首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Optimal treatment for nonalcoholic steatohepatitis (NASH) has not yet been established, particularly for individuals without diabetes. We examined the effects of metformin, commonly used to treat patients with type 2 diabetes, on liver pathology in a non-diabetic NASH mouse model.

Methodology/Principal Findings

Eight-week-old C57BL/6 mice were fed a methionine- and choline-deficient plus high fat (MCD+HF) diet with or without 0.1% metformin for 8 weeks. Co-administration of metformin significantly decreased fasting plasma glucose levels, but did not affect glucose tolerance or peripheral insulin sensitivity. Metformin ameliorated MCD+HF diet-induced hepatic steatosis, inflammation, and fibrosis. Furthermore, metformin significantly reversed hepatic steatosis and inflammation when administered after the development of experimental NASH.

Conclusions/Significance

These histological changes were accompanied by reduced hepatic triglyceride content, suppressed hepatic stellate cell activation, and the downregulation of genes involved in fatty acid metabolism, inflammation, and fibrogenesis. Metformin prevented and reversed steatosis and inflammation of NASH in an experimental non-diabetic model without affecting peripheral insulin resistance.  相似文献   

2.
Although there are small animal platforms that recapitulate some of the histological features of nonalcoholic fatty liver disease, there are no small animal models of nonalcoholic steatohepatitis (NASH) with consistent hepatocellular ballooning and progressive fibrosis that also exhibit fidelity to the human condition physiologically. We examined the metabolic and histological effects of a diet on the basis of the composition of "fast food" (high saturated fats, cholesterol, and fructose). Mice (n = 8 in each group) were assigned to diets as follows: 1) standard chow (SC), i.e., 13% energy as fat [1% saturated fatty acids (SFA)], 2) high fat (HF), i.e., 60% energy as fat (1% SFA), and 3) fast food (FF), i.e., 40% energy as fat (12% SFA, 2% cholesterol). All three diets were supplemented with high fructose. All diets produced obesity. The HF and FF diets produced insulin resistance. Liver histology was normal in animals fed the SC diet. Steatohepatitis with pronounced ballooning and progressive fibrosis (stage 2) was observed in mice fed the FF diet. Although the HF diet produced obesity, insulin resistance, and some steatosis; inflammation was minimal, and there was no increase in fibrosis. The FF diet produced a gene expression signature of increased fibrosis, inflammation, and endoplasmic reticulum stress and lipoapoptosis. A diet based on high cholesterol, high saturated fat, and high fructose recapitulates features of the metabolic syndrome and NASH with progressive fibrosis. This represents a novel small animal model of fibrosing NASH with high fidelity to the human condition. These results highlight the contribution of dietary composition to the development of nonalcoholic fatty liver disease and NASH.  相似文献   

3.
Objective : Allelic variation (rs738409C→G) in adiponutrin (patatin‐like phospholipase domain‐containing protein 3, PNPLA3) has been associated with hepatic steatosis and liver fibrosis. The physiologic impact of the PNPLA3 G allele may be exacerbated in patients with severe obesity. In this study, we investigated the interactions of PNPLA3 rs738409 with a broad panel of metabolic and histologic characteristics of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis (NASH) in patients with medically complicated obesity. Design and Methods : Consecutive patients undergoing bariatric surgery were selected for a prospective study. They underwent extensive laboratory and histologic (liver biopsy) assessment, as well as evaluation of rs738409 polymorphism by TaqMan assay. Results : Only 12 (8.3%) of the 144 patients had normal liver histology, with 72 (50%) NASH, of whom 15 (10.4% of total patients) had fibrosis stage 2‐3. PNPLA3 GG genotype correlated positively (P < 0.05) with serum levels of alanine aminotransferase (ALT), asparate aminotransferase (AST), glucose, fibrinogen, and insulin‐dependent diabetes mellitus, homeostasis model assessment—insulin resistance, and presence of NASH. Multivariate analysis indicated that PNPLA3 rs738409 G versus C allele remained an (independent) risk factor for NASH, in addition to CK‐18 >145 IU/l, glucose >100 mg/dl, and C‐reactive protein (CRP) >0.8 mg/dl. The probability of NASH increased from 9% (no risk factor) to 82% if all four risk factors were present. Conclusions : In this cohort of patients with medically complicated obesity, PNPLA3 rs738409 G allelic expression is associated with hepatic (NASH) and nonhepatic complications of obesity, such as insulin resistance. These novel findings may be related to a greater impact of PNPLA3 variant in magnitude and scope in patients with severe obesity than in less obese populations. Further studies are needed to characterize the nature of these associations.  相似文献   

4.
Patients with nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) often have metabolic disorders including insulin resistance and type 2 diabetes mellitus (T2DM). We clarified the predictive factors in glucose metabolism for progression of hepatic fibrosis in patients with NAFLD by the 75-g oral glucose tolerance test (75gOGTT) and a continuous glucose monitoring system (CGMS). One hundred sixty-nine patients (68 female and 101 male patients) with biopsy-proven NAFLD with performance with 75gOGTT were enrolled and divided into four groups according to the stage of hepatic fibrosis (F0–3). The proportion of patients with T2DM significantly gradually increased, HbA1c and the homeostasis model assessment of insulin resistance were significantly elevated, and 1,5-anhydroglucitol (1,5-AG) was remarkably decreased with the progression of fibrosis. In the 75gOGTT, both plasma glucose and insulin secretion were remarkably increased with the progression of fibrosis. The only factor significantly associated with advanced fibrosis was 1,5-AG (P = 0.008) as determined by multivariate logistic regression analysis. We next evaluated the changes in blood glucose during 24 hours by monitoring with the CGMS to confirm the relationship between glycemic variability and progression of fibrosis. Variability of median glucose, standard deviation of median glucose (P = 0.0022), maximum blood glucose (P = 0.0019), and ΔMin–max blood glucose (P = 0.0029) were remarkably higher in severe fibrosis than in mild fibrosis.

Conclusion

Hyperinsulinemia and hyperglycemia, especially glycemic variability, are important predictive factors in glucose impairment for the progression of hepatic fibrosis in NAFLD.  相似文献   

5.
The adipocyte hormone, leptin has been demonstrated to have profibrogenic actions in vitro and in animal models. However, no correlation was found between plasma leptin levels and fibrosis stage in humans. Thus, our aim was to study whether soluble leptin receptor (SLR) or free leptin index (FLI; calculated as the ratio of leptin to SLR), may correlate better with the features of metabolic syndrome and with the histological grade and stage of nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH). We studied a population (n = 104) of morbidly obese patients undergoing bariatric surgery. Data including BMI, type 2 diabetes mellitus, hypertension, and hyperlipidemia were obtained. Plasma fasting leptin and SLR, fasting glucose and insulin were measured, and homeostasis model of assessment insulin resistance (HOMAIR) index and FLI were calculated. All patients had intraoperative liver biopsies. Leptin levels correlated with the BMI. The multiple regression analysis indicated that increasing HOMA and decreasing FLI were predictors of steatosis in the liver (P < 0.0003). SLR levels were positively correlated with the presence of diabetes mellitus and the stage of fibrosis. In conclusion, increased SLR levels in morbidly obese patients with diabetes are correlated with the stage of liver fibrosis, and may reflect progressive liver disease.  相似文献   

6.
7.

Background & Aims

In recent years, nonalcoholic steatohepatitis (NASH) has become a considerable healthcare burden worldwide. Pathogenesis of NASH is associated with type 2 diabetes mellitus (T2DM) and insulin resistance. However, a specific drug to treat NASH is lacking. We investigated the effect of the selective sodium glucose cotransporter 2 inhibitor (SGLT2I) ipragliflozin on NASH in mice.

Methods

We used the Amylin liver NASH model (AMLN), which is a diet-induced model of NASH that results in obesity and T2DM. AMLN mice were fed an AMLN diet for 20 weeks. SGLT2I mice were fed an AMLN diet for 12 weeks and an AMLN diet with 40 mg ipragliflozin/kg for 8 weeks.

Results

AMLN mice showed steatosis, inflammation, and fibrosis in the liver as well as obesity and insulin resistance, features that are recognized in human NASH. Ipragliflozin improved insulin resistance and liver injury. Ipragliflozin decreased serum levels of free fatty acids, hepatic lipid content, the number of apoptotic cells, and areas of fibrosis; it also increased lipid outflow from the liver.

Conclusions

Ipragliflozin improved the pathogenesis of NASH by reducing insulin resistance and lipotoxicity in NASH-model mice. Our results suggest that ipragliflozin has a therapeutic effect on NASH with T2DM.  相似文献   

8.
PURPOSE OF REVIEW: Nonalcoholic fatty liver disease is a spectrum of diseases ranging from simple steatosis to cirrhosis. The hallmark of nonalcoholic fatty liver disease is hepatocyte accumulation of triglycerides. We will review the role of triglyceride synthesis in nonalcoholic fatty liver disease progression and summarize recent findings about triglyceride synthesis inhibition and prevention of progressive disease. RECENT FINDINGS: Attempts to inhibit triglyceride synthesis in animal models have resulted in improvement in hepatic steatosis. Studies in animal models of nonalcoholic fatty liver disease demonstrate that inhibition of acyl-coenzyme A:diacylglycerol acyltransferase, the enzyme that catalyzes the final step in triglyceride synthesis, results in improvement in hepatic steatosis and insulin sensitivity. We recently confirmed that hepatic specific inhibition of acyl-coenzyme A:diacylglycerol acyltransferase with antisense oligonucleotides improves hepatic steatosis in obese, diabetic mice but, unexpectedly, exacerbated injury and fibrosis in that model of progressive nonalcoholic fatty liver disease. When hepatocyte triglyceride synthesis was inhibited, free fatty acids accumulated in the liver, leading to induction of fatty acid oxidizing systems that increased hepatic oxidative stress and liver damage. These findings suggest that the ability to synthesize triglycerides may, in fact, be protective in obesity. SUMMARY: Nonalcoholic fatty liver disease is strongly associated with obesity and peripheral insulin resistance. Peripheral insulin resistance increases lipolysis in adipose depots, promoting increased free fatty acid delivery to the liver. In states of energy excess, such as obesity, the latter normally triggers hepatic triglyceride synthesis. When hepatic triglyceride synthesis is unable to accommodate increased hepatocyte free fatty acid accumulation, however, lipotoxicity results. Thus, rather than being hepatotoxic, liver triglyceride accumulation is actually hepato-protective in obese, insulin-resistant individuals.  相似文献   

9.
BackgroundThe mechanisms underlying the progression of liver disease from simple hepatic steatosis to advanced nonalcoholic steatohepatitis (NASH) and liver fibrosis warrant further investigation. Increased mRNA levels of Annexin A2 protein (Anxa2) have been observed in patients with NASH. However, the role of Anxa2 in NASH remains unclear.MethodsThe protein levels of Anxa2 were analyzed in the livers of mice and patients with NASH. Anxa2-knockout and -knockdown mice were generated, and NASH was induced through a high fructose, palmitate, and cholesterol (FPC) diet or methionine- and choline-deficient (MCD) diet.FindingsWe found elevated expression of Anxa2 in the livers of patients and mice with NASH. Anxa2 knockdown but not knockout ameliorated liver fibrosis in both FPC and MCD diet–fed mice. Liver-specific Anxa2 overexpression increased collagen deposition in mice fed a normal diet. Mechanistically, Anxa2 overexpression in hepatocytes promoted hepatic stellate cell activation in a paracrine manner by increasing osteopontin expression. Notch inhibition suppressed the exogenous overexpression of Anxa2-induced osteopontin and endogenous Anxa2 expression. Additionally, Anxa2 overexpression accelerated the progression of nonalcoholic fatty liver disease (NAFLD) in mice fed a high-fat diet. Moreover, Anxa2 levels were higher in NAFLD patients with advanced liver fibrosis than in those with mild liver fibrosis, as determined using the Gene Expression Omnibus database.InterpretationIn conclusion, we found increased Anxa2 expression in hepatocytes promoted liver fibrosis in NASH mice by increasing osteopontin expression. The Anxa2-Notch positive regulatory loop contributes to this process and represents a novel target for the treatment of NASH-related liver fibrosis.  相似文献   

10.
《Endocrine practice》2020,26(4):444-453
Objective: Type 2 diabetes mellitus (T2DM) is a risk factor for nonalcoholic fatty liver disease (NAFLD). The aim of this study was to investigate the effect of T2DM on nonalcoholic steatohepatitis (NASH) and advanced fibrosis.Methods: A total of 221 NAFLD patients who had undergone a liver biopsy were included in this study. Subjects were divided into a non-T2DM group and a T2DM group based on glycemic control. NASH was diagnosed by the joint presence of steatosis, ballooning, and lobular inflammation. The steatosis, activity, and fibrosis (SAF) score and NAFLD activity score (NAS) were used to evaluate the severity of NAFLD. The severity of liver fibrosis was evaluated based on the fibrosis stage.Results: The total percentages of NASH and advanced fibrosis in this study were 95.0% and 50.2%, respectively. The percentages of NASH and advanced fibrosis in NAFLD patients with T2DM were 96.1% and 56.5%, respectively, which were higher than those in the non-T2DM group. SAF score (especially activity and fibrosis stage) and NAS (especially ballooning) were higher in NAFLD patients with T2DM than in NAFLD patients without T2DM. Glycemic control and insulin resistance were positively associated with SAF, NAS, and fibrosis stage. Additionally, T2DM elevated the risk of a high NAS and advanced fibrosis.Conclusion: T2DM increases the risk of serious NASH and advanced fibrosis in patients with NAFLD. Liver biopsy can be performed in NAFLD patients with T2DM to confirm the stage of NAFLD. Screening of NASH and advanced fibrosis in NAFLD patients with T2DM is needed.Abbreviations: ALT = alanine aminotransferase; APO = apolipoprotein; AST = aspartate aminotransferase; BMI = body mass index; CI = confidence interval; FPG = fasting plasma glucose; GGT = gamma-glutamyl transferase; HbA1c = hemoglobin A1c; HDL-c = high-density-lipoprotein cholesterol; 1H-MRS = proton magnetic resonance spectroscopy; HOMA-IR = homeostasis model assessment of insulin resistance; 2hPG = postprandial plasma glucose at 2 hours; LDL-c = low-density-lipoprotein cholesterol; LFC = liver fat content; NAFLD = nonalcoholic fatty liver disease; NAS = NAFLD activity score; NASH = nonalcoholic steatohepatitis; OGTT = oral glucose tolerance test; OR = odds ratio; T2DM = type 2 diabetes mellitus; TC = total cholesterol; TG = triglyceride; SAF = steatosis, activity, and fibrosis; US-FLI = ultrasonographic fatty liver indicator  相似文献   

11.
We investigated whether fatty liver preceded insulin resistance or vice versa using a long-term orotic acid (OA)-induced nonalcoholic fatty liver disease (NAFLD) model without the confounding effects of obesity and hyperlipidemia and explored the role of the liver in insulin resistance. Male Wistar rats were fed with or without OA supplementation for 30, 60, and 90 days. The NAFLD group showed increased liver lipid at 30, 60, and 90 days; glucose intolerance was noted at 60 and 90 days. Furthermore, partial liver proteins and gene expressions related to upstream signaling of insulin were decreased. However, the liver glycogen content was elevated, and gluconeogenesis genes expressions were obviously decreased at 90 days. The occurrence of fatty liver preceded insulin resistance in OA-induced NAFLD without the interference of obesity and hyperlipidemia, and hepatic insulin resistance may not play a conclusive role in insulin resistance in this model.  相似文献   

12.
13.
Periodontal diseases have been reported to have a multidirectional association with metabolic disorders. We sought to investigate the correlation between periodontitis and diabetes or fatty liver disease using HFD-fed obese mice inoculated with P. gingivalis. Body weight, alveolar bone loss, serological biochemistry, and glucose level were determined to evaluate the pathophysiology of periodontitis and diabetes. For the evaluation of fatty liver disease, hepatic nonalcoholic steatohepatitis (NASH) was assessed by scoring steatosis, inflammation, hepatocyte ballooning and the crucial signaling pathways involved in liver metabolism were analyzed. The C-reactive protein (CRP) level and NASH score in P. gingivalis-infected obese mice were significantly elevated. Particularly, the extensive lobular inflammation was observed in the liver of obese mice infected with P. gingivalis. Moreover, the expression of metabolic regulatory factors, including peroxisome proliferator-activated receptor γ (Pparγ) and the fatty acid transporter Cd36, was up-regulated in the liver of P. gingivalis-infected obese mice. However, inoculation of P. gingivalis had no significant influence on glucose homeostasis, insulin resistance, and hepatic mTOR/AMPK signaling. In conclusion, our results indicate that P. gingivalis can induce the progression of fatty liver disease in HFD-fed mice through the upregulation of CD36-PPARγ axis.  相似文献   

14.
Cong WN  Tao RY  Tian JY  Liu GT  Ye F 《Life sciences》2008,82(19-20):983-990
Non-alcoholic steatohepatitis (NASH) is a hepatic manifestation of the metabolic syndrome that can progress to liver cirrhosis. The major aim of this study was to establish a novel NASH mouse model accompanied by obesity and insulin resistance, then explore the molecular mechanisms of NASH and evaluate the effects of both the peroxisome proliferator-activated receptor alpha (PPARalpha) agonist fenofibrate and the PPARgamma agonist rosiglitazone in this established NASH model. The novel model was induced in C57BL/6 mice by 23 weeks of ad libitum feeding of a modified high-fat diet (mHFD), with lower methinione and choline and higher fat content. In comparison to the controls, the model animals developed pronounced obesity, dyslipidemia and insulin resistance. Marked liver lesions characterized by severe steatosis, inflammation, fibrosis, increased hepatic triglyceride content, and elevated serum alanine aminotransferase (ALT) levels were observed in the models. In this novel model, treatment with fenofibrate or rosiglitazone significantly improved insulin sensitivity and corrected dyslipidemia; however, fenofibrate was more effective than rosiglitazone in improving hepatic morphology and ALT levels. Further study showed that long-term feeding of mHFD significantly increased expression of mRNA for hepatic PPARgamma, adipose fatty acid binding protein (ap2) and CD36 and suppressed expression of mRNA for hepatic PPARalpha and carnitine palmitoyl transferase-1a (CPT-1a). These results showed the successful establishment of the combined NASH and obese-insulin resistance mouse model. Additionally, aberrant expressions of hepatic PPARalpha and PPARgamma may play a major role in the pathogenesis of NASH by affecting hepatic lipogenesis and fatty acid oxidation in this novel model.  相似文献   

15.
Nonalcoholic fatty liver disease (NAFLD) refers to a wide spectrum of liver damage, ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), advanced fibrosis, and cirrhosis. NAFLD is strongly associated with insulin resistance and is defined by accumulation of liver fat >5% per liver weight in the presence of <10 g of daily alcohol consumption. The exact prevalence of NAFLD is uncertain because of the absence of simple noninvasive diagnostic tests to facilitate an estimate of prevalence but in subgroups of people such as those with type 2 diabetes, the prevalence may be as high as 70%. NASH is an important subgroup within the spectrum of NAFLD that progresses over time with worsening fibrosis and cirrhosis, and NASH is associated with increased risk for cardiovascular disease. It is, therefore, important to understand the pathogenesis of NASH specifically, to develop strategies for interventions to treat this condition. The purpose of this review is to discuss the roles of inflammation, fatty acids and fatty acids in nutrition, in the pathogenesis and potential treatment of NAFLD.  相似文献   

16.
The adipokine chemerin and its receptor, chemokine-like receptor 1 (Cmklr1), are associated with insulin resistance and nonalcoholic fatty liver disease (NAFLD), which covers a broad spectrum of liver diseases, ranging from simple steatosis to nonalcoholic steatohepatitis (NASH). It is possible that chemerin and/or Cmklr1 exert their effects on these disorders through inflammation, but so far the data have been controversial. To gain further insight into this matter, we studied the effect of whole-body Cmklr1 deficiency on insulin resistance and NAFLD. In view of the primary role of macrophages in hepatic inflammation, we also transplanted bone marrow from Cmklr1 knock-out (Cmklr1-/-) mice and wild type (WT) mice into low-density lipoprotein receptor knock-out (Ldlr-/-) mice, a mouse model for NASH. All mice were fed a high fat, high cholesterol diet containing 21% fat from milk butter and 0.2% cholesterol for 12 weeks. Insulin resistance was assessed by an oral glucose tolerance test, an insulin tolerance test, and by measurement of plasma glucose and insulin levels. Liver pathology was determined by measuring hepatic inflammation, fibrosis, lipid accumulation and the NAFLD activity score (NAS). Whole-body Cmklr1 deficiency did not affect body weight gain or food intake. In addition, we observed no differences between WT and Cmklr1-/- mice for hepatic inflammatory and fibrotic gene expression, immune cell infiltration, lipid accumulation or NAS. In line with this, we detected no differences in insulin resistance. In concordance with whole-body Cmklr1 deficiency, the absence of Cmklr1 in bone marrow-derived cells in Ldlr-/- mice did not affect their insulin resistance or liver pathology. Our results indicate that Cmklr1 is not involved in the pathogenesis of insulin resistance or NAFLD. Thus, we recommend that the associations reported between Cmklr1 and insulin resistance or NAFLD should be interpreted with caution.  相似文献   

17.
BackgroundOssabaw miniature swine when fed a diet high in fructose, saturated fat and cholesterol (NASH diet) develop metabolic syndrome and nonalcoholic steatohepatitis (NASH) characterized by liver injury and fibrosis. This study was conducted to further characterize the development of NASH in this large animal model.MethodsOssabaw swine were fed standard chow (control group; n = 6) or NASH diet (n = 6) for 24 weeks. Blood and liver tissue were collected and liver histology were characterized at 0, 8, 16 and 24 weeks of dietary intervention. Hepatic apoptosis and lipid levels were assessed at week 24.ResultsThe NASH diet group developed metabolic syndrome and progressive histologic features of NASH including: (a) hepatocyte ballooning at 8 weeks which progressed to extensive ballooning (>90% hepatocytes), (b) hepatic fibrosis at week 16, which progressed to moderate fibrosis, and (c) Kupffer cell accumulation with vacuolization at 8 weeks which progressed through week 24. The NASH diet group showed increased hepatocyte apoptosis that correlated with hepatic total and free cholesterol and free fatty acids, but not esterified cholesterol or triglycerides.ConclusionsThis report further characterizes the progression of diet-induced NASH in the Ossabaw swine model. In Ossabaw swine fed the NASH diet: (a) hepatocyte injury and fibrosis can occur without macrovesicular steatosis or excess triglyceride accumulation; (b) hepatocyte ballooning generally precedes the development of fibrosis; (c) there is increased hepatocyte apoptosis, and it is correlated more significantly with hepatic free cholesterol than hepatic free fatty acids and had no correlation with hepatic triglycerides.  相似文献   

18.

Background

Nonalcoholic fatty liver disease (NAFLD) and gallstone disease (GD) are both highly prevalent in the general population and associated with obesity and insulin resistance. We aimed to evaluate the prevalence of GD in a cross sectional study of NAFLD patients and to define whether the presence of GD is associated with diabetes and predicts more severe liver disease.

Methodology/Principal Findings

We merged databases of four Liver Units, comprising 524 consecutive biopsy-proven NAFLD (373 males) observed between January 2003 and June 2010. GD was diagnosed in 108 (20%), and 313 cases (60%) were classified by liver biopsy as nonalcoholic steatohepatitis (NASH). The GD subgroup was characterized by a significantly higher prevalence of females, prediabetes/diabetes, abdominal obesity and metabolic syndrome, older age, higher BMI, fasting glucose, HOMA-IR and lower ALT. The prevalence of GD progressively increased with advancing fibrosis and with the severity of necroinflammatory activity (p for trend  = 0.0001 and  = 0.01, respectively), without differences in the severity of steatosis. At multivariate analysis GD was associated with female gender (OR 1.37, 95% CI 1.04–1.8), age (OR 1.027, 95% CI1.003–1.05), fasting glucose (OR 1.21, 95% CI 1.10–1.33) and NASH (OR 1.40,95% CI 1.06–1.89), whereas ALT levels were associated with a lower GD risk (OR 0.98, 95% CI 0.97–0.99). When subjects with cirrhosis were excluded from analysis, the association between GD and fasting glucose, female gender, and NASH was maintained.

Conclusion

Patients with NAFLD have a high prevalence of GD, which characterizes subjects with altered glucose regulation and more advanced liver disease.  相似文献   

19.
Nonalcoholic fatty liver disease (NAFLD) has emerged as a serious obesity-related disorder. NAFLD encompasses a wide spectrum of hepatic derangements ranging from a surfeit of fat in the liver (steatosis) to lipid surplus accompanied by fibrosis and cellular death (nonalcoholic steatohepatitis or NASH). The most widely accepted model to explain the progression from simple NAFLD to NASH is the "two-hit hypothesis," wherein fat over accumulation per se is not sufficient to induce the progression to statohepatitis, but renders the liver more susceptible to "second hits" that, once imposed upon the steatotic liver, cause further aberrations that culminate in the development of NASH. However, in light of recent data from our laboratory and elsewhere, we propose that an increased ratio of saturated-to-unsaturated fatty acids delivered to or stored within the liver may, in part, mediate the progression from simple steatosis to NASH. The molecular mechanisms that mediate the effect of saturated fatty acids are unclear, although proinflammatory cytokines, reactive oxygen species, and endoplasmic reticulum stress may all play a role. Collectively, these data suggest that saturated fatty acids may represent an intrinsic second hit to the liver that hastens the development of NASH.  相似文献   

20.
Chronically elevated glucocorticoids (GCs) and a high-fat diet (HFD) independently induce insulin resistance, abdominal obesity, and nonalcoholic fatty liver disease (NAFLD). GCs have been linked to increased food intake, particularly energy-dense "comfort" foods. Thus we examined the synergistic actions of GCs and HFD on hepatic disease development in a new rodent model of chronically elevated GCs. Six-week-old male Sprague-Dawley rats received exogenous GCs, via subcutaneous implantation of four 100-mg corticosterone (Cort) pellets, to elevate basal GC levels for 16 days (n = 8-10 per group). Another subset of animals received wax pellets (placebo) to serve as controls. Animals from each group were randomly assigned to receive a 60% HFD or a standard high-carbohydrate (13% fat and 60% carbohydrate) diet. Cort + HFD resulted in central obesity, despite a relative weight loss, a 4-fold increase in hepatic lipid content, hepatic fibrosis, and a 2.8-fold increase in plasma alanine aminotransferase levels compared with placebo + chow controls. Hepatic injury developed independent of inflammation, as plasma haptoglobin levels were reduced with Cort treatment. Insulin resistance and hepatic steatosis occurred with Cort alone; these outcomes were further exacerbated by the HFD in the presence of elevated Cort. In addition to fatty liver, the Cort + HFD group also developed severe insulin resistance, hyperinsulinemia, hyperglycemia, and hypertriglyceridemia, which were not evident with HFD or Cort alone. Thus a HFD dramatically exacerbates the development of NAFLD and characteristics of the metabolic syndrome in conditions of chronically elevated Cort.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号