulfur-oxidizing bacteria, this bacterium was sensitive to NaCl; growth in medium containing more than 150 mM was negligible. In situ hybridization combined with confocal laser scanning microscopy revealed that a number of rod-shaped cells hybridized with a probe specific for strain SO07 were mainly present in the oxic biofilm strata (ca. 0 to 100 micro m) and that they often coexisted with sulfate-reducing bacteria in this zone. These results demonstrated that strain SO07 was one of the important sulfur-oxidizing populations involved in the sulfur cycle occurring in the wastewater biofilm and was primarily responsible for the oxidation of H(2)S and S(0) to SO(4)(2-) under oxic conditions. 相似文献
4.
Nitrifying bacterial community structures and their nitrification performance under sufficient and limited inorganic carbon conditions 总被引:1,自引:0,他引:1
Toshikazu Fukushima Liang-Ming Whang Ting-Yu Chiang Yi-Hsuan Lin Lizette R. Chevalier Mei-Chun Chen Yi-Ju Wu 《Applied microbiology and biotechnology》2013,97(14):6513-6523
This study examined the hypothesis that different inorganic carbon (IC) conditions enrich different ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) populations by operating two laboratory-scale continuous-flow bioreactors fed with 15 and 100 mg IC/L, respectively. During this study, both bioreactors maintained satisfactory nitrification performance and stably oxidized 250 mg?N/L of influent ammonium without nitrite accumulation. Based on results of cloning/sequencing and terminal restriction fragment length polymorphism targeting on the ammonia monooxygenase subunit A (amoA) gene, Nitrosomonas nitrosa lineage was identified as the dominant AOB population in the high-IC bioreactor, while Nitrosomonas europaea and Nitrosomonas nitrosa lineage AOB were dominant in the low-IC bioreactor. Results of real-time polymerase chain reactions for Nitrobacter and Nitrospira 16S rRNA genes indicated that Nitrospira was the predominant NOB population in the high-IC bioreactor, while Nitrobacter was the dominant NOB in the low-IC bioreactor. Furthermore, batch experiment results suggest that N. europaea and Nitrobacter populations are proliferated in the low-IC bioreactor due to their higher rates under low IC conditions despite the fact that these two populations have been identified as weak competitors, compared with N. nitrosa and Nitrospira, under low ammonium/nitrite environments. This study revealed that in addition to ammonium/nitrite concentrations, limited IC conditions may also be important in selecting dominant AOB/NOB communities of nitrifying bioreactors. 相似文献
5.
B. B. Kjellerup K. U. Kjeldsen F. Lopes L. Abildgaard K. Ingvorsen B. Frølund 《Biofouling》2013,29(8):727-737
Severe biofilm formation and biocorrosion have been observed in heating systems even when the water quality complied with existing standards. The coupling between water chemistry, biofilm formation, species composition, and biocorrosion in a heating system was investigated by adding low concentrations of nutrients and oxygen under continuous and alternating dosing regimes. Molecular analysis of 16S rRNA gene fragments demonstrated that the amendments did not cause changes in the overall bacterial community composition. The combined alternating dosing of nutrients and oxygen caused increased rates of pitting (bio-) corrosion. Detection of bacteria involved in sulfide production and oxidation by retrieval of the functional dsrAB and apsA genes revealed the presence of Gram-positive sulfate- and sulfite-reducers and an unknown sulfur-oxidizer. Therefore, to control biocorrosion, sources of oxygen and nutrients must be limited, since the effect of the alternating operational conditions apparently is more important than the presence of potentially corrosive biofilm bacteria. 相似文献
6.
Federico Baltar Joakim Palovaara Fernando Unrein Philippe Catala Karel Horňák Karel ?imek Dolors Vaqué Ramon Massana Josep M Gasol Jarone Pinhassi 《The ISME journal》2016,10(3):568-581
To test whether protist grazing selectively affects the composition of aquatic bacterial communities, we combined high-throughput sequencing to determine bacterial community composition with analyses of grazing rates, protist and bacterial abundances and bacterial cell sizes and physiological states in a mesocosm experiment in which nutrients were added to stimulate a phytoplankton bloom. A large variability was observed in the abundances of bacteria (from 0.7 to 2.4 × 106 cells per ml), heterotrophic nanoflagellates (from 0.063 to 2.7 × 104 cells per ml) and ciliates (from 100 to 3000 cells per l) during the experiment (∼3-, 45- and 30-fold, respectively), as well as in bulk grazing rates (from 1 to 13 × 106 bacteria per ml per day) and bacterial production (from 3 to 379 μg per C l per day) (1 and 2 orders of magnitude, respectively). However, these strong changes in predation pressure did not induce comparable responses in bacterial community composition, indicating that bacterial community structure was resilient to changes in protist predation pressure. Overall, our results indicate that peaks in protist predation (at least those associated with phytoplankton blooms) do not necessarily trigger substantial changes in the composition of coastal marine bacterioplankton communities. 相似文献
7.
《Process Biochemistry》2007,42(8):1250-1253
Organic matter exposed to microwave radiation triggers standard thermal effects as well as a range of so called non-thermal effects. The present work examined the non-thermal effects of microwave radiation on the biofilm in bioreactors with immobilised biomass. Microwave-exposed and conventionally heated reactors were used and both groups of reactors operated on analogous technological parameters. The analysis of the treated sewage demonstrated a significant increase in nitrification and denitrification efficiency in the bioreactors treated with microwave radiation. An analysis of bacteria diversity based on DGGE method showed significantly different bacterial communities developed in the reactors exposed to the microwave radiation in comparison to the control reactors. Moreover, bacterial richness measured by Shannon index was significantly higher in the microwave treated samples (Mann–Whitney's test, p < 0.05). These findings indicate that microwave radiation can affect the structure and function of bacterial communities independent of thermal effects. 相似文献
8.
Cui Jiaqi Chen Hong Sun Mingbo Wen Jianping 《Bioprocess and biosystems engineering》2020,43(2):303-313
Bioprocess and Biosystems Engineering - Bioremediation methods have been successfully applied to the removal of organic pollutants for decades, but the responses of the microbial community to... 相似文献
9.
Tibor Benedek András Táncsics Nikolett Szilágyi Imre Tóth Milán Farkas Sándor Szoboszlay Csilla Krifaton Mátyás Hartman Balázs Kriszt 《World journal of microbiology & biotechnology》2014,30(3):977-987
In this study molecular microbiological and multivariate statistical analyses were carried out to determine the structure and dynamics of bacterial communities through a biofilm based, pilot-scale wastewater treatment cascade system comprised of eight reactors. Results indicated a vertical as well as horizontal differentiation of biofilm bacterial communities within individual reactors and through the reactor series, respectively. The richness of biofilm samples taken from dissolved oxygen rich sections of reactors were relatively lower than of samples taken from less oxygenized sections (one-way ANOVA P = 0.07). The Euclidean distance based one-way ANOSIM pointed out that in bacteriological point of view: (1) no statistically significant difference could be observed among the first five reactors (P ≥ 0.1); (2) the first seven reactors differed significantly from the last reactor, (P ≤ 0.03); (3) reactors 1 and 2 differed significantly from reactors 6 and 7 (P ≈ 0.02) and (4) reactor 3 from reactor 7 (P ≈ 0.03). 16S rRNA gene cloning revealed that through the cascade system the initially dominant heterotrophic bacteria (Acinetobacter, Acidovorax, Parabacteroides, Thauera, Desulfobacterium and Desulfomicrobium) were gradually replaced or supplemented by autotrophic nitrifying bacteria (Nitrosomonas, ‘Candidatus Nitrotoga’ and Nitrospira). Our results indicate that the vertical alteration of bacterial community structure within a particular reactor was driven by the alteration of dissolved oxygen concentration, while the horizontal alteration of bacterial community structure through the cascade system was driven mainly by the gradually decreasing dissolved organic matter content and increasing dissolved oxygen concentration. 相似文献
10.
Succession of internal sulfur cycles and sulfur-oxidizing bacterial communities in microaerophilic wastewater biofilms 总被引:1,自引:0,他引:1
The succession of sulfur-oxidizing bacterial (SOB) community structure and the complex internal sulfur cycle occurring in wastewater biofilms growing under microaerophilic conditions was analyzed by using a polyphasic approach that employed 16S rRNA gene-cloning analysis combined with fluorescence in situ hybridization, microelectrode measurements, and standard batch and reactor experiments. A complete sulfur cycle was established via S(0) accumulation within 80 days in the biofilms in replicate. This development was generally split into two phases, (i) a sulfur-accumulating phase and (ii) a sulfate-producing phase. In the first phase (until about 40 days), since the sulfide production rate (sulfate-reducing activity) exceeded the maximum sulfide-oxidizing capacity of SOB in the biofilms, H(2)S was only partially oxidized to S(0) by mainly Thiomicrospira denitirificans with NO(3)(-) as an electron acceptor, leading to significant accumulation of S(0) in the biofilms. In the second phase, the SOB populations developed further and diversified with time. In particular, S(0) accumulation promoted the growth of a novel strain, strain SO07, which predominantly carried out the oxidation of S(0) to SO(4)(2-) under oxic conditions, and Thiothrix sp. strain CT3. In situ hybridization analysis revealed that the dense populations of Thiothrix (ca. 10(9) cells cm(-3)) and strain SO07 (ca. 10(8) cells cm(-3)) were found at the sulfur-rich surface (100 microm), while the population of Thiomicrospira denitirificans was distributed throughout the biofilms with a density of ca. 10(7) to 10(8) cells cm(-3). Microelectrode measurements revealed that active sulfide-oxidizing zones overlapped the spatial distributions of different phylogenetic SOB groups in the biofilms. As a consequence, the sulfide-oxidizing capacities of the biofilms became high enough to completely oxidize all H(2)S produced by SRB to SO(4)(2-) in the second phase, indicating establishment of the complete sulfur cycle in the biofilms. 相似文献
11.
Chopp DL Kirisits MJ Moran B Parsek MR 《Journal of industrial microbiology & biotechnology》2002,29(6):339-346
In a process called quorum sensing, bacteria monitor their population density via extracellular signaling molecules and modulate gene expression accordingly. This paper describes a one-dimensional model
of a growing Pseudomonas aeruginosa biofilm. Quorum sensing has been included in the model by the addition of equations describing the production, degradation,
and diffusion of acyl-homoserine lactones in the biofilm. In order for quorum sensing to initiate near the substratum, in
accordance with experimental observations, model results suggest that cells in oxygen-deficient regions of the biofilm must
still be synthesizing the signal compound. This result highlights the importance of careful study of the relationship between
metabolic activity of the bacterium and signal synthesis.
Received 11 March 2002/ Accepted in revised form 01 August 2002 相似文献
12.
Microbial community may respond to different adverse conditions and result in the variation of extracellular polymeric substances (EPS) in denitrification biofilm; this study discovered the role of EPS in accordance with the analysis of cyclic diguanylate (c-di-GMP) and electron equilibrium (EE) under low organic loading rate, shock organic loading rate and low temperature conditions. Good nitrate removal performance could be achieved under shock organic loading rate and low temperature conditions; however, owing to the low organic loading rate, the carbon source was preferentially utilized for biomass growth. Tightly bound EPS (TB-EPS) contents progressively increased and facilitated cell adhesion and biofilm formation. The stable TB protein (TB-PN) content in TB-EPS built a cross-linked network to maintain internal biofilm structure and led to the rapid biosynthesis of polysaccharides, which could further enhance microbial adhesion and improve nitrate removal. C-di-GMP played an important role in biomass retention and biofilm formation, based on the correlation analysis of c-di-GMP and EPS. TB polysaccharide (TB-PS) contents presented a significant positive correlation with c-di-GMP content, microbial adhesion and biofilm stabilization was further enhanced through c-di-GMP regulation. In addition, a remarkable negative correlation between electron deletion rate (EDR) and TB-PN and TB-PS was discovered, and TB-PS was required to serve as energy source to enhance denitrification according to EE analysis. Surprisingly, dynamic microbial community was observed due to the drastic community succession under low temperature conditions, and the discrepancy between the dominant species for denitrification was found under shock organic loading rate and low temperature conditions. The notable increase in bacterial strains Simlicispira, Pseudomonas and Chryseobacterium was conducive to biofilm formation and denitrification under shock organic loading rate, while Dechloromonas and Zoogloea dramatically enriched for nitrate removal under low temperature conditions. The high abundance of Dechloromonas improved the secretion of EPS through the downstream signal transduction, and the c-di-GMP conserved in Pseudomonas concurrently facilitated to enhance exopolysaccharide production to shock organic loading rate and low temperature conditions. 相似文献
13.
Using a rotating biological contactor modified with a sequencing bath reactor system (SBRBC) designed and operated to remove phosphate and nitrogen [58], the microbial community structure of the biofilm from the SBRBC system was characterized based on the extracellular polymeric substance (EPS) constituents, electron microscopy, and molecular techniques. Protein and carbohydrate were identified as the major EPS constituents at three different biofilm thicknesses, where the amount of EPS and bacterial cell number were highest in the initial thickness of 0-100 mum. However, the percent of carbohydrate in the total amount of EPS decreased by about 11.23%, whereas the percent of protein increased by about 11.15% as the biofilm grew. Thus, an abundant quantity of EPS and cell mass, as well as a specific quality of EPS were apparently needed to attach to the substratum in the first step of the biofilm growth. A FISH analysis revealed that the dominant phylogenetic group was beta- and gamma-Proteobacteria, where a significant subclass of Proteobacteria for removing phosphate and/or nitrate was found within a biofilm thickness of 0-250 mum. In addition, 16S rDNA clone libraries revealed that Klebsiella sp. and Citrobacter sp. were most dominant within the initial biofilm thickness of 0-250 mum, whereas sulfur-oxidizing bacteria, such as Beggiatoa sp. and Thiothrix sp., were detected in a biofilm thickness over 250 mum. The results of the bacterial community structure analysis using molecular techniques agreed with the results of the morphological structure based on scanning electron microscopy. Therefore, the overall results indicated that coliform bacteria participated in the nitrate and phosphorus removal when using the SBRBC system. Moreover, the structure of the biofilm was also found to be related to the EPS constituents, as well as the nitrogen and phosphate removal efficiency. Consequently, since this is the first identification of the bacterial community and structure of the biofilm from an RBC simultaneously removing nitrogen and phosphate from domestic wastewater, and it is hoped that the present results may provide a foundation for understanding nitrate and phosphate. 相似文献
14.
We have developed a bioluminescent whole-cell biosensor that can be incorporated into biofilm ecosystems. RM4440 is a Pseudomonas aeruginosa FRD1 derivative that carries a plasmid-based recA-luxCDABE fusion. We immobilized RM4440 in an alginate matrix to simulate a biofilm, and we studied its response to UV radiation damage. The biofilm showed a protective property by physical shielding against UV C, UV B, and UV A. Absorption of UV light by the alginate matrix translated into a higher survival rate than observed with planktonic cells at similar input fluences. UV A was shown to be effectively blocked by the biofilm matrix and to have no detectable effects on cells contained in the biofilm. However, in the presence of photosensitizers (i.e., psoralen), UV A was effective in inducing light production and cell death. RM4440 has proved to be a useful tool to study microbial communities in a noninvasive manner. 相似文献
15.
Carbon removal strategies have gained popularity in the mitigation of biofouling in water reuse processes, but current biofilm-monitoring practices based on organic-carbon concentrations may not provide an accurate representation of the in situ biofilm problem. This study evaluated a submerged microtiter plate assay for direct and rapid monitoring of biofilm formation by subjecting the plates to a continuous flow of either secondary effluent (SE) or biofilter-treated secondary effluent (BF). This method was very robust, based on a high correlation (R(2) = 0.92) between the biomass (given by the A(600) in the microtiter plate assay) and the biovolume (determined from independent biofilms developed on glass slides under identical conditions) measurements, and revealed that the biomasses in BF biofilms were consistently lower than those in SE biofilms. The influence of the organic-carbon content on the biofilm community composition and succession was further evaluated using molecular tools. Terminal restriction fragment length polymorphism analysis of 16S rRNA genes revealed a group of pioneer colonizers, possibly represented by Sphingomonadaceae and Caulobacter organisms, to be common in both SE and BF biofilms. However, differences in organic-carbon availabilities in the two water samples eventually led to the selection of distinct biofilm communities. Alphaproteobacterial populations were confirmed by fluorescence in situ hybridization to be enriched in SE biofilms, while Betaproteobacteria were dominant in BF biofilms. Cloning analyses further demonstrated that microorganisms adapted for survival under low-substrate conditions (e.g., Aquabacterium, Caulobacter, and Legionella) were preferentially selected in the BF biofilm, suggesting that carbon limitation strategies may not achieve adequate biofouling control in the long run. 相似文献
16.
Effects of elevated temperature on bacterial community structure and function in bioreactors treating a synthetic wastewater 总被引:1,自引:0,他引:1
T M LaPara A Konopka C H Nakatsu J E Alleman 《Journal of industrial microbiology & biotechnology》2000,24(2):140-145
The impact of elevated temperature on bacterial community structure and function during aerobic biological wastewater treatment
was investigated. Continuous cultures, fed a complex growth medium containing gelatin and α-lactose as the principal carbon
and energy sources, supported mixed bacterial consortia at temperatures ranging from 25–65°C. These temperature- and substrate-acclimated
organisms were then used as inocula for batch growth experiments in which the kinetics of microbial growth and substrate utilization,
efficiency of substrate removal, and mechanism of substrate removal were compared as functions of temperature. Bacterial community
analysis by denaturing gradient gel electrophoresis (DGGE) revealed that distinct bacterial consortia were supported at each
temperature. The efficiency of substrate removal declined at elevated temperatures. Maximum specific growth rates and the
growth yield increased with temperature from 25–45°C, but then decreased with further elevations in temperature. Thus, maximum
specific substrate utilization rates did not vary significantly over the 40°C temperature range (0.64 ± 0.04 mg COD mg−1 dry cell mass h−1). A comparison of the degradation of the protein and carbohydrate portions of the feed medium revealed a lag in α-lactose
uptake at 55°C, whereas both components were utilized simultaneously at 25°C. Journal of Industrial Microbiology & Biotechnology (2000) 24, 140–145.
Received 09 August 1999/ Accepted in revised form 12 November 1999 相似文献
17.
Biofouling communities contribute significantly to aquatic ecosystem productivity and biogeochemical cycling. Our knowledge of the distribution, composition, and activities of these microbially dominated communities is limited compared to other components of estuarine ecosystems. This study investigated the temporal stability and change of the dominant phylogenetic groups of the domain Bacteria in estuarine biofilm communities. Glass slides were deployed monthly over 1 year for 7-day incubations during peak tidal periods in East Sabine Bay, Fla. Community profiling was achieved by using 16S rRNA genes and terminal restriction fragment length polymorphism (T-RFLP) of 16S rRNA genes in combination with ribotyping, cloning, and sequencing to evaluate diversity and to identify dominant microorganisms. Bacterial community profiles from biofilms grown near the benthos showed distinct periods of constancy within winter and summer sampling periods. Similar periods of stability were also seen in T-RFLP patterns from floating biofilms. Alternating dominance of phylogenetic groups between seasons appeared to be associated with seasonal changes in temperature, nutrient availability, and light. The community structure appeared to be stable during these periods despite changes in salinity and in dissolved oxygen. 相似文献
18.
Donald Pan Rachel Watson Dake Wang Zheng Huan Tan Daniel D Snow Karrie A Weber 《The ISME journal》2014,8(8):1691-1703
A variety of microbially mediated metabolic pathways impact biogeochemical cycling in terrestrial subsurface environments. However, the role that viruses have in influencing microbial mortality and microbial community structure is poorly understood. Here we investigated the production of viruses and change in microbial community structure within shallow alluvial aquifer sediment slurries amended with 13C-labeled acetate and nitrate. Biostimulation resulted in production of viruses concurrent with acetate oxidation, 13CO2 production and nitrate reduction. Interestingly, change in viral abundance was positively correlated to acetate consumption (r2=0.6252, P<0.05) and 13CO2 production (r2=0.6572, P<0.05); whereas change in cell abundance was not correlated to acetate consumption or 13CO2 production. Viral-mediated cell lysis has implications for microbial community structure. Betaproteobacteria predominated microbial community composition (62% of paired-end reads) upon inoculation but decreased in relative abundance and was negatively correlated to changes in viral abundance (r2=0.5036, P<0.05). As members of the Betaproteobacteria decreased, Gammaproteobacteria, specifically Pseudomonas spp., increased in relative abundance (82% of paired-end reads) and was positively correlated with the change in viral abundance (r2=0.5368, P<0.05). A nitrate-reducing bacterium, Pseudomonas sp. strain Alda10, was isolated from these sediments and produced viral-like particles with a filamentous morphology that did not result in cell lysis. Together, these results indicate that viruses are linked to carbon biogeochemistry and community structure in terrestrial subsurface sediments. The subsequent cell lysis has the potential to alter available carbon pools in subsurface environments, additionally controlling microbial community structure from the bottom-up. 相似文献
19.
A compact suspended carrier biofilm reactor (SCBR) was developed for simultaneous nitrification and denitrification (SND) in a single reactor and the performance of nutrient removal was investigated. Microbial community structure response to different ratio of carbon to nitrogen (C/N) was determined by denaturing gel gradient electrophoresis (DGGE) profiles of 16S rDNA V3 region and amoA gene amplifications. In addition, the population dynamics of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were estimated by fluorescence in situ hybridization (FISH) with 16S rDNA-targeted oligonucleotide probes. Results showed that the compact SCBR was efficient in nutrient removal with CODCr removal efficiency over 90% and SND efficiency (ESND) about 83.3%. The diversity of microbial community structure was positively correlated with C/N ratio, while the three communities of amoA gene were relativity homogenous. The population of nitrifiers was in inverse proportions to C/N ratio with the average fraction of AOB and NOB to all bacteria 5.4, 4.8, 3.1% and 4.6, 3.5, 2.7% respectively as C/N ratio changing from 3:1, 5:1 to 10:1. Therefore we could reach a conclusion that the compact SCBR was practical to treat municipal wastewater and the shift of microbial community monitored by molecular technologies could offer guidance to the process optimization in engineering. 相似文献
20.
The role of cell and surface hydrophobicity in the adherence of the waterborne bacterium Mycobacterium smegmatis to nanostructures and biofilm formation was investigated. Carbon nanostructures (CNs) were synthesized using a flame reactor and deposited on stainless steel grids and foils, and on silicon wafers that had different initial surface hydrophobicities. Surface hydrophobicity was measured as the contact angle of water droplets. The surfaces were incubated in suspensions of isogenic hydrophobic and hydrophilic strains of M. smegmatis and temporal measurements of the numbers of adherent cells were made. The hydrophobic, rough mutant of M. smegmatis adhered more readily and formed denser biofilms on all surfaces compared to its hydrophilic, smooth parent. Biofilm formation led to alterations in the hydrophobicity of the substratum surfaces, demonstrating that bacterial cells attached to CNs are capable of modifying the surface characteristics. 相似文献