首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 136 毫秒
1.
FRET技术及其在蛋白质-蛋白质分子相互作用研究中的应用   总被引:10,自引:2,他引:8  
简要综述了FRET方法在活细胞生理条件下研究蛋白质-蛋白质间相互作用方面的最新进展.蛋白质-蛋白质间相互作用在整个细胞生命过程中占有重要地位,由于细胞内各种组分极其复杂,因此一些传统研究蛋白质-蛋白质间相互作用的方法,例如酵母双杂交、免疫沉淀等可能会丢失某些重要的信息,无法正确地反映在当时活细胞生理条件下蛋白质-蛋白质间相互作用的动态变化过程.荧光共振能量转移(fluorescence resonance energy transfer, FRET)是近来发展的一项新技术,此项技术的应用,为在活细胞生理条件下对蛋白质-蛋白质间相互作用进行实时的动态研究,提供一个非常便利的条件.  相似文献   

2.
利用FRET技术在活细胞内观察EGF对PKA作用的时空成像   总被引:3,自引:0,他引:3  
cAMP依赖的蛋白激酶(protein kinase A,PKA)在细胞生长与分化过程中扮演重要角色,特别是在调节Ras信号通路引起的细胞增殖效应中起着重要作用。为了在活细胞内动态观察表皮生长因子(epidermal growth factor,EGF)对PKA的作用,采用一种可以检测PKA酶活性的报告蛋白(A-kinase activity reporter,AKAR)——这种报告蛋白是利用荧光共振能量转移(fluorescence resonance energy transfer,FRET)原理设计的,使其在人类肺癌细胞(ASTC-a-1)中稳定表达。加入EGF刺激因子后,随时间变化的成像分析显示出在活细胞生理条件下被EGF作用的PKA酶活性变化的时空信息。这些资料为EGF作用PKA提供了直接的实时证据。  相似文献   

3.
基于GFP的FRET应用   总被引:1,自引:0,他引:1  
绿色荧光蛋白(GFP)是一种活性荧光标记,已被用来研究基因表达、分子定位,蛋白质折叠和转运;荧光共振能量转移(FRET)是一种无损伤的光学检测方法,能检测到小于纳米的距离变化。将GFP的活性定位标记功能与FRET的高分辨率相结合。为活体研究生物分子的功能和命运开创了新的篇章。作者在介绍GFP和FRET原理的基础上,综述了基于GFP的FRET在蛋白酶活性,蛋白质间相互作用 构象改变研究中的应用。  相似文献   

4.
转移生长因子β(TGFβ)信号传导通路参与调节细胞的增殖、分化、凋亡、细胞迁移等一系列细胞过程,与骨代谢疾病的发病机制密切相关.本研究根据荧光共振能量转移(FRET)技术原理,构建包含CFP-TβRI-YFP融合蛋白的TβRI生物传感器,转染293T细胞,观察转染效率.以TGFβ1为诱导剂,激活TGFβ/TβRI信号传导通路,在活细胞生理条件下,动态监测TβRI生物传感器的FRET效应.结果表明,成功构建了TβRI生物传感器,转染细胞效率达50%,在TGFβ1诱导刺激6min后,FRET效率增加并达到最大值,该过程经历9 min后,随时间的延长,FRET效率下降.研究结果表明:在活细胞生理条件下,TGFβ1/TβRI信号转导过程存在一定的时间特异性.  相似文献   

5.
分别采用两种不同绿色荧光蛋白(green fluorescent prote in,GFP)突变体作为荧光共振能量转移(fluo-rescence resonance energy transfer,FRET)对的供体和受体,并利用分子生物学技术将供体和受体分子分别与特定的生物分子融合,这种技术已经成为在单个活细胞中实时长时间检测蛋白质间的动态相互作用的主要技术。主要介绍了基于GFPs的FRET技术在单个活细胞中实时长时间研究生物分子动态行为的应用。  相似文献   

6.
目的:探索与Mps1蛋白有相互作用的CENP-E蛋白结构域。方法:将重组质粒pEGFP-CENPE2(674~1085位氨基酸)、pEGFP-CENPE3(1200~2134位氨基酸)转染人胚肾293(HEK293)细胞,采用受体漂白荧光共振能量转移方法(FRET方法),检测EGFP-CENPE2、EGFP-CENPE3和Mps1间的能量转移率(Ef), 进一步用免疫共沉淀方法验证FRET的实验结果。结果:重组质粒转染HEK293细胞后经激光共聚焦显微镜观察重组质粒表达的融合蛋白与Mps1都存在着共定位;FRET检测结果显示EGFP-CENPE3和Mps1间的能量转移率为[(12.63±0.48)%, n=30],pEGFP-CENPE2和Mps1间的能量转移率为[(3.07±0.21)%, n=30],与对照组[(2.96±0.27)%, n=30]比较pEGFP-CENPE3和Mps1间的能量转移率差异存在显著性(p<0.05),免疫共沉淀实验结果显示EGFP-CENPE3与Mps1蛋白间存在相互作用。结论:FRET技术和免疫共沉淀实验证明了EGFP-CENPE3与Mps1间存在着相互作用。  相似文献   

7.
FRET技术在受体信号转导研究中的应用   总被引:1,自引:0,他引:1  
张峰  何成 《生命科学》2008,20(1):46-52
细胞信号传导是细胞生物学方面的重要内容之一,涉及生命过程的各个方面,包括生长、分化发育、增殖、凋亡、迁移等等,对维持细胞功能及机体生存至关重要。目前对细胞信号转导研究的技术手段多种多样,其中荧光共振能量转移技术(FRET)是研究细胞信号转导较为常用的一种技术,可以实现活细胞内蛋白质之间相互作用的实时检测。本文中我们以受体酪氨酸激酶为例,介绍FRET技术在受体介导细胞信号传导中的应用及进展情况。  相似文献   

8.
蛋白质相互作用的研究, 是揭示生物体正常生长发育及其应对各种生物或(和)非生物胁迫的分子机制及其调控网络的重要途径。文章综述了近年来发展起来的研究蛋白质相互作用的常用实验性方法, 如酵母双杂交系统、串联亲和纯化、免疫共沉淀、GST Pull-down、双分子荧光互补、荧光共振能量转移、表面等离子共振分析, 介绍了其原理、发展进程, 并分析了其优缺点。  相似文献   

9.
为研究红景天甙(salidroside)对β淀粉样肽25-35(β amyloid peptide25-35,Aβ25-35)诱导PC12细胞凋亡的抑制作用,采用Cell Counting Kit-8(CCK-8)分析细胞的存活率,通过光镜检测细胞形态并配以Hoechst染色检测细胞核固缩,利用荧光共振能量转移(fluorescence resonance energy transfer,FRET)技术在单个活细胞中检测caspase-3和caspase-8活性的动态变化。结果表明,红景天甙可剂量依赖性抑制Aβ25-35引起的细胞凋亡,提高细胞的存活率;红景天甙对caspase-3的活性有明显的抑制作用,而且Aβ25-35诱导细胞凋亡不依赖于caspase-8的激活。这些结果提示抑制caspase-3的活性是红景天甙抑制Aβ25-35诱导PC12细胞凋亡的机制之一。  相似文献   

10.
荧光共振能量转移(fluorescence resonance energy transfer, FRET)技术日益广泛的应用于检测活细胞中分子内和分子间的相互作用. 由于FRET仅发生于相互作用的供体和受体,即供体-受体复合物之间,所以检测的FRET信号必须经标准化处理以去除供体受体比例和浓度的影响然后才能够进行FRET的比较研究. 由于供体和受体的比例相同,分子内FRET的检测较为简单;而分子间FRET的检测存在更多的不确定因素,导致现有的方法很难精确定量.根据1类特殊的分子间相互作用,同质二聚体的独特特征,推导出供体 受体复合物的含量,进而开发了1种同质二聚体分子间FRET的精确定量的方法,以1种同质二聚体,雌激素受体α(estrogen receptor alpha, ERα)为供体和受体对,通过和其它的方法比较,证实了该方法用于FRET检测可获得更可靠的结果.  相似文献   

11.
荧光共振能量转移可用于对生物大分子之间的距离进行定性、定量检测。应用荧光共振能量转移技术对高通量低能量激光诱导肺腺癌细胞凋亡过程中caspase-3的激活过程进行实时动态监测。实验结果表明:高通量低能量激光可以诱导肺腺癌细胞(human lung adenocarcinoma cell,ASTC-a-1)凋亡。同时荧光共振能量转移技术是一个有效的监测caspase-3在凋亡过程中活性动态变化的方法。  相似文献   

12.
Fluorescence resonance energy transfer (FRET) from a donor-labelled molecule to an acceptor-labelled molecule is a useful, proximity-based fluorescence tool to discriminate molecular states on the surface and in the interior of cells. Most microscope-based determinations of FRET yield only a single value, the interpretation of which is necessarily model-dependent. In this paper we demonstrate two new measurements of FRET heterogeneity using selective donor photobleaching in combination with synchronous donor/acceptor detection based on either (1) full kinetic analysis of donor-detected and acceptor-detected donor photobleaching or (2) a simple time-based ratiometric approach. We apply the new methods to study the cell surface distribution of concanavalin A yielding estimates of FRET and non-FRET population distributions, as well as FRET efficiencies within the FRET populations.  相似文献   

13.
脂多糖(LPS)的识别和信号转导是宿主发生防御反应的关键,Toll样受体4(TLR4)与髓样分化蛋白-2(MD-2)形成复合物在LPS的识别及其信号转导中发挥了重要作用.研究TLR4与MD-2结合的功能结构域,对于深入了解LPS信号转导机制及其内毒素休克的防治具有重要意义.运用基于强度的三通道荧光共振能量转移技术(FRET)及基因突变和转染技术,研究了活细胞TLR4与MD-2作用的结构域.结果表明:N端Glu24~Met41缺失使TLR4与MD-2结合能力明显下降;LPS刺激后TLR4聚合迅速增加,而缺失Glu24~Met41的TLR4不能聚合.上述结果提示,TLR4的Glu24~Met41不仅是结合MD-2的区域,并且还参与了LPS刺激后TLR4的聚合作用.  相似文献   

14.
荧光共振能量转移(fluorescenceresonanceenergytransfer,FRET),是指能量从一种受激发的荧光基团(fluorophore)以非辐射的方式转移到另一种荧光基团的物理现象.FRET的能量转移效率是两个荧光基团间距离的函数,并对此距离十分敏感,它的有效响应距离一般在1~10nm之间,因而可被用于测定原子间及分子间的距离.这一特点使FRET技术在大分子构象变化、大分子之间相互作用、细胞信号通路等研究中发挥重要作用,成为生物医学研究中的重要方法.但细胞内的生物学过程常常涉及多于两个的大分子间相互作用,二色荧光基团的FRET技术不能满足这种生物学研究的需求.最近,两个研究小组在这方面取得突破,建立了分别基于共聚焦显微镜和流式细胞仪的三色荧光级联FRET技术.这一技术的出现将会极大地促进生物学及相关研究领域的发展.  相似文献   

15.
Protein-protein interactions are a hallmark of all essential cellular processes. However, many of these interactions are transient, or energetically weak, preventing their identification and analysis through traditional biochemical methods such as co-immunoprecipitation. In this regard, the genetically encodable fluorescent proteins (GFP, RFP, etc.) and their associated overlapping fluorescence spectrum have revolutionized our ability to monitor weak interactions in vivo using Förster resonance energy transfer (FRET)1-3. Here, we detail our use of a FRET-based proximity assay for monitoring receptor-receptor interactions on the endothelial cell surface.  相似文献   

16.

Background

Hybrid complexes of proteins and colloidal semiconductor nanocrystals (quantum dots, QDs) are of increasing interest in various fields of biochemistry and biomedicine, for instance for biolabeling or drug transport. The usefulness of protein–QD complexes for such applications is dependent on the binding specificity and strength of the components. Often the binding properties of these components are difficult and time consuming to assess.

Methods

In this work we characterized the interaction between recombinant light harvesting chlorophyll a/b complex (LHCII) and CdTe/CdSe/ZnS QDs by using ultracentrifugation and fluorescence resonance energy transfer (FRET) assay experiments. Ultracentrifugation was employed as a fast method to compare the binding strength between different protein tags and the QDs. Furthermore the LHCII:QD stoichiometry was determined by separating the protein–QD hybrid complexes from unbound LHCII via ultracentrifugation through a sucrose cushion.

Results

One trimeric LHCII was found to be bound per QD. Binding constants were evaluated by FRET assays of protein derivatives carrying different affinity tags. A new tetra-cysteine motif interacted more strongly (Ka = 4.9 ± 1.9 nM− 1) with the nanoparticles as compared to a hexahistidine tag (His6 tag) (Ka ~ 1 nM− 1).

Conclusion

Relative binding affinities and binding stoichiometries of hybrid complexes from LHCII and quantum dots were identified via fast ultracentrifugation, and binding constants were determined via FRET assays.

General significance

The combination of rapid centrifugation and fluorescence-based titration will be useful to assess the binding strength between different types of nanoparticles and a broad range of proteins.  相似文献   

17.
Assays based on Bioluminescence Resonance Energy Transfer (BRET) provide a sensitive and reliable means to monitor protein-protein interactions in live cells. BRET is the non-radiative transfer of energy from a ''donor'' luciferase enzyme to an ''acceptor'' fluorescent protein. In the most common configuration of this assay, the donor is Renilla reniformis luciferase and the acceptor is Yellow Fluorescent Protein (YFP). Because the efficiency of energy transfer is strongly distance-dependent, observation of the BRET phenomenon requires that the donor and acceptor be in close proximity. To test for an interaction between two proteins of interest in cultured mammalian cells, one protein is expressed as a fusion with luciferase and the second as a fusion with YFP. An interaction between the two proteins of interest may bring the donor and acceptor sufficiently close for energy transfer to occur. Compared to other techniques for investigating protein-protein interactions, the BRET assay is sensitive, requires little hands-on time and few reagents, and is able to detect interactions which are weak, transient, or dependent on the biochemical environment found within a live cell. It is therefore an ideal approach for confirming putative interactions suggested by yeast two-hybrid or mass spectrometry proteomics studies, and in addition it is well-suited for mapping interacting regions, assessing the effect of post-translational modifications on protein-protein interactions, and evaluating the impact of mutations identified in patient DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号