首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two highly enriched cultures containing Dehalococcoides spp. were used to study the effect of aceticlastic methanogens on reductive vinyl chloride (VC) dechlorination. In terms of aceticlastic methanogens, one culture was dominated by Methanosaeta, while the other culture was dominated by Methanosarcina, as determined by fluorescence in situ hybridization. Cultures amended with 2-bromoethanesulfonate (BES), an efficient inhibitor of methanogens, exhibited slow VC dechlorination when grown on acetate and VC. Methanogenic cultures dominated by Methanosaeta had no impact on dechlorination rates, compared to BES-amended controls. In contrast, methanogenic cultures dominated by Methanosarcina displayed up to sevenfold-higher rates of VC dechlorination than their BES-amended counterparts. Methanosarcina-dominated cultures converted a higher percentage of [2-(14)C]acetate to (14)CO(2) when concomitant VC dechlorination took place, compared to nondechlorinating controls. Respiratory indices increased from 0.12 in nondechlorinating cultures to 0.51 in actively dechlorinating cultures. During VC dechlorination, aqueous hydrogen (H(2)) concentrations dropped to 0.3 to 0.5 nM. However, upon complete VC consumption, H(2) levels increased by a factor of 10 to 100, indicating active hydrogen production from acetate oxidation. This process was thermodynamically favorable by means of the extremely low H(2) levels during dechlorination. VC degradation in nonmethanogenic cultures was not inhibited by BES but was limited by the availability of H(2) as electron donor, in cultures both with and without BES. These findings all indicate that Methanosarcina (but not Methanosaeta), while cleaving acetate to methane, simultaneously oxidizes acetate to CO(2) plus H(2), driving hydrogenotrophic dehalorespiration of VC to ethene by Dehalococcoides.  相似文献   

2.
Two highly enriched cultures containing Dehalococcoides spp. were used to study the effect of aceticlastic methanogens on reductive vinyl chloride (VC) dechlorination. In terms of aceticlastic methanogens, one culture was dominated by Methanosaeta, while the other culture was dominated by Methanosarcina, as determined by fluorescence in situ hybridization. Cultures amended with 2-bromoethanesulfonate (BES), an efficient inhibitor of methanogens, exhibited slow VC dechlorination when grown on acetate and VC. Methanogenic cultures dominated by Methanosaeta had no impact on dechlorination rates, compared to BES-amended controls. In contrast, methanogenic cultures dominated by Methanosarcina displayed up to sevenfold-higher rates of VC dechlorination than their BES-amended counterparts. Methanosarcina-dominated cultures converted a higher percentage of [2-14C]acetate to 14CO2 when concomitant VC dechlorination took place, compared to nondechlorinating controls. Respiratory indices increased from 0.12 in nondechlorinating cultures to 0.51 in actively dechlorinating cultures. During VC dechlorination, aqueous hydrogen (H2) concentrations dropped to 0.3 to 0.5 nM. However, upon complete VC consumption, H2 levels increased by a factor of 10 to 100, indicating active hydrogen production from acetate oxidation. This process was thermodynamically favorable by means of the extremely low H2 levels during dechlorination. VC degradation in nonmethanogenic cultures was not inhibited by BES but was limited by the availability of H2 as electron donor, in cultures both with and without BES. These findings all indicate that Methanosarcina (but not Methanosaeta), while cleaving acetate to methane, simultaneously oxidizes acetate to CO2 plus H2, driving hydrogenotrophic dehalorespiration of VC to ethene by Dehalococcoides.  相似文献   

3.
Methanogenesis from main methane precursors H(2)/CO(2) and acetate was investigated in a temperature range of 2-70 degrees C using sediments from Lake Baldegg, Switzerland. Psychrophilic, psychrotrophic, mesophilic, and thermophilic methanogenic microbial communities were enriched by incubations for 1-3 months of nonamended sediment slurries at 5, 15, 30, and 50 degrees C. Isotope experiments with slurries amended with (14)C-labeled bicarbonate and (14)C-2-acetate showed that in the psychrophilic community (enriched at 5 degrees C), about 95% of methane originated from acetate, in contrast to the thermophilic community (50 degrees C) where up to 98% of methane was formed from bicarbonate. In the mesophilic community (30 degrees C), acetate was the precursor of about 80% of the methane produced. When the hydrogen-carbon dioxide mixture (H(2)/CO(2)) was used as a substrate, it was directly converted to methane under thermophilic conditions (70 and 50 degrees C). Under mesophilic conditions (30 degrees C), both pathways, hydrogenotrophic and acetoclastic, were observed. At low temperatures (5 and 15 degrees C), H(2)/CO(2) was converted into methane by a two-step process; first acetate was formed, followed by methane production from acetate. When slurries were incubated at high partial pressures of H(2)/CO(2), the high concentrations of acetate produced of more than 20 mM inhibited acetoclastic methanogenesis at a temperature below 15 degrees C. However, slow adaptation of the psychrophilic microbial community to high acetate concentrations was observed.  相似文献   

4.
3-Fluorobenzoate and all three isomers of fluorophenol were used as analogues and inhibitors of phenol degradation in a methanogenic consortium. 3-Fluorobenzoate was not transformed by phenol-degrading cultures, but it facilitated the detection of the formation of 4-hydroxybenzoate and benzoate from phenol. The effects of the fluorophenols depended on their concentration in the cultures. When added at 0.90 mM, all fluorophenols prevented phenol transformation. At concentrations of 0.45 to 1.8 mM, 2-fluorophenol was transformed to 3-fluoro-4-hydroxybenzoate which accumulated in the medium. When both 2-fluorophenol and phenol were added to cultures at concentrations of 1 mM each, 3-fluoro-4-hydroxybenzoate, 4-hydroxybenzoate, 3-fluorobenzoate and benzoate were detected. 4-Fluorophenol was never transformed, and when it was present at 0.22 mM, it had no effect on phenol degradation. At concentrations 0.09 mM, 2-fluorophenol was mineralized by the phenol-degrading cultures to methane, carbon dioxide, and fluoride. The release of fluoride was also observed from 3-fluorophenol when it was initially present at 0.09 mM. These results support the proposed pathway for phenol degradation involving an initial para-carboxylation to 4-hydroxybenzoate followed by dehydroxylation to benzoate and further metabolism to carbon dioxide and methane. They also demonstrate defluorination of 2- and 3-fluorophenols under methanogenic conditions.  相似文献   

5.
Production of CH(4) in anoxic rice field soil is stimulated by the addition of rice straw. Previous experiments showed that acetate and propionate are the most important intermediates of the carbon flow to CH(4), and accumulate if CH(4) production is inhibited by 2-bromoethanesulfonate (BES). However, some unidentified compounds were found to accumulate in addition. We now identified them as benzoate, phenylpropionate, and phenylacetate by comparison of the retention times in HPLC chromatograms with authentic standards and by mass spectrometry. These aromatic compounds accumulated only to concentrations <100 microM, especially in soil amended with rice straw (stem, sheath or blade straw). Phenylpropionate and benzoate were the most abundant aromatic intermediates contributing up to 4% to total CH(4) production. Phenylacetate, on the other hand, contributed very little (<0.3%). Gibbs free energies (DeltaG) were calculated for different anaerobic degradation pathways of the aromatic compounds at the actual incubation conditions. Conversion of benzoate to acetate, CO(2) and H(2) was strongly exergonic (DeltaG = -86 kJ mol(-1)) under methanogenic conditions, but became less exergonic (DeltaG = -30 kJ mol(-1)) when CH(4) production was inhibited. The primary oxidation of phenylpropionate was only exergonic for alpha-oxidation (i.e. phenylacetate as product) but not for beta-oxidation (i.e. benzoate as product). However, the DeltaG values for the complete degradation of phenylpropionate to acetate, CO(2) and H(2) were similar for both pathways and were also similar to those of benzoate degradation. Collectively, the results suggest that aromatic compounds are minor intermediates of anaerobic degradation of organic matter in rice field soil, and are syntrophically degraded by coupling to methanogenesis.  相似文献   

6.
Methanogenic Decomposition of Ferulic Acid, a Model Lignin Derivative   总被引:28,自引:23,他引:5       下载免费PDF全文
Ferulic acid, a model lignin derivative, was observed to be biodegradable to methane and carbon dioxide under strict anaerobic conditions. This conversion appears to be carried out by a consortium of bacteria similar to that previously described for the methanogenic degradation of benzoic acid. A temporary buildup of acetate in these cultures indicates that it is a likely intermediate and precursor for methane formation. An analog of coenzyme M, 2-bromoethanesulfonic acid (BESA), inhibited gas production and enhanced the buildup of propionate, butyrate, isobutyrate, and isovalerate. Phenylacetate, cinnamate, 3-phenylpropionate, benzoate, cyclohexane carboxylate, adipate, and pimelate were also detected in BESA-inhibited cultures. A pathway is proposed which includes these various acids as possible intermediates in the methanogenic degradation of ferulic acid. This model overlaps previously described benzoic acid degradation pathways, suggesting that this type of anaerobic degradation may be common for aromatic compounds.  相似文献   

7.
Abstract Teltrachloroethylene (PCE) was biotransformed by reductive dehalgenation under anoxic conditions with benzoate as the electron donor. The experiments were carried out under batch culture conditions with biomass from an anoxic fixed bed reactor fed with benzoate and PCE. Inhibition of methanogenesis by bromoethane-sulfonic acid (BES) resulted in a complete inhibition of benzoate degradation. Benzoate, however, was decomposed in the presence of BES if PCE was added to the cultures. With 2.8 mmol/1 PCE, that was transformed to 1.4 mmol/1 cis-1,2-dichloroethylene (DCE) and 3.8 mmol/1 chloride, 2 mmol/1 benzoate were degraded to about 3.2 mmol/1 acetate. The elimination of benzoate was directly proportional to DCE accumulation, ranging between 1:0.5 and 1:1.  相似文献   

8.
Sequential anaerobic degradation of 2,4-dichlorophenol in freshwater sediments   总被引:12,自引:0,他引:12  
2,4-Dichlorophenol (2,4-DCP) was anaerobically degraded in freshwater lake sediments. From observed intermediates in incubated sediment samples and from enrichment cultures, the following sequence of transformations was postulated. 2,4-DCP is dechlorinated to 4-chlorophenol (4-CP), 4-CP is dechlorinated to phenol, phenol is carboxylated to benzoate, and benzoate is degraded via acetate to methane and CO2; at least five different organisms are involved sequentially. The rate-limiting step was the transformation of 4-CP to phenol. Sediment-free enrichment cultures were obtained which catalyzed only the dechlorination of 2,4-DCP, the carboxylation of phenol, and the degradation of benzoate, respectively. Whereas the dechlorination of 2,4-DCP was not inhibited by H2, the dechlorination of 4-CP, and the transformation of phenol and benzoate were. Low concentrations of 4-CP inhibited phenol and benzoate degradation. Transformation rates and maximum concentrations allowing degradation were determined in both freshly collected sediments and in adapted samples: at 31 degrees C, which was the optimal temperature for the dechlorination, the average adaptation time for 2,4-DCP, 4-CP, phenol, and benzoate transformations were 7, 37, 11 and 2 days, respectively. The maximal observed transformation rates for these compounds in acclimated sediments were 300, 78, 2, 130, and 2,080 micromol/liter(-1)/day(-1), respectively. The highest concentrations which still allowed the transformation of the compound in acclimated sediments were 3.1 m/M 2,4-DCP, 3.1 mM 4-CP, 13 mM phenol, and greater than 52 mM benzoate. The corresponding values were lower for sediments which had not been adapted for the transformation steps.  相似文献   

9.
2,4-Dichlorophenol (2,4-DCP) was anaerobically degraded in freshwater lake sediments. From observed intermediates in incubated sediment samples and from enrichment cultures, the following sequence of transformations was postulated. 2,4-DCP is dechlorinated to 4-chlorophenol (4-CP), 4-CP is dechlorinated to phenol, phenol is carboxylated to benzoate, and benzoate is degraded via acetate to methane and CO2; at least five different organisms are involved sequentially. The rate-limiting step was the transformation of 4-CP to phenol. Sediment-free enrichment cultures were obtained which catalyzed only the dechlorination of 2,4-DCP, the carboxylation of phenol, and the degradation of benzoate, respectively. Whereas the dechlorination of 2,4-DCP was not inhibited by H2, the dechlorination of 4-CP, and the transformation of phenol and benzoate were. Low concentrations of 4-CP inhibited phenol and benzoate degradation. Transformation rates and maximum concentrations allowing degradation were determined in both freshly collected sediments and in adapted samples: at 31 degrees C, which was the optimal temperature for the dechlorination, the average adaptation time for 2,4-DCP, 4-CP, phenol, and benzoate transformations were 7, 37, 11 and 2 days, respectively. The maximal observed transformation rates for these compounds in acclimated sediments were 300, 78, 2, 130, and 2,080 micromol/liter(-1)/day(-1), respectively. The highest concentrations which still allowed the transformation of the compound in acclimated sediments were 3.1 m/M 2,4-DCP, 3.1 mM 4-CP, 13 mM phenol, and greater than 52 mM benzoate. The corresponding values were lower for sediments which had not been adapted for the transformation steps.  相似文献   

10.
The effects of acetate, propionate, and butyrate on the anaerobic thermophilic conversion of propionate by methanogenic sludge and by enriched propionate-oxidizing bacteria in syntrophy with Methanobacterium thermoautotrophicum delta H were studied. The methanogenic sludge was cultivated in an upflow anaerobic sludge bed (UASB) reactor fed with propionate (35 mM) as the sole substrate for a period of 80 days. Propionate degradation was shown to be severely inhibited by the addition of 50 mM acetate to the influent of the UASB reactor. The inhibitory effect remained even when the acetate concentration in the effluent was below the level of detection. Recovery of propionate oxidation occurred only when acetate was omitted from the influent medium. Propionate degradation by the methanogenic sludge in the UASB reactor was not affected by the addition of an equimolar concentration (35 mM) of butyrate to the influent. However, butyrate had a strong inhibitory effect on the growth of the propionate-oxidizing enrichment culture. In that case, the conversion of propionate was almost completely inhibited at a butyrate concentration of 10 mM. However, addition of a butyrate-oxidizing enrichment culture abolished the inhibitory effect, and propionate oxidation was even stimulated. All experiments were conducted at pH 7.0 to 7.7. The thermophilic syntrophic culture showed a sensitivity to acetate and propionate similar to that of mesophilic cultures described in the literature. Additions of butyrate or acetate to the propionate medium had no effect on the hydrogen partial pressure in the biogas of an UASB reactor, nor was the hydrogen partial pressure in propionate-degrading cultures affected by the two acids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A stabilized consortium of microbes which anaerobically degraded benzoate and produced CH4 was established by inoculation of a benzoate-mineral salts medium with sewage sludge; the consortium was routinely subcultured anaerobically in this medium for 3 years. Acetate, formate, H2 and CO2 were identified as intermediates in the overall conversion of benzoate to CH4 by the culture. Radioactivity was equally divided between the CH4 and CO2 from the degradation of uniformly ring-labeled [14C]benzoate. The methyl group of acetate was stoichiometrically converted to CH4. Acetate, cyclohexanecarboxylate, 2-hydroxycyclohexanecarboxylate, o-hydroxybenzoic acid and pimelic acid were converted to CH4 without a lag suggesting that benzoate was degraded by a reductive pathway. Addition of o-chlorobenzoate inhibited benzoate degradation but not acetate degradation or methane formation. Two methanogenic organisms were isolated from the mixed culture, neither organism was able to degrade benzoate, showing that the methanogenic bacteria served as terminal organisms of a metabolic food chain composed of several organisms. Removal of intermediates by the methanogenic bacteria provided thermodynamically favorable conditions for benzoate degradation.  相似文献   

12.
Azo dye reduction by mesophilic and thermophilic anaerobic consortia   总被引:1,自引:0,他引:1  
The reduction of the azo dye model compounds Reactive Red 2 (RR2) and Reactive Orange 14 (RO14) by mesophilic (30 degrees C) and thermophilic (55 degrees C) anaerobic consortia was studied in batch assays. The contribution of fermentative and methanogenic microorganisms in both temperatures was evaluated in the presence of the fermentative substrate glucose and the methanogenic substrates acetate, H2/CO2, methanol, and formate. Additionally, the effect of the redox mediator riboflavin on electron shuttling was assessed. We concluded that the application of thermophilic anaerobic treatment is an interesting option for the reductive decolorization of azo dyes compared to mesophilic conditions. The use of high temperature may decrease or even take the place of the need for continuous redox mediator dosage in bioreactors, contrarily to the evident effect of those compounds on dye reduction under mesophilic conditions. Both fermenters and methanogens may play an important role during reductive decolorization of dyes, in which mediators are important not only for allowing the different microbes to participate more effectively in this complex reductive biochemistry but also for assisting in the competition for electrons between dyes and other organic and inorganic electron acceptors.  相似文献   

13.
The capacity to form acetate from endogenous matter was a common property of diverse forest soils when incubated under anaerobic conditions. At 15 to 20(deg)C, acetate synthesis occurred without appreciable delay when forest soils were incubated as buffered suspensions or in microcosms at various percentages of their maximum water holding capacity. Rates for acetate formation with soil suspensions ranged from 35 to 220 (mu)g of acetate per g (dry weight) of soil per 24 h, and maximal acetate concentrations obtained in soil suspensions were two- to threefold greater than those obtained with soil microcosms at the average water holding capacity of the soil. Cellobiose degradation in soil suspensions yielded H(inf2) as a transient product. Under anaerobic conditions, supplemental H(inf2) and CO(inf2) were directed towards the acetogenic synthesis of acetate, and enrichments yielded a syringate-H(inf2)-consuming acetogenic consortium. At in situ temperatures, acetate was a relatively stable anaerobic end product; however, extended incubation periods induced acetoclastic methanogenesis and sulfate reduction. Higher mesophilic and thermophilic temperatures greatly enhanced the capacity of soils to form methane. Although methanogenic and sulfate-reducing activities under in situ-relevant conditions were negligible, these findings nonetheless demonstrated the occurrence of methanogens and sulfate-reducing bacteria in these aerated terrestrial soils. In contrast to the protracted stability of acetate under anaerobic conditions at 15 to 20(deg)C with unsupplemented soils, acetate formed by forest soils was rapidly consumed in the presence of oxygen and nitrate, and substrate-product stoichiometries indicated that acetate turnover was coupled to oxygen-dependent respiration and denitrification. The collective results suggest that acetate formed under anaerobic conditions might constitute a trophic link between anaerobic and aerobic processes in forest soils.  相似文献   

14.
Fermentative degradation of phenol was studied using a non-methanogenic, pasteurised enrichment culture containing two morphologically different bacteria. Phenol was fermented to benzoate, acetate and butyrate and their relative occurrence depended on the concentration of hydrogen. Proportionately more benzoate was formed with high initial levels of H2. The influence of PH2 on the fermentation pattern was studied both in dense cell suspensions and in growing cultures by addition of hydrogen. An increase in growth yield (OD578) was observed, compared to controls, as a consequence of phenol degradation; however, the increase was less in H2-amended treatments, in which most of the phenol ended up as benzoate. The degradation of phenol in the dense cell suspension experiments was dependent on CO2. Benzoate was not degraded when added as a substrate to the growing culture. This is, to our knowledge, the first report concerning the fermentative degradation of phenol to nonaromatic products.  相似文献   

15.
We studied syntrophic butyrate degradation in thermophilic mixed cultures containing a butyrate-degrading bacterium isolated in coculture with Methanobacterium thermoautotrophicum or in triculture with M. thermoautotrophicum and the TAM organism, a thermophilic acetate-utilizing methanogenic bacterium. Butyrate was beta-oxidized to acetate with protons as the electron acceptors. Acetate was used concurrently with its production in the triculture. We found a higher butyrate degradation rate in the triculture, in which both hydrogen and acetate were utilized, than in the coculture, in which acetate accumulated. Yeast extract, rumen fluid, and clarified digestor fluid stimulated butyrate degradation, while the effect of Trypticase was less pronounced. Penicillin G, d-cycloserine, and vancomycin caused complete inhibition of butyrate utilization by the cultures. No growth or degradation of butyrate occurred when 2-bromoethanesulfonic acid or chloroform, specific inhibitors of methanogenic bacteria, was added to the cultures and common electron acceptors such as sulfate, nitrate, and fumarate were not used with butyrate as the electron donor. Addition of hydrogen or oxygen to the gas phase immediately stopped growth and butyrate degradation by the cultures. Butyrate was, however, metabolized at approximately the same rate when hydrogen was removed from the cultures and was metabolized at a reduced rate in the cultures previously exposed to hydrogen.  相似文献   

16.
The thermophilic aerobic bacterium Bacillus thermoleovorans Hamburg 2 grows at 60 degrees C on naphthalene as the sole source of carbon and energy. In batch cultures, an effective substrate degradation was observed. The carbon balance, including naphthalene, metabolites, biomass, and CO(2), was determined by the application of [1-(13)C]naphthalene. The incorporation of naphthalene-derived carbon into the bulk biomass as well as into specified biomass fractions such as fatty acids and amino acids was confirmed by coupled gas chromatography-mass spectrometry (GC-MS) and isotope analyses. Metabolites were characterized by GC-MS; the established structures allow tracing the degradation pathway under thermophilic conditions. Apart from typical metabolites of naphthalene degradation known from mesophiles, intermediates such as 2, 3-dihydroxynaphthalene, 2-carboxycinnamic acid, and phthalic and benzoic acid were identified for the pathway of this bacterium. These compounds indicate that naphthalene degradation by the thermophilic B. thermoleovorans differs from the known pathways found for mesophilic bacteria.  相似文献   

17.
Anaerobic thermophilic degradation of several amino acids was studied in batch cultures using an inoculum from a steady-state semicontinuous enrichment culture. Experiments were done in the presence and absence of methanogenesis and known electron acceptors in the Stickland reaction. Methanogenesis was found to be crucial for the degradation of amino acids known to be oxidatively deaminated (leucine, valine and alanine). Other amino acids (serine, threonine, cysteine and methionine) were degraded under both methanogenic and non-methanogenic conditions. Degradation rates for these four amino acids were 1.3 to 2.2 times higher in cases where methanogenesis was active. The degradation rates of serine, threonine, cysteine and methionine were about twice as high as the rates of leucine, valine and alanine under methanogenic conditions. Inclusion of different electron acceptors, known to work in the Stickland reaction, did not enhance the degradation rates of any amino acid used nor did they alter the degradation patterns. Glycine was oxidatively deaminated to acetate, carbon dioxide, hydrogen and ammonium.  相似文献   

18.
Phenol degradation under methanogenic conditions has long been studied, but the anaerobes responsible for the degradation reaction are still largely unknown. An anaerobe, designated strain UI(T), was isolated in a pure syntrophic culture. This isolate is the first tangible, obligately anaerobic, syntrophic substrate-degrading organism capable of oxidizing phenol in association with an H(2)-scavenging methanogen partner. Besides phenol, it could metabolize p-cresol, 4-hydroxybenzoate, isophthalate, and benzoate. During the degradation of phenol, a small amount of 4-hydroxybenzoate (a maximum of 4 microM) and benzoate (a maximum of 11 microM) were formed as transient intermediates. When 4-hydroxybenzoate was used as the substrate, phenol (maximum, 20 microM) and benzoate (maximum, 92 microM) were detected as intermediates, which were then further degraded to acetate and methane by the coculture. No substrates were found to support the fermentative growth of strain UI(T) in pure culture, although 88 different substrates were tested for growth. 16S rRNA gene sequence analysis indicated that strain UI(T) belongs to an uncultured clone cluster (group TA) at the family (or order) level in the class Deltaproteobacteria. Syntrophorhabdus aromaticivorans gen. nov., sp. nov., is proposed for strain UI(T), and the novel family Syntrophorhabdaceae fam. nov. is described. Peripheral 16S rRNA gene sequences in the databases indicated that the proposed new family Syntrophorhabdaceae is largely represented by abundant bacteria within anaerobic ecosystems mainly decomposing aromatic compounds.  相似文献   

19.
The anaerobic degradation of different fractions of rice straw in anoxic paddy soil was investigated. Rice straw was divided up into stem, leaf sheath and leaf blade. The different straw fractions were mixed with paddy soil and incubated under anoxic conditions. Fermentation of straw components started immediately and resulted in transient accumulation of acetate, propionate, butyrate, isobutyrate, valerate, isovalerate and caproate with much higher concentrations in the presence than in the absence of straw. Also some unidentified compounds with UV absorption could be detected. The maximum concentrations of these compounds were different when using different straw fractions, suggesting differences in the degradation pathway of these straw fractions during the early phase of incubation, i.e. with Fe(III) and sulfate serving as oxidants. When concentrations of the intermediates decreased to background values, CH(4) production started. Rates of CH(4)unamended soil. During the methanogenic phase, the percentage contribution of fermentation products to CH(4) production was determined by inhibition with 2-bromoethanesulfonate (BES). Acetate (48-83%) and propionate (18-28%) were found to be the main intermediates of the carbon flow to CH(4), irrespective of the fraction of the rice straw or its absence. Mass balance calculations showed that 84-89% of CH(4) was formed via acetate in the various incubations. Radiotracer experiments showed that 11-27% of CH(4) was formed from H(2)/CO(2), thus confirming that acetate contributed 73-89% to methanogenesis. Our results show that the addition of rice straw and the fraction of the straw affected the fermentation pattern only in the early phase of degradation, but had no effect on the degradation pathway during the later methanogenic phase.  相似文献   

20.
Anaerobic degradation of fluorinated aromatic compounds   总被引:1,自引:0,他引:1  
Anaerobic enrichment cultures with sediment from an intertidal strait as inoculum were established under denitrifying, sulfate-reducing, iron-reducing and methanogenic conditions to examine the biodegradation of mono-fluorophenol and mono-fluorobenzoate isomers. Both phenol and benzoate were utilized within 2–6 weeks under all electron-accepting conditions. However, no degradation of the fluorophenols was observed within 1 year under any of the anaerobic conditions tested. Under denitrifying conditions, 2-fluorobenzoate and 4-fluorobenzoate were depleted within 84 days and 28 days, respectively. No loss of 3-fluorobenzoate was observed. All three fluorobenzoate isomers were recalcitrant under sulfate-reducing, iron-reducing, and methanogenic conditions. The degradation of the fluorobenzoate isomers under denitrifying conditions was examined in more detail using soils and sediments from different geographic regions around the world. Stable enrichment cultures were obtained on 2-fluorobenzoate or 4-fluorobenzoate with inoculum from most sites. Fluoride was released stoichiometrically, and nitrate reduction corresponded to the values predicted for oxidation of fluorobenzoate to CO2 coupled to denitrification. The 2-fluorobenzoate-utilizing and 4-fluorobenzoate-utilizing cultures were specific for fluorobenzoates and did not utilize other halogenated (chloro-, bromo-, iodo-) benzoic acids. Two denitrifying strains were isolated that utilized 2-fluorobenzoate and 4-fluorobenzoate as growth substrates. Preliminary characterization indicated that the strains were closely related to Pseudomonas stutzeri. Received: 1 September 1999 / Accepted in revised form: 30 September 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号