首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of patients with lamivudine (3TC) results in loss of detectable levels of hepatitis B virus (HBV) DNA from serum; however, the relapse rate, with regard to both reappearance of virus in the bloodstream and hepatic inflammation, is high when therapy is terminated. Although the rebound observed in patients has also been seen in animal hepadnavirus models, rebound has not been analyzed in an in vitro cell culture system. In this study, we used the HBV recombinant baculovirus/HepG2 system to measure the time course of antiviral agent-mediated loss of HBV replication as well as the time course and magnitude of HBV production after release from antiviral treatment. Because of the sensitivity of the system, it was possible to measure secreted virions, intracellular replicative intermediates, and nuclear non-protein-bound HBV DNA and separately analyze individual species of DNA, such as single-stranded HBV DNA compared to the double-stranded form and relaxed circular compared to covalently closed circular HBV DNA. We first determined that HBV replication in the HBV recombinant baculovirus/HepG2 system could proceed for at least 35 days, with a 30-day plateau level of replication, making it possible to study antiviral agent-mediated loss of HBV followed by rebound after cessation of drug treatment. All HBV DNA species decreased in a time-dependent fashion following antiviral treatment, but the magnitude of decline differed for each HBV DNA species, with the covalently closed circular form of HBV DNA being the most resistant to drug therapy. When drug treatment ceased, HBV DNA species reappeared with a pattern that recapitulated the initiation of replication, but with a different time course.  相似文献   

2.
3.

Background  

Hepatitis C (HCV) viral infection is a serious medical problem in Egypt and it has a devastating impact on the Egyptian economy. It is estimated that over 15% of Egyptians are infected by the virus and thus finding a cure for this disease is of utmost importance. Current therapies for hepatitis C virus (HCV) genotype 4 with interferon/ribavirin have not been successful and thus the development of alternative therapy for this genotype is disparately needed.  相似文献   

4.
5.
6.
Conditional replication of duck hepatitis B virus in hepatoma cells   总被引:2,自引:0,他引:2       下载免费PDF全文
To facilitate investigations of replication and host cell interactions in the hepadnavirus system, we have developed cell lines permitting the conditional replication of duck hepatitis B virus (DHBV). With the help of this system, we devised conditions for core particle isolation that preserve replicase activity, which was not found in previous preparations. Investigations of the stability of viral DNA intermediates indicated that both encapsidated DNA and covalently closed circular DNA (cccDNA) were turned over independently of cell division. Moreover, we showed that alpha interferon reduced the accumulation of RNA-containing viral particles. The availability of a synchronized replication system will permit the biochemical analysis of individual steps of the viral replication cycle, including the mechanism and regulation of cccDNA formation.  相似文献   

7.
Clonal cells derived from HepG2 cells transfected with a plasmid containing hepatitis B virus (HBV) DNA secrete hepatitis B surface antigen particles, nucleocapsids, and virions (M. A. Sells, M.-L. Chen, and G. Acs, Proc. Natl. Acad. Sci. USA 84:1005-1009, 1987) which elicit acute hepatitis in chimpanzees (G. Acs, M. A. Sells, R. H. Purcell, P. Price, R. Engle, M. Shapiro, and H. Popper, Proc. Natl. Acad. Sci. USA 84:4641-4644, 1987). We report here the initial characterization of the viral nucleic acids produced in this culture system. Kinetic analyses of nuclear, cytoplasmic, and extracellular HBV DNAs were performed by Southern blotting with radiolabeled HBV strand-specific probes. The results from these analyses indicate that at the stationary cellular growth phase, there is a dramatic increase in the rate at which HBV DNA accumulates. Incomplete double- and single-stranded forms of the HBV genome were detected in the nuclear and cytoplasmic fractions as well as in the extracellular medium. In addition, the nuclear DNA apparently includes multiple complete copies of the HBV genome chromosomally integrated and full-length covalently closed circular HBV DNA. Multiple HBV-specific polyadenylated RNAs with lengths of 3.5, 2.5, and 2.1 kilobases were identified by Northern (RNA) blot analysis. S1 nuclease mapping and primer extension identified a single 3' end and multiple unique initiation sites corresponding to nucleotides just 5' to the pre-S1 region, as well as upstream and within the pre-S2 and precore regions. The nucleic acid profile obtained from these analyses is essentially a facsimile of that obtained by studying liver tissue from HBV-infected individuals.  相似文献   

8.
RNA interference (RNAi) of virus-specific genes has emerged as a potential antiviral strategy. In order to suppress hepatitis B virus (HBV) expression and replication, a retrovirus-based RNAi system was developed, which utilized the U6-RNA polymerase III (Pol III) promoter to drive efficient expression and deliver the HBV-specific short hairpin RNAs (shRNAs) in HepG2.2.15 (2215) cells. In this system, the retrovirus vector with a puromycin selection marker was integrated into the host cell genome and allowed stable expression of shRNAs. In Puro-resistant 2215 cells, the levels of both HBV protein and mRNA were dramatically reduced by over 88% and HBV replication was suppressed. The results demonstrated that retrovirus-based RNAi technology will have foreseeable applications both in experimental biology and molecular medicine.  相似文献   

9.
10.
11.
Human hepatitis delta virus (HDV) is a natural subviral agent that uses hepatitis B virus as a helper. Experimentally, HDV can be made to replicate in woodchucks, using woodchuck hepatitis B virus as a helper virus. Also, independent of such helper activity, replication of the HDV RNA genome can be achieved in many mammalian cells. In this study we examined whether such replication could also be achieved in avian cells. We used cotransfection strategies and initially found no detectable genome replication in chicken LMH cells relative to the mammalian cell line Huh7, used as a positive control. We also found that, in contrast to transfected Huh7 cells, the avian cell line was readily and efficiently killed by expression of the delta protein. Three strategies were used to reduce such killing: (i) the delta protein was expressed from a separate expression vector, the amount of which was then reduced as much as 33-fold; (ii) the protein was expressed transiently, using a promoter under tetracycline control; and (iii) the transfected cells were treated with Z-VAD-fmk, a broad-spectrum caspase inhibitor, which reduced cell killing. This last result indicated that cell killing occurred via an apoptotic pathway. After application of these three strategies to reduce cell killing, together with a novel procedure to improve the signal-to-noise ratio in Northern analyses, replication of the HDV genome was then detected in LMH cells. However, even after removal of obvious signs of toxicity, the amount was still >50 times lower than in the Huh7 cells. Our findings explain previous unsuccessful attempts to demonstrate replication of the HDV genome in avian cells and establish the precedent that in certain situations HDV replication can be cytotoxic.  相似文献   

12.
The smallest protein of hepatitis B virus, HBX, has been implicated in the development of liver diseases by interfering with normal cellular processes. Its role in cell proliferation has been unclear as both pro-apoptotic and anti-apoptotic activities have been reported. We showed molecular evidence that HBX induced apoptosis in HepG2 cells. A Bcl-2 Homology Domain 3 was identified in HBX, which interacted with anti-apoptotic but not pro-apoptotic members of the Bcl-2 family of proteins. HBX induced apoptosis when transfected into HepG2 cells, as demonstrated by both flow cytometry and caspase-3 activity. However, HBX protein may not be stable in apoptotic cells triggered by its own expression as only its mRNA or the fusion protein with the glutathione-S-transferase was detected in transfected cells. Our results suggested that HBX behaved as a pro-apoptotic protein and was able to induce apoptosis.  相似文献   

13.
14.
Src kinases involved in hepatitis B virus replication.   总被引:25,自引:0,他引:25       下载免费PDF全文
  相似文献   

15.
Defective replication units of hepatitis B virus.   总被引:1,自引:0,他引:1       下载免费PDF全文
Templates for the synthesis of defective hepatitis B virus RNA pregenomes were constructed. Viral sequences in these constructs were replaced by the neomycin resistance gene. Deletions spanned up to 80% of the genome and did not include the cohesive end region. The size of the defective replication units was reduced up to half of the wild-type unit length. After cotransfection with replication competent wild-type DNA, defective pregenomes became included into the pool of replicating viral nucleic acids. A natural template for a defective pregenome was derived from the integrated state in a hepatocellular carcinoma. Owing to a deletion, this unit was devoid of the hepatitis B virus enhancer.  相似文献   

16.
Several nucleoside 5'-triphosphate analogs were investigated as inhibitors of human hepatitis B virus replication. Different analogs inhibited DNA synthesis differently, 3'-azido-2',3'-dideoxythymidine 5'triphosphate being the most active compound. This inhibitor blocked DNA synthesis by 50% at inhibitor: substrate molar ratio 1:8, and by 80% - at 1:1. The hypothesis is formulated that 3'-azido-2',3'-dideoxythymidine 5'-triphosphate inhibits RNA directed viral DNA replication due to incorporation of this compound into 3'-termini of newly synthesized DNA chains. The phenomenon observed opens new possibilities for chemotherapy of acute and chronic human hepatitis B.  相似文献   

17.
High-level hepatitis B virus replication in transgenic mice.   总被引:25,自引:0,他引:25       下载免费PDF全文
Hepatitis B virus (HBV) transgenic mice whose hepatocytes replicate the virus at levels comparable to that in the infected livers of patients with chronic hepatitis have been produced, without any evidence of cytopathology. High-level viral gene expression was obtained in the liver and kidney tissues in three independent lineages. These animals were produced with a terminally redundant viral DNA construct (HBV 1.3) that starts just upstream of HBV enhancer I, extends completely around the circular viral genome, and ends just downstream of the unique polyadenylation site in HBV. In these animals, the viral mRNA is more abundant in centrilobular hepatocytes than elsewhere in the hepatic lobule. High-level viral DNA replication occurs inside viral nucleocapsid particles that preferentially form in the cytoplasm of these centrilobular hepatocytes, suggesting that an expression threshold must be reached for nucleocapsid assembly and viral replication to occur. Despite the restricted distribution of the viral replication machinery in centrilobular cytoplasmic nucleocapsids, nucleocapsid particles are detectable in the vast majority of hepatocyte nuclei throughout the hepatic lobule. The intranuclear nucleocapsid particles are empty, however, suggesting that viral nucleocapsid particle assembly occurs independently in the nucleus and the cytoplasm of the hepatocyte and implying that cytoplasmic nucleocapsid particles do not transport the viral genome across the nuclear membrane into the nucleus during the viral life cycle. This model creates the opportunity to examine the influence of viral and host factors on HBV pathogenesis and replication and to assess the antiviral potential of pharmacological agents and physiological processes, including the immune response.  相似文献   

18.
Hepatocellular carcinoma (HCC) is a common malignancy and a leading cause of cancer death worldwide. Hepatitis B x-interacting protein (HBXIP), a cofactor of survivin, was originally identified by binding with the C-terminus of the HBx and negatively regulated the activity of HBx. In this study, the effect of HBXIP on the hepatoma cells-induced angiogenesis was investigated. Proliferation and migration of human umbilical vein endothelial cells (HUVECs) were detected by MTT and transwell assay, respectively. Tube formation and chick chorioallantoic membrane model were used to observe the angiogenesis. Vascular endothelial growth factor activity was assayed using ELISA kits. Western blotting was performed to examine the protein expression. Our results indicated that overexpression of HBXIP increased HepG2 cell-induced endothelial cells migration, proliferation, and angiogenesis, which may be related to increasing phosphorylation of endothelial NO synthase in HUVECs. These results suggest that HBXIP may play an important role in tumorigenesis by enhancing angiogenesis in HCC.  相似文献   

19.
HepG2 cells stably transfected with a full-length, infectious hepatitis C virus (HCV) cDNA demonstrated consistent replication of HCV for more than 3 years. Intracellular minus strand HCV RNA was present. Minus strand synthesis was NS5B dependent, and was sensitive to interferon alpha (IFN alpha) treatment. NS5B and HCV core protein were detectable. HCV stimulated HepG2 cell growth and survival in culture, in soft agar, and accelerated tumor growth in SCID mice. These mice became HCV RNA positive in blood, where the virus was also sensitive to IFN alpha. The RNA banded at the density of HCV, and was resistant to RNase prior to extraction. Hence, HCV stably replicates in HepG2 cells, stimulates hepatocellular growth and tumorigenesis, and is susceptible to IFN alpha both in vitro and in vivo.  相似文献   

20.
Hepatitis B virus (HBV) entry has been analyzed using infection-susceptible cells, including primary human hepatocytes, primary tupaia hepatocytes, and HepaRG cells. Recently, the sodium taurocholate cotransporting polypeptide (NTCP) membrane transporter was reported as an HBV entry receptor. In this study, we established a strain of HepG2 cells engineered to overexpress the human NTCP gene (HepG2-hNTCP-C4 cells). HepG2-hNTCP-C4 cells were shown to be susceptible to infection by blood–borne and cell culture-derived HBV. HBV infection was facilitated by pretreating cells with 3% dimethyl sulfoxide permitting nearly 50% of the cells to be infected with HBV. Knockdown analysis suggested that HBV infection of HepG2-hNTCP-C4 cells was mediated by NTCP. HBV infection was blocked by an anti-HBV surface protein neutralizing antibody, by compounds known to inhibit NTCP transporter activity, and by cyclosporin A and its derivatives. The infection assay suggested that cyclosporin B was a more potent inhibitor of HBV entry than was cyclosporin A. Further chemical screening identified oxysterols, oxidized derivatives of cholesterol, as inhibitors of HBV infection. Thus, the HepG2-hNTCP-C4 cell line established in this study is a useful tool for the identification of inhibitors of HBV infection as well as for the analysis of the molecular mechanisms of HBV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号