首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Classical behavioral neuroendocrinology has focused on a limited number of domestic mammals and birds. The model systems used in these studies represent a very small proportion of the diversity of hormone-behavior interactions found in nature. In the last three decades, an increasing number of researchers have concentrated their efforts on studying behavioral neuroendocrinology of wild animals. Field behavioral neuroendocrinology presents a series of challenges ranging from the design of the experiments to sample preservation and transportation. The constraints of field conditions limit the number of factors that can be controlled for and the questions that can be addressed. On the other side, many behaviors can be studied only in the field, and only a few species can be kept in captivity. Thus, field studies are necessary to understand the complexity and variety of interactions between hormones, brain, and behavior. In this article, we will review some of the peculiarities and challenges of field behavioral neuroendocrinology, including solutions for some of the most commonly encountered technical issues.  相似文献   

2.
Maximum production and fitness of insect species that are mass‐reared for biological control programmes such as the sterile insect technique (SIT) have benefitted from the employment of quality control and quality management. With a growing interest in the use of SIT as a tactic for the suppression/eradication of key lepidopteran pests, such as the codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae), there is a parallel interest in inexpensive bioassays that can accurately detect differences in insect quality and monitor insect field performance. In this study, we examined laboratory (mating and flight ability) bioassays and field (field cage and open field release) bioassays simultaneously to discern the ability of the different bioassays to predict quality and field performance of codling moths produced in a commercial mass‐rearing facility. Moth quality was degraded by different levels of radiation during the sterilization procedure. Both the laboratory flight bioassay and the field cage bioassay successfully detected quality and performance differences that were relevant to moth performance in the field. However, the study data suggest that the field cage bioassay was a better predictor of the daily performance of males that had been released in the orchard than the laboratory flight bioassay. Conversely, data suggest that the controlled climatic conditions of the laboratory allowed the flight cylinder bioassay to be more sensitive in detecting daily fluctuations in the quality of moths caused by factors within the mass‐rearing facility. Therefore, both laboratory and field bioassays may be required to provide feedback on quality and performance of mass‐reared moths in a SIT programme.  相似文献   

3.
Insect transgenesis and its potential role in agriculture and human health   总被引:2,自引:0,他引:2  
The ability to genetically engineer insects other than Drosophila melanogaster has further extended modern genetic techniques into important insect pest species ranging from fruit fly pests of horticulture to mosquito vectors of human disease. In only a relatively short period of time, a range of transgenes have been inserted into more than 10 insect pest species. Genetic transformation of these pest species has proven to be a very important laboratory tool in analyzing gene function and effects on phenotype however the full extension of this technology into the field is yet to be realized. Here we briefly review the development of transgenic technology in pest insect species and discuss the challenges that remain in this applied area of insect genetics and entomology.  相似文献   

4.
The tobacco hornworm Manduca sexta has been an important model system in insect biology for more than half a century. Here we report the evolutionary divergence in thermal sensitivity and diapause initiation between field and laboratory populations that were separated for more than 35 yr (>240 laboratory generations) and that are descendants from the same field populations in central North Carolina. At intermediate rearing temperatures (20 degrees-25 degrees C), mean body size was significantly larger and development time significantly faster in the laboratory than in the field populations. At higher temperatures (30 degrees -35 degrees C), these mean differences between populations were reduced or eliminated, and larval survival at 35 degrees C was significantly lower in the laboratory population than in the field population. F(1) crosses had survival and development time to wandering similar to the field population times at both 25 degrees and 35 degrees C; body mass at wandering for F(1) crosses was intermediate compared with that of the field and laboratory populations. Comparisons with earlier field and laboratory studies suggest evolutionary reductions in thermal tolerance and performance at high temperatures in the laboratory population. The critical photoperiod initiating diapause in field populations in North Carolina did not change detectably between the 1960s and 2005. In contrast, the laboratory population has evolved a reduced tendency to diapause under short-day conditions, relative to the field population.  相似文献   

5.
Insects are responsible for the transmission of major infectious diseases. Recent advances in insect genomics and transformation technology provide new strategies for the control of insect borne pathogen transmission and insect pest management. One such strategy is the genetic modification of insects with genes that block pathogen development. Another is to suppress insect populations by releasing either sterile males or males carrying female‐specific dominant lethal genes into the environment. Although significant progress has been made in the laboratory, further research is needed to extend these approaches to the field. These insect control strategies offer several advantages over conventional insecticide‐based strategies. However, the release of genetically modified insects into the environment should proceed with great caution, after ensuring its safety, and acceptance by the target populations.  相似文献   

6.
The Cydia pomonella granulovirus (CpGV) has been used for many years as biological agent for codling moth control in apple orchards. Resistance to the Mexican strain of CpGV was detected in orchards in Germany, France and Italy. A laboratory insect colony was started from insects collected in a French resistant orchard. It was named RGV. Various virus isolates were identified as active against this resistant insect colony. Field tests were carried out in 2007 to test if the two virus isolates CpGV-I12 and NPP-R1 were effective in the field. Although these virus isolates were not able to reduce insect caused fruit damages, they significantly reduced the overwintering insect populations. NPP-R1 was subjected to eight passages on RGV larvae (NPP-R1.8) that improved its biological activity on RGV larvae. 2008 field trials were set up to test this improved virus strain, compared to CpGV-I12 and Madex plus active on RGV. These tests confirmed the ability to control both in susceptible and resistant insect populations.  相似文献   

7.
Inducible plant defense is a beneficial strategy for plants, which imply that plants should allocate resources from growth and reproduction to defense when herbivores attack. Plant ecologist has often studied defense responses in wild populations by biomass clipping experiments, whereas laboratory and greenhouse experiments in addition apply chemical elicitors to induce defense responses. To investigate whether field ecologists could benefit from methods used in laboratory and greenhouse studies, we established a randomized block‐design in a pine‐bilberry forest in Western Norway. We tested whether we could activate defense responses in bilberry (Vaccinium myrtillus) by nine different treatments using clipping (leaf tissue or branch removal) with or without chemical treatment by methyljasmonate (MeJA). We subsequently measured consequences of induced defenses through vegetative growth and insect herbivory during one growing season. Our results showed that only MeJA‐treated plants showed consistent defense responses through suppressed vegetative growth and reduced herbivory by leaf‐chewing insects, suggesting an allocation of resources from growth to defense. Leaf tissue removal reduced insect herbivory equal to the effect of the MeJa treatments, but had no negative impact on growth. Branch removal did not reduce insect herbivory or vegetative growth. MeJa treatment and clipping combined did not give an additional defense response. In this study, we investigated how to induce defense responses in wild plant populations under natural field conditions. Our results show that using the chemical elicitor MeJA, with or without biomass clipping, may be a better method to induce defense response in field experiments than clipping of leaves or branches that often has been used in ecological field studies.  相似文献   

8.
Previous laboratory studies have demonstrated that insects can tolerate high temperatures by expressing inducible heat shock proteins (HSPs). This HSP-based tolerance, however, has seldom been studied under field conditions. Here, we cloned the HSP70 gene of Corythucha ciliata (Cchsp70), an invasive insect species with substantial thermal tolerance in subtropical China. We also compared the relative mRNA expression levels of Cchsp70 in response to controlled temperature treatments (2 h at 33–43 °C at 2 °C intervals in the laboratory) and to natural increases in temperature (08:00–14:00 at 2-h intervals, 29.7–37.2 °C) on a hot summer day in the field. The complete cDNA of Cchsp70 is 2256 bp long and has a 1917 bp open reading frame that encodes a protein (CcHSP70) with 639 amino acids. The expression levels of Cchsp70 significantly increased in response to high temperatures in both laboratory and field. At similar temperatures, however, the expression levels were much higher in the field than in the laboratory. These results suggest that CcHSP70 contributes to the thermal tolerance of C. ciliata and that factors in addition to thermal stress may induce Cchsp70 expression in the field.  相似文献   

9.
Filial cannibalism has been described in many fish species with male parental care, and has typically been explained as a response to high energetic costs of brood defence and decreased feeding opportunities during the period of care. We investigated filial cannibalism in an insect, the assassin bug Rhinocoris tristis. In this species, males guard eggs of a number of females, cannibalizing some of their offspring within the brood. We monitored guarding males in both the field and the laboratory. Males typically ate eggs around the periphery of the brood, which were those most likely to have been parasitized by wasps. However, cannibalism persisted in the laboratory in the absence of parasites, and the number of cannibalized eggs was related to the length of care and overall brood size, suggesting that males use eggs as an alternative source of food. This conclusion was further supported by the fact that males in the field did not lose weight while guarding, despite being unable to forage efficiently while caring. Males were also observed to adopt broods, but in a laboratory experiment did not eat more eggs from adopted than from their own broods.  相似文献   

10.
It has been sustained that the sticky traps present in some carnivorous plants could have evolved from ancestor species bearing leaves covered with secreting glands formerly associated with a defensive function. In this study, we evaluated the interaction of the carnivorous plant Pinguicula moranensis with its insect herbivores to assess the defensive role of the glandular trichomes. Firstly, we estimated the standing levels of insect herbivory in field conditions. We also evaluated the response of herbivore insects to the removal of the secreting glands from the leaves of P. moranensis in field and laboratory conditions. The mean damage was 1.61%, and half of the sampled plants showed no damage. The low level of herbivory in the field suggests that P. moranensis has an efficient defense ability. In the field experiment, after 25 d of exposure to natural damage, treated glandless plants received 18 times more damage than control plants. In the laboratory, the consumption of glandless tissue was three times higher during a 6 h evaluation period. Overall, our results provide evidence that secreting trichomes in Pinguicula are not only associated with prey capture but also have a defensive role. The defensive function could have favored the evolution of the sticky traps, the most extended prey‐capture strategy among carnivorous plants.  相似文献   

11.
"Mal de Rio Cuarto" (MRC) is the most important virus disease of maize, Zea mays L., in Argentina. Several maize lines show different levels of resistance to MRC in the field; however, no studies have been conducted to investigate resistance mechanisms against its insect vector, Delphacodes kuscheli Fennah (Homoptera: Delphacidae). Oat, Avena spp., is the main overwintering host of D. kuscheli and main source of populations that infest maize. Although oat varieties resistant to the greenbug, Schizaphis graminum (Rondani) (Homoptera: Aphididae) are commercially available, their effect on D. kuscheli is unknown. We conducted laboratory experiments to test for the presence of antixenosis and antibiosis resistance mechanisms on six maize lines with different levels of field resistance to MRC, and seven commercial oat cultivars that include two S. graminum-resistant varieties. We did not find antibiotic effects of maize lines on D. kuscheli longevity and survivorship patterns, but we obtained antixenotic effects from the LP2 line (field moderate) due to reduced settling preference and feeding. Oat 'Bonaerense Payé and 'Suregrain INTA' showed both antixenosis and antibiosis, with significantly less settling preference, oviposition in the no-choice test, and reduced total fecundity in comparison with the other varieties studied. The S. graminum-resistant 'Boyera F. A.' and 'Tambera F. A.' did not showed a consistent pattern of resistance versus D. kuscheli across all experiments. Our results indicate the presence of potential sources of insect resistance in the maize lines and oat cultivars tested that may be used in MRC integrated pest management programs.  相似文献   

12.
Bégin M  Roff DA 《Heredity》2002,89(6):473-479
A covariation between wing morphology and diapause occurrence has been observed in many insect species, but the genetic basis of this covariation has never been established. This study measures the heritability of, and genetic correlation between, these two ecologically important threshold traits in the cricket Gryllus veletis. A total of 81 full-sib families were reared in the laboratory to estimate these parameters. A comparison of laboratory and field samples showed that these two traits are highly plastic. The heritability of wing morphology was 0.25 (0.09), the heritability of diapause occurrence was 0.77 (0.11) and the genetic correlation between them was 0.61 (0.19). These estimates did not differ between males and females. The significance of these quantitative genetic parameters is discussed with reference to the monomorphism of natural populations of G. veletis for diapause occurrence and with reference to the trade-off between the ability to disperse by flight and the ability to diapause found in at least one closely related species. A survey of the literature reveals that genetic correlations between diapause occurrence or wing morphology and various other traits are common in insects, suggesting that these two traits are often genetically integrated in insect life-histories.  相似文献   

13.
Drosophila: sentinels of environmental toxicants   总被引:1,自引:0,他引:1  
Synthetic insecticides have been used intensively for the past50 years in many parts of the world. Insect populations, bothtarget and nontarget, have responded by evolving resistance.One of the nontarget insects is Drosophila melanogaster, whichis well-suited for genetic analysis and has been particularlywell-studied in both laboratory and field populations. Resistanceto several insecticides, including two for which significantresistance in field populations has not been found, has beengenerated in susceptible laboratory strains following mutagenesis,allowing comprehensive study of the resistance genes. Fieldpopulations of D. melanogaster have evolved resistance to many,but not all, insecticides in use today. Both the genetic andbiochemical mechanisms that underlie resistance in this insectare similar to those in other insects. Therefore, D. melanogastercan be a sentinel organism for long-term release of toxicantsinto the environment. While it remains useful for genetic analysisof resistance, a better understanding of the movement and populationstructures of this insect will be a prerequisite for its sentinelutilization at specific locales.  相似文献   

14.
A general field bioassay for detecting biologically active compounds in plants and insects has been developed and tested for efficacy and sensitivity. Methanolic extracts, in sucrose solution, of 20 plant and six caterpillar species were offered to the ponerine ant Paraponera clavata and the feeding preferences observed. The bioassay resulted in the detection of nine plant and three caterpillar species with ant-deterrent extracts, and 11 plant and three caterpillar species with neutral or attractant extracts. All of the plants showing ant-deterrent characteristics which had been chemically investigated in our laboratory, or for which chemical literature was available, contained secondary metabolites of known deterrence. Both naturally occurring and artificial differences in chemical concentrations could be detected using the bioassay. The method provides a means of screening plants and insects for compounds that are insect anti-feedants or that can modify insect behaviour.  相似文献   

15.
The South American tree Solanum mauritianum Scopoli (Solanaceae), a major environmental weed in South Africa and New Zealand, has been targeted for biological control, with releases of agents restricted to South Africa. The leaf-sucking lace bug, Gargaphia decoris Drake (Tingidae), so far the only agent released, has become established in South Africa with recent reports of severe damage at a few field sites. To evaluate the insect’s suitability for release in New Zealand, host-specificity testing was carried out in South Africa in laboratory and open-field trials, with selected cultivated and native species of Solanum from New Zealand. No-choice tests confirmed the results of earlier trials that none of the three native New Zealand Solanum species are acceptable as hosts. Although the cultivated Solanum muricatum Aiton and S. quitoense Lam. also proved unacceptable as hosts, some cultivars of S. melongena L. (eggplant) supported feeding, development and oviposition in the no-choice tests. Although eggplant was routinely accepted under laboratory no-choice conditions in this and previous studies, observations in the native and introduced range of G. decoris, open-field trials and risk assessment based on multiple measures of insect performance indicate that the insect has a host range restricted to S. mauritianum. These results strongly support the proposed release of G. decoris in New Zealand because risks to non-target native and cultivated Solanum species appear to be negligible. An application for permission to release G. decoris in New Zealand will be submitted to the regulatory authority. Handling editor: John Scott.  相似文献   

16.
Following the treatment of cattle with veterinary parasiticides and insecticides, residues are excreted into the dung in concentrations that may be toxic to functionally important dung-colonizing insects. In the dung, these residues cause a range of well-studied lethal and sub-lethal effects, the magnitudes of which vary with the compound used, mode of administration and concentration, and the insect species in question. Particular concern has been associated with the use of macrocyclic lactones in this context. Loss of insect colonizers may delay pat decomposition, but field studies report contrasting results that reflect confounding factors such as weather conditions, pat moisture content, pat location, time of year and dung insect species phenologies. The question of fundamental concern is whether the impacts seen in experimental or laboratory studies are likely to have a functional impact on insect populations, community interactions and the economically important process of dung decomposition. Recent studies which have attempted to address these wider, landscape-level impacts in temperate ecosystems are reviewed here. These show that the extent to which chemical residues may have any sustained ecological impact will depend on both a range of farm management factors, such as the temporal and spatial patterns of chemical use, the number of animals treated and the choice of active ingredient, and a range of insect-related factors, such as abundance, population dynamics and dispersal rates. However, they also demonstrate that considerable uncertainty remains about the likely extent of such effects and that current data are insufficient to support firm conclusions regarding sustained pasture-level effects. More large-scale, longterm field experiments are required, particularly in relation to insect dispersal and functional interactions within the dung insect community.  相似文献   

17.
To investigate whether selenium (Se) accumulation in plants provides a chemical defense against generalist insect herbivores, the feeding preference and performance of a mix of orthopteran species were investigated. The selenium hyperaccumulator Stanleya pinnata and accumulator Brassica juncea were used in herbivory studies in the laboratory, and S. pinnata was also used in a manipulative field experiment. In laboratory studies, both crickets and grasshoppers avoided plants pretreated with selenate, while those given no choice died after eating leaves with elevated Se (447 +/- 68 and 230 +/- 68 microg Se g(-1) DW, respectively). B. juncea has previously been shown to accumulate selenate, while S. pinnata hyperaccumulates methyl-selenocysteine. Thus, these findings demonstrate that both inorganic and organic forms of selenium protect plants from herbivory. Grasshoppers fed S. pinnata contained methylselenocysteine in their midgut and absorbed this form into surrounding tissues. In a manipulative field experiment, methylselenocysteine protected S. pinnata from invertebrate herbivory and increased its long-term survival rate over an entire growth season. * In native habitats of selenium hyperaccumulators, orthopterans represent a major group of insect herbivores. Protection offered by organic selenium accumulation against these herbivores may have promoted the evolution of selenium hyperaccumulation in plants.  相似文献   

18.
ABSTRACT. Light units weighted for human vision (e.g. lux) are unsuitable for work on insects which have good sensitivity in the blue and UV. We have built and calibrated two light meters - a portable field unit and a mains operated laboratory device-which measure illumination in physical units over a wavelength range suitable for insect vision. Both meters share a single photocell, so field and laboratory measurements are strictly comparable. The field meter covers a range from starlight to tropical sunlight on a single scale, and can be used in conditions when the operator has no effective vision. The laboratory meter is linear over five decade ranges, of which the most sensitive has a full-scale deflection of 1 mW m-2.  相似文献   

19.
The fall‐webworm (FWW), Hyphantria cunea, is a highly polyphagous insect pest that is native to North America and distributed in different countries around the world. To manage this insect pest, various control methods have been independently evaluated in the invaded areas. Some of the control methods have been limited to the laboratory and need further study to verify their effectiveness in the field. On the other hand, currently, integrated pest management (IPM) has become a promising ecofriendly insect pest management option to reduce the adverse effect of insecticides on the environment. The development of an IPM for an insect pest must combine different management options in a compatible and applicable manner. In the native areas of the insect pests, there are some recommended management options. However, to date, there is no IPM for the management of the FWW in the newly invaded areas. Therefore, to develop an IPM for this insect pest, compilation of effective management option information is the first step. Thus, believing in the contribution of an IPM to the established management strategies, the chemical, biological, natural enemy, sex pheromone, and molecular studies regarding this insect were reviewed and potential future research areas were delineated in this review study. Therefore, using the currently existing management options, IPM development for this insect pest should be the subject of future research in the newly invaded areas.  相似文献   

20.
A technique has been developed for the rapid determination of some species of prey consumed by mites and insects. The method detects prey enzymes within the gut of a predator by polyacrylamide gradient gel electrophoresis and subsequent staining for esterase activity. It is sufficiently sensitive to detect fruit tree red spider mite (Panonychus ulmi) esterases within the gut of a single predacious mite (Typhlodromus pyri) for at least 31 h after feeding. The method has been used to demonstrate feeding relationships among a range of insect and mite predator and prey species in the laboratory and in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号