首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six newly derived hybrid mouse embryonic stem (ES) cell lines and two inbred ES cell lines were tested for their ability to produce completely ES cell-derived mice by aggregation of ES cells with tetraploid embryos. Forty-five ES cell-tetraploid pups were generated from six hybrid ES cell lines and no pups from two inbred ES cell lines. These pups were found to have increased embryonic and placental weights than control mice. Twenty-two pups survived to adulthood and produced normal offsprings, and the other 23 pups died of several reasons including respiratory distress, abdomen ulcer-like symptoms, and foster failure. The 22 adult ES cell-tetraploid mice were completely ES cell-derived as judged by coat color and germline transmission, only two of them was found to have tetraploid component in liver, blood, and lung as analyzed by microsatellite loci. Our data suggested that genetic heterozygosity is a crucial factor for postnatal survival of ES cell-tetraploid mice, and tetraploid embryo aggregation using hybrid ES cells is a simple and efficient procedure for immediate generation of targeted mouse mutants from genetically modified ES cell clones, in contrast to the standard protocol, which involves the production of chimeras and several breeding steps.  相似文献   

2.
远交系小鼠胚胎干细胞系的建立及嵌合鼠的获得   总被引:2,自引:0,他引:2  
ES细胞(EmbryonicStemCells)是来源于小鼠早期胚胎的多潜能干细胞,它可以在体外大量培养。并以单细胞的形式注射到早期胚胎里,发育为嵌合体。到目前为止,通常使用的129小鼠品系是来源于近交系(inbred)小鼠的胚胎.与之相比,远交系小鼠应当具有较强的生命力和抗病能力。曾有人报道过建成了远交系小鼠胚胎干细胞系,但是尚没有见到获得嵌合鼠的报道。有人甚至认为:由于不同品系小鼠所具有的遗传背景不同,有的小鼠不能建成ES细胞系。最近,本实验室在这方面做了有益的探索,成功地建成了远交系小鼠胚胎干细胞系,并在这里报导首例用远交系小鼠胚胎干细胞系培育成功嵌合体小鼠。采用源于Swiss小鼠远交群的昆明(KM)品系小鼠囊胚建成了三个小鼠胚胎干细胞系(KE1.KE2.KE5)。核型正常率均达到70%以上。自第八代起分批冻存,复苏后,培养至第12代,消化成单细胞,通过囊胚显微注射,将其注射到615品系小鼠胚胎。在幸存的幼鼠中获得了一只来源于KE1细胞的嵌合鼠(Table1).其毛色表现为受体鼠(615)的白色中嵌合有供体鼠(KM)的黑褐色(PlateI-A).嵌合鼠与受体鼠的杂交后代鼠中仍然出现了受体鼠的毛色类型(  相似文献   

3.
The N-myc gene is considered to play a major regulatory role in embryogenesis of the mouse because of its high expression in the organogenesis period and its encoding of nuclear proteins with DNA binding motifs. To elucidate the putative regulatory function of N-myc in embryogenesis, we undertook to inactivate this gene in ES cells. The N-myc alleles were disrupted in ES cells, line E14, by means of homologous recombination of targeting vectors that carry neomycin or hygromycin resistant genes. Homologous recombinants were obtained at the frequency of one in 6 x 10(5) electroporated cells. The inactivated N-myc alleles were transmitted through mouse germ lines. Crosses of heterozygous mice resulted in production of wild-type, heterozygous, and N-myc-null pups and fetuses at a ratio of 1:2:0, indicating embryonic lethality of the homozygotes. ES cells totally deficient in N-myc expression were also obtained by consecutive gene disruption with the use of the targeting vectors, demonstrating the non-essentiality of N-myc expression in the stem-cell state. N-myc-null ES cells offer a valuable tool in chimera analysis to elucidate the requirement for N-myc function in embryogenesis.  相似文献   

4.
Riaz A  Zhao X  Dai X  Li W  Liu L  Wan H  Yu Y  Wang L  Zhou Q 《Cell research》2011,21(5):770-778
Mouse cloning from fertilized eggs can assist development of approaches for the production of "genetically tailored" human embryonic stem (ES) cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to support the derivation of ES cell lines via somatic nuclear transfer has not yet been proved. Here, we report that two-cell stage electrofused mouse embryos, arrested in mitosis, can support developmental reprogramming of nuclei from donor cells ranging from blastomeres to somatic cells. Live, full-term cloned pups from embryonic donors, as well as pluripotent ES cell lines from embryonic or somatic donors, were successfully generated from these reconstructed embryos. Advanced stage pre-implantation embryos were unable to develop normally to term after electrofusion and transfer of a somatic cell nucleus, indicating that discarded pre-implantation human embryos could be an important resource for research that minimizes the ethical concerns for human therapeutic cloning. Our approach provides an attractive and practical alternative to therapeutic cloning using donated oocytes for the generation of patient-specific human ES cell lines.  相似文献   

5.
The isolation of pluripotent murine embryonic stem (ES) cells has previously been achieved by coculturing the ES cells with fibroblast feeder cells. In this report we demonstrate that ES cell lines can be isolated from murine 129/Sv He blastocysts in the absence of feeder cells in culture medium supplemented with recombinant leukemia inhibitory factor (LIF). Three of the ES cell lines (MBL-1, MBL-2, and MBL-3) were isolated by directly explanting blastocysts, whilst two ES cell lines (MBL-4 and MBL-5) were isolated from blastocysts pretreated by immunosurgery. Three of the ES cell lines contained the Y chromosome (MBL-1, MBL-2, and MBL-5) with a high proportion of the cells displaying a normal diploid karyotype with a modal chromosome number of 40. All of the ES cell lines tested expressed the stem cell markers ECMA-7 and alkaline phosphatase, which were lost on removal of LIF when the ES cells differentiated into a variety of cell types. The full developmental potential of the ES cells was determined by injecting cells from two of the independently derived ES cell lines, MBL-1 and MBL-5, into C57BL/6J blastocysts. A high proportion of the pups born were chimeric as judged by coat pigmentation. Subsequent breeding established that the ES cells had contributed to the germ line. These results demonstrate that feeder cells are not essential for the isolation of pluripotent ES cell lines.  相似文献   

6.
7.
8.
胚胎干细胞(embryonic stem cells,ESCs)是从囊胚的内细胞团分离出来的多潜能干细胞,具有多向分化的能力。将外源基因导入ES细胞建立转基因动物,对于研究外源基因的功能和调控具有一定的价值。载有外源性基因的病毒在感染ES细胞后,可通过囊胚注射获得具有胚系遗传的该转基因动物,并且这一外源基因可以稳定遗传和表达。该研究主要是利用携带hPML-RARα基因的慢病毒感染小鼠ES细胞系(R1),获得携带该基因的ES细胞,感染后的ES细胞核型正常。在此基础上,将感染后的ES细胞经囊胚注射,获得了携带有hPML-RARα基因的3只嵌合小鼠,其中,有1只具有遗传特性。对嵌合体小鼠与C57杂交的后代给予强力霉素(doxycycline)处理,3天以后骨髓细胞hPML-RARα基因开始表达,这证明了在小鼠体内该外源基因表达的可诱导性。以上证实,已经成功利用ES细胞建立了可诱导的白血病转基因小鼠模型。  相似文献   

9.
Zhao C  Yao R  Hao J  Ding C  Fan Y  Dai X  Li W  Hai T  Liu Z  Yu Y  Wang Y  Hou X  Ji W  Zhou Q  Jouneau A  Zeng F  Wang L 《Cell research》2007,17(1):80-87
Therapeutic cloning, whereby embryonic stem cells (ESCs) are derived from nuclear transfer (NT) embryos, may play a major role in the new era of regenerative medicine. In this study we established forty nuclear transfer-ESC (NTESC) lines that were derived from NT embryos of different donor cell types or passages. We found that NT-ESCs were capable of forming embryoid bodies. In addition, NT-ESCs expressed pluripotency stem cell markers in vitro and could differentiate into embryonic tissues in vivo. NT embryos from early passage RI donor cells were able to form full term developed pups, whereas those from late passage RI ES donor cells lost the potential for reprogramming that is essential for live birth. We subsequently established sequential NT-RI-ESC lines that were developed from NT blastocyst of late passage R 1 ESC donors. However, these NT-R I-ESC lines, when used as nuclear transfer donors at their early passages, failed to result in live pups. This indicates that the therapeutic cloning process using sequential NT-ESCs may not rescue the developmental deficiencies that resided in previous donor generations.  相似文献   

10.
Pluripotent mouse embryonic stem (ES) cells differentiate in vitro spontaneously into cell types of all three primary germ layers when cultivated as cell aggregates, so-called 'embryoid bodies'. Many reports have shown that this system recapitulates cellular developmental processes and gene expression patterns of early embryogenesis. During ES cell differentiation, efficient and directed differentiation into a specific cell type is influenced by many parameters, for example, the batch of the serum used or the application of growth factors and signalling molecules. Because all ES cell lines are considered to be pluripotent, one should not expect remarkable differences regarding their spontaneous differentiation efficiencies. However, here we show that different ES cell lines exhibit a variable degree of spontaneous chondrogenic differentiation indicating that lines with a specific differentiation capacity could be selected. This is an important aspect if ES cells are applied for tissue regeneration.  相似文献   

11.
Mice have been successfully cloned from both somatic cells and hybrid embryonic stem (ES) cells. Heterozygosity of the donor ES cell genome has been suggested as a crucial factor for long-term survival of cloned mice. In the present study, an inbred ES cell line, HM-1 (129/Ola), and a well-tested ES cell line, R1 (129/Sv x 129/Sv-CP), were used as donor cells to evaluate the developmental potential of nuclear transfer embryos. We found that ES cell confluence dramatically affects the developmental potential of reconstructed embryos. With the ES cell line HM-1 and 80-90% confluence, 49% of reconstructed embryos developed to the morula/blastocyst stage, 9% of these embryos developed to live pups when transferred to the surrogate mothers, and 5 of 18 live pups survived to adulthood. By contrast, at 60-70% confluence, only 22% of embryos developed to the morula/blastocyst stage, and after transfer, only a single fetus reached term. Consistent with previous reports, the nuclei of R1 ES cells were also shown to direct development to term, but no live pups were derived from cells at later passages (>20). Our results show that the developmental potential of reconstructed embryos is determined by both cell confluence and cell passage. These results also demonstrate that the inbred ES cell line, HM-1, can be used to produce viable cloned mice, although less efficiently than most heterozygous ES cell lines.  相似文献   

12.
Nuclear transfer (NT) provides an opportunity for clonal amplification of a nuclear genome of interest. Here, we report NT-mediated reprogramming with frozen mouse cells that were nonviable because they were frozen at -80 degrees C for up to 342 days without a cryoprotectant. We derived eight embryonic stem (ES) cell lines from cloned blastocysts by conventional NT procedure and five ntES (nuclear transfer embryonic stem) cell lines by a modified NT procedure in which a whole cell instead of a nucleus was injected into an enucleated oocyte. Chromosome analysis revealed that 12 of 13 ntES cell lines have normal karyotypes. On injection of ntES cells into tetraploid blastocysts to generate clonal mice that are nearly completely ntES-cell derived, live pups were obtained; four clonal mice survived until adulthood. On injection of ntES cells into diploid blastocysts, chimeric mice with a high somatic ES cell contribution were generated; germ-line transmission was obtained. Our findings indicate that chromosome stability and genomic integrity can be maintained in mouse somatic cells after freezing without cryoprotection and that NT and ES cell techniques can rescue the genome of these cells.  相似文献   

13.
MicroRNAs serve a crucial role in the regulation of malignant biological behavior of Ewing’s sarcoma (ES). Abnormal expression of miR-107 has been reported in a cohort of cancers, while its exact function in ES remains unclear. Hence, we explored the expression of miR-107 in ES cells and detected its effects on the malignant phenotype of ES cells. Firstly, we perceived the under-expression of miR-107 in human ES cells contrast with the human mesenchymal stem cells. Over-expression of miR-107 restrained cell proliferation and tube formation, arrested cell cycle progression, and facilitated cell apoptosis in SK-ES-1 and RD-ES cell lines. Furthermore, hypoxia inducible factor-1β (HIF-1β) was assumed as a target gene of miR-107. We confirmed the target role of HIF-1β in ES cells. Finally, restoring the expression of HIF-1β could partly abolish miR-107-mediated tumor suppression in ES cells. In conclusion, our results advised that miR-107 suppressed the malignant biological ability of ES cells through targeting HIF-1β.  相似文献   

14.
Pluripotent human stem cells isolated from early embryos represent a potentially unlimited source of many different cell types for cell-based gene and tissue therapies [1-3]. Nevertheless, if the full potential of cell lines derived from donor embryos is to be realised, the problem of donor-recipient tissue matching needs to be overcome. One approach, which avoids the problem of transplant rejection, would be to establish stem cell lines from the patient's own cells through therapeutic cloning [3,4]. Recent studies have shown that it is possible to transfer the nucleus from an adult somatic cell to an unfertilised oocyte that is devoid of maternal chromosomes, and achieve embryonic development under the control of the transferred nucleus [5-7]. Stem cells isolated from such a cloned embryo would be genetically identical to the patient and pose no risk of immune rejection. Here, we report the isolation of pluripotent murine stem cells from reprogrammed adult somatic cell nuclei. Embryos were generated by direct injection of mechanically isolated cumulus cell nuclei into mature oocytes. Embryonic stem (ES) cells isolated from cumulus-cell-derived blastocysts displayed the characteristic morphology and marker expression of conventional ES cells and underwent extensive differentiation into all three embryonic germ layers (endoderm, mesoderm and ectoderm) in tumours and in chimaeric foetuses and pups. The ES cells were also shown to differentiate readily into neurons and muscle in culture. This study shows that pluripotent stem cells can be derived from nuclei of terminally differentiated adult somatic cells and offers a model system for the development of therapies that rely on autologous, human pluripotent stem cells.  相似文献   

15.
16.
Embryonic stem (ES) cell-based gene manipulation is an effective method for the generation of mutant animal models in mice and rats. Availability of germline-competent ES cell lines from inbred rat strains would allow for creation of new genetically modified models in the desired genetic background. Fischer344 (F344) males carrying an enhanced green fluorescence protein (EGFP) transgene were used as the founder animals for the derivation of ES cell lines. After establishment of ES cell lines, rigorous quality control testing that included assessment of pluripotency factor expression, karyotype analysis, and pathogen/sterility testing was conducted in selected ES cell lines. One male ES cell line, F344-Tg.EC4011, was further evaluated for germline competence by injection into Dark Agouti (DA) X Sprague Dawley (SD) blastocysts. Resulting chimeric animals were bred with wild-type SD mates and germline transmissibility of the ES cell line was confirmed by identification of pups carrying the ES cell line-derived EGFP transgene. This is the first report of a germline competent F344 ES cell line. The availability of a new germline competent ES cell line with a stable fluorescence reporter from an inbred transgenic rat strain provides an important new resource for genetic manipulations to create new rat models.  相似文献   

17.
Hosaka K  Sato K 《Human cell》2002,15(4):224-229
This study was carried out to transform embryonic stem (ES) cells and to produce the reconstituted embryos derived from transgenic ES cell nuclei. Then, in vitro/vivo developmental potency of transgenic ES cells were compared to that of control ES cells (non-transgenic ES cells) in the reconstituted embryos. Unfertilized B6D2F1 ooplasm at metaphase II (M II) and two kinds of ES cell lines, 129SV and transgenic (tg) 129SV transformed by EGFP gene, were used as nuclear recipients and nuclear donors, respectively. The M II chromosome-spindle complex was aspirated into the pipette with a minimal volume of ooplasm. After enucleation, the ES cell nuclei was injected into the enucleated ooplasm directly. Then, reconstituted embryos were activated in SrCl2, and they were cultured in HTF medium. There was no difference of developmental rate between reconstituted embryos derived from the control (non-transgenic) and the tg ES cells. From this result, we indicated that transgenic ES cells might not change the property of peculiarity of the ES cell by gene transfer. The expression of GFP gene in the embryos was observed by fluorescence microscope at the 4-cell and more stage. As comparison with development of the embryos derived from the control and tg ES cells, the difference of the development could not be confirmed between the two cell groups. When the reconstituted embryos derived from the control and tg ES cells were transferred into oviduct or uterus of pseudopregnant females, fetuses were observed 13.5 days post coitum. However, in all fetuses, developmental arrest and regression were seen 19.5 days post coitum.  相似文献   

18.
Small interfering RNA and gene silencing in transgenic mice and rats   总被引:38,自引:0,他引:38  
After short duplexes of synthetic 21-23 nt RNAs (siRNA) were reported to be effective in silencing specific genes, a vector-based approach for siRNAs was demonstrated in mammalian cultured cell lines. However, the effect of RNA interference (RNAi) on various differentiated cells in live animals remains unknown. In this report, we demonstrate that transgenically supplied siRNA can silence ubiquitously expressed enhanced green fluorescent protein in every part of the mouse and rat body. These results suggest that transgenic RNAi could function as an alternative method of gene silencing by applying homologous recombination to embryonic stem (ES) cells, and should be successful even in species where ES cell lines remain unestablished.  相似文献   

19.
C57BL/6 is a well-characterized mouse strain that is used extensively for immunological and neurological research. The establishment of C57BL/6 ES cell lines has facilitated the study of gene-altered mice in a pure genetic background-however, relatively few such lines exist. Using a defined media supplement, knockout serum replacement (KSR) with knockout DMEM (KSR-KDMEM), we find that we can readily establish ES cell lines from blastocysts of C57BL/6J mice. Six lines were established, all of which were karyotypically normal and could be maintained in the undifferentiated state on mouse embryonic fibroblast (MEF) feeders. One line was further tested and found to be karyotypically stable and germline competent, both prior to manipulation and after gene targeting. For this cell line, efficiencies of cell cloning and chimera generation were greater when maintained in KSR-KDMEM. Our work suggests that the use of defined serum-free media may facilitate the generation of ES cells from inbred mouse strains.  相似文献   

20.
Tong C  Huang G  Ashton C  Wu H  Yan H  Ying QL 《遗传学报》2012,39(6):275-280
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号