首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of 4-aminopyridine and tetraethylammonium on the time course of neurotransmitter release was examined at the neuromuscular junction using a computer-aided method which directly measured the time of occurrence of individual quanta. It is apparent that the action of 4-aminopyridine, at concentrations of 0.1 to 1 mM, when examined in isolation from other experimental manipulations, is to cause a greatly enhanced probability of release at times subsequent to the time over which the initial phase is essentially unchanged, i.e., there is no evidence of an increased latency of release caused by 4-aminopyridine. Similar results were obtained with tetraethylammonium, although the prolongation of release was much less, even at a concentration of 1 mM. The results are consistent with the view that the predominant action of 4-aminopyridine is to block the potassium conductance responsible for repolarization of the action potential and hence cause a prolonged Ca2+ current. The action of tetraethylammonium is consistent with the block of a different K+ conductance, with consequent enhancement of action potential effectiveness, but with little prolongation of release. The observation of multiple peaks, or oscillations in the release probability function at high (ca. 1 mM) concentrations of 4-aminopyridine, may be related, as is suggested, to oscillations of presynaptic membrane potential, or perhaps to changes in the electrochemical gradient for Ca2+ influx.  相似文献   

2.
The mechanisms by which an elevated KCl level and the K+-channel inhibitor 4-aminopyridine induce release of transmitter glutamate from guinea-pig cerebral cortical synaptosomes are contrasted. KCl at 30 mM caused an initial spike in the cytosolic free Ca2+ concentration ([Ca2+]c), followed by a partial recovery to a plateau 112 +/- 13 nM above the polarized control. The Ca2+-dependent release of endogenous glutamate, determined by continuous fluorimetry, was largely complete by 3 min, by which time 1.70 +/- 0.35 nmol/mg was released. [Ca2+]c elevation and glutamate release were both insensitive to tetrodotoxin. KCl-induced elevation in [Ca2+]c could be observed in both low-Na+ medium and in the presence of low concentrations of veratridine. 4-Aminopyridine at 1 mM increased [Ca2+]c by 143 +/- 18 nM to a plateau similar to that following 30 mM KCl. The initial rate of increase in [Ca2+]c following 4-aminopyridine administration was slower than that following 30 mM KCl, and a transient spike was less apparent. Consistent with this, the 4-aminopyridine-induced net uptake of 45Ca2+ is much lower than that following an elevated KCl level. 4-Aminopyridine induced the Ca2+-dependent release of glutamate, although with somewhat slower kinetics than that for KCl. The measured release was 0.81 nmol of glutamate/mg in the first 3 min of 4-aminopyridine action. In contrast to KCl, glutamate release and the increase in [Ca2+]c with 4-aminopyridine were almost entirely blocked by tetrodotoxin, a result indicating repetitive firing of Na+ channels. Basal [Ca2+]c and glutamate release from polarized synaptosomes were also significantly lowered by tetrodotoxin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
4-Aminopyridine is a powerful convulsant that induces the release of neurotransmitters, including glutamate. We report the effect of intrahippocampal administration of 4-aminopyridine at six different concentrations through microdialysis probes on EEG activity and on concentrations of extracellular amino acids and correlate this effect with histological changes in the hippocampus. 4-Aminopyridine induced in a concentration-dependent manner intense and frequent epileptic discharges in both the hippocampus and the cerebral cortex. The three highest concentrations used induced also a dose-dependent enhancement of extracellular glutamate, aspartate, and GABA levels and profound hippocampal damage. Neurodegenerative changes occurred in CA1, CA3, and CA4 subfields, whereas CA2 was spared. In contrast, microdialysis administration of a depolarizing K+ concentration and of tetraethylammonium resulted in increased amino acid levels but no epileptic activity and no or moderate neuronal damage. These results suggest that seizure activity induced by 4-aminopyridine is due to a combined action of excitatory amino acid release and direct stimulation of neuronal firing, whereas neuronal death is related to the increased glutamate release but is independent of seizure activity. In addition, it is concluded that the glutamate release-inducing effect of 4-aminopyridine results in excitotoxicity because it occurs at the level of nerve endings, thus permitting the interaction of glutamate with its postsynaptic receptors, which is probably not the case after K+ depolarization.  相似文献   

4.
The role of group III metabotropic glutamate receptors (mGluRs) in photoreceptor-H1 horizontal cell (HC) synaptic transmission was investigated by analyzing the rate of occurrence and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) in H1 HCs uncoupled by dopamine in carp retinal slices. Red light steps or the application of 100 microM cobalt reduced the sEPSC rate without affecting their peak amplitude, which is consistent with hyperpolarization or the suppression of Ca(2+) entry into cone synaptic terminals reducing vesicular transmitter release. Conversely, postsynaptic blockade of H1 HC AMPA receptors by 500 nM CNQX reduced the amplitude of sEPSCs without affecting their rate. This analysis of sEPSCs represents a novel methodology for distinguishing between presynaptic and postsynaptic sites of action. The selective agonist for group III mGluRs, l-2-amino-4-phosphonobutyrate (L-APB or L-AP4; 20 microM), reduced the sEPSC rate with a slight reduction in amplitude, which is consistent with a presynaptic action on cone synaptic terminals to reduce transmitter release. During L-APB application, recovery of sEPSC rate occurred with 500 microM (s)-2-methyl-2-amino-4-phosphonobutyrate (MAP4), a selective antagonist of group III mGluR, and with 200 microM 4-aminopyridine (4-AP), a blocker of voltage-dependent potassium channels. Whole-cell recordings from cones in the retinal slice showed no effect of L-APB on voltage-activated Ca(2+) conductance. These results suggest that the activation of group III mGluRs suppresses transmitter release from cone presynaptic terminals via a 4-AP-sensitive pathway. Negative feedback, operating via mGluR autoreceptors, may limit excessive glutamate release from cone synaptic terminals.  相似文献   

5.
A mechanism of the long-term potentiation of transmitter release induced by adrenaline (ALTP) was studied by recording intracellularly the fast excitatory postsynaptic potentials (fast EPSPs). The ALTP was produced during the blockade of K+ channels at the presynaptic terminals by tetraethylammonium (TEA). The synaptic delay, possibly reflecting a relative change in the duration of an action potential at the presynaptic terminal, was not changed during the course of the ALTP. By contrast, it was significantly lengthened by TEA and other K+ channel inhibitors (4-aminopyridine and Cs+) that markedly enhanced the evoked release of transmitter. The magnitude of facilitation of the fast EPSP, induced by a conditional stimulus to the preganglionic nerve, was decreased during the generation of the ALTP, but was unchanged during the potentiation of transmitter release caused by TEA. These results, together with theoretical considerations applying the residual Ca2+ hypothesis to the facilitation, suggest that the enhancement of transmitter release during the ALTP is not caused by an increased Ca2+ influx during a presynaptic impulse owing to the blockade of K+ channel or the modulation of Ca2+ channel, but presumably is induced by a rise in the basal level of free Ca2+ in the presynaptic terminal.  相似文献   

6.
The inhibitory effect of an adenosine analogue, R-N6-phenylisopropyl adenosine (R-PIA), of the cholinergic agonist carbachol, and of morphine on 3H efflux from [3H]choline-labeled field-stimulated rat hippocampal slices was compared with that produced by two inhibitors of N- and L-type Ca2+ channels, omega-conotoxin (CgTx; conotoxin GVIA) and cadmium chloride. 4-Aminopyridine (4-AP) caused a dose-dependent increase in evoked transmitter release, with a maximal effect (an almost threefold increase) at 100 microM. 4-AP (100 microM) did not affect the actions of CgTx, cadmium chloride, and R-PIA but almost abolished the effect of carbachol and morphine. The present results indicate that presynaptic muscarinic and opiate receptors reduce acetylcholine release by a mechanism that is somewhat different from that used by adenosine A1 receptors. Furthermore, the results indicate that presynaptic A1 receptors on hippocampal cholinergic neurons do not primarily regulate 4-AP-dependent potassium channels, but that they might act directly on a Ca2+ conductance.  相似文献   

7.
The action of arachidonic acid on glutamate release in rat cerebrocortical synaptosomes was investigated. The Ca(2+)-dependent release of glutamate evoked by 4-aminopyridine (4-AP) was inhibited by arachidonic acid (0.5-10 microM), but the KCl-evoked release was not modified. The Ca(2+)-independent release of glutamate was insensitive to low concentrations of arachidonic acid, but higher concentrations of this free fatty acid (30 microM) induced a slow efflux of cytoplasmic glutamate. The decrease in the Ca(2+)-dependent release of glutamate by arachidonic acid was consistent with a reduction in both the depolarization and the subsequent rise in the cytoplasmic free Ca2+ concentration induced by 4-AP in the nerve terminal. The inhibitory action by arachidonic acid observed in glutamate release was reversed in the presence of the K(+)-channel blocker tetraethylammonium.  相似文献   

8.
The effects of adenosine and nifedipine on endogenous acetylcholine (ACh) release evoked by electrical stimulation from guinea pig ileal longitudinal muscle preparations exposed to physostigmine were evaluated using an HPLC with electrochemical detection (ECD) system. Resting ACh release, which was sensitive to tetrodotoxin (0.3 microM), was enhanced by Bay K 8644 (0.5 microM; a Ca2+ antagonist) or 4-aminopyridine (30 microM; a K+ channel blocker) but not by theophylline (100 microM; a P1 purinoceptor antagonist) or atropine (0.3 microM). The enhancement of the resting ACh release by Bay K 8644 was virtually unaffected by atropine. Electrically evoked ACh release was enhanced by around two- to fourfold in the presence of theophylline, atropine, Bay K 8644, 4-aminopyridine, or atropine. On the other hand, the evoked ACh release was reduced by adenosine (10-30 microM), nifedipine (0.1-0.3 microM; a dihydropyridine Ca2+ channel antagonist), or bethanechol (1-3 microM) in a concentration-related fashion. The reduction induced by adenosine or nifedipine was almost abolished by either theophylline or Bay K 8644, whereas that induced by bethanechol was virtually unaffected by these drugs. The inhibition by adenosine of ACh release was not influenced in the presence of 4-aminopyridine or atropine. However, this inhibition by adenosine was considerably enhanced by halving the Ca2+ concentration in the Krebs solution and was diminished by doubling the Ca2+ concentration. These findings suggest that adenosine produces a cholinergic neuromodulation presumably via modifying dihydropyridine-sensitive Ca2+ channel activities in the cholinergic neurons, and thus L-type Ca2+ channels may exist on the nerve terminals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
In cats under pentobarbital anaesthesia, intramotoneuronal administrations of 4-aminopyridine significantly prolong the falling phase of the antidromic action potential but have much less effect on the orthodromic action potential. 4-aminopyridine probably blocks the fast K channels involved in the repolarization of the membrane and indirectly activates ionic channels through enhancement of synaptic transmission, also suggested by the potentiation of excitatory postsynaptic potentials. In many cells, 4-aminopyridine depresses the amplitude and prolongs the time course of the after-hyperpolarization; therefore 4-aminopyridine may also partly block Ca2+-activated K+ channels.  相似文献   

10.
The effect of lead ions on the release of acetylcholine (ACh) was investigated in intact and digitonin-permeabilized rat cerebrocortical synaptosomes that had been prelabeled with [3H]choline. Release of ACh was inferred from the release of total 3H label or by determination of [3H]ACh. Application of 1 microM Pb2+ to intact synaptosomes in Ca2(+)-deficient medium induced 3H release, which was enhanced by K+ depolarization. This suggests that entry of Pb2+ into synaptosomes and Pb2(+)-induced ACh release can be augmented by activation of the voltage-gated Ca2+ channels in nerve terminals. The lead-induced release of [3H]ACh was blocked by treatment of synaptosomes with vesamicol, which prevents uptake of ACh into synaptic vesicles without affecting its synthesis in the synaptoplasm. This indicates that Pb2+ selectively activates the release of a vesicular fraction of the transmitter with little or no effect on the leakage of cytoplasmic ACh. Application of 1-50 nM (EC50 congruent to 4 nM) free Pb2+ to digitonin-permeabilized synaptosomes elicited release of 3H label that was comparable with the release induced by 0.2-5 microM (EC50 congruent to 0.5 microM) free Ca2+. This suggests that Pb2+ triggers transmitter exocytosis directly and that it is a some 100 times more effective activator of exocytosis than is the natural agonist Ca2+.  相似文献   

11.
The release of endogenous glutamate from guinea-pig cerebrocortical synaptosomes evoked by dendrotoxin, beta-bungarotoxin, and 4-aminopyridine is compared. Dendrotoxin and 4-aminopyridine cause Ca2+-dependent release, representing a partial depletion of the KCl-releasable transmitter pool. The decrease in the plasma membrane potential caused by 4-aminopyridine or dendrotoxin and the evoked release of glutamate from a transmitter pool accord with the inhibitory action of these agents on certain K+ conductances. In contrast, the massive release of glutamate evoked by beta-bungarotoxin is produced in the presence of Ca2+ but not of Sr2+, a result consistent with a generalised permeabilisation of synaptosomal plasma membranes. Although dendrotoxin inhibits the binding of beta-bungarotoxin and the resultant synaptosomal lysis, demonstration of a direct effect of beta-bungarotoxin binding per se on K+ permeability is impractical owing to its phospholipase A2 activity.  相似文献   

12.
Effects of stimulation of intramural nerves in the circular smooth muscle layer of the porcine colon (Sus scrofa domestica) were studied using the sucrose-gap technique. Electrical field stimulation of the preparation, superfused with Krebs solution at 21 degrees C, induced a transient hyperpolarization of the smooth muscle cell membrane. This hyperpolarization was an inhibitory junction potential (IJP). The responses obtained from circular muscle originating from either the centripetal or centrifugal gyri of the ascending colon did not differ significantly. The IJP was characterized as being mediated by intramural, nonadrenergic, noncholinergic (NANC) nerves. The amplitude and latency of the IJP changed linearly with temperature (15-25 degrees C: +1 mV and -0.1 s per degree Celsius, respectively) reflecting a temperature-dependent synchronization of transmitter release. The membrane resistance decreased during the IJP. The IJP amplitude decreased or increased during conditioning hyperpolarizations or depolarizations, respectively, and reversed at membrane potentials about 30 mV more negative than the resting membrane potential. Potassium conductance blocking agents, barium (1 mM), tetraethylammonium chloride (TEA, 20 mM), 4-aminopyridine (4-AP, 5 mM), apamin (1 microM), and aminacrine (10(-4) M) added to the superfusion medium increased the membrane resistance. Only barium, TEA, and apamin depolarized the smooth muscle cell membrane. The IJP amplitude decreased in the presence of aminacrine and apamin to 75 and 35%, respectively, suggesting that apamin-sensitive Ca2+-activated K+ channels are involved in this response. ATP, adenosine, and related adenine nucleotides in concentrations up to 10(-3) M did not mimic the IJP. Superfusion with ATP for 15 min revealed a gradually increasing attenuation by up to 20% of the IJP. This might suggest that the release of neurotransmitter from intramural NANC nerves is modulated presynaptically via purinoceptors. Exogenously applied vasoactive intestinal polypeptide (VIP) in concentrations of 10(-9) to 10(-4) M did not affect the preparation. Also at elevated temperatures (up to 35 degrees C), VIP (10(-7) to 10(-4) M) did not cause measurable effects. It is concluded that the inhibitory mediator of the intramural NANC nerves present in the circular muscle layers of the porcine colon is neither a purine nor VIP.  相似文献   

13.
This study aimed to test whether nerve-evoked and adenosine-induced synaptic depression are due to reduction in Ca2+ entry in nerve terminals of the frog neuromuscular junction. Nerve terminals were loaded with the fluorescent Ca2+ indicator fluo 3 (fluo 3-AM) or loaded with dextran-coupled Ca2+ green-1 transported from the cut end of the nerve. Adenosine (10-50 microM) did not change the resting level of Ca2+ in the presynaptic terminal, whereas it induced large Ca2+ responses in perisynaptic Schwann cells, indicating that adenosine was active and might have induced changes in the level of Ca2+ in the nerve terminal. Ca2+ responses in nerve terminals could be induced by nerve stimulation (0.5 or 100 Hz for 100 ms) over several hours. In the presence of adenosine (10 microM), the size and duration of the nerve-evoked Ca2+ responses were unchanged. When extracellular Ca2+ concentration was lowered to produce the same reduction in transmitter release as the application of adenosine, Ca2+ responses induced by nerve stimulations were reduced by 40%. This indicates that changes in Ca2+ responsible for the decrease in release should have been detected if the mechanism of adenosine depression involved partial block of Ca2+ influx. Ca2+ responses evoked by prolonged high frequency trains of stimuli (50 Hz for 10 or 30 s), which caused profound depression of transmitter release, were sustained during the whole duration of the stimulation, and adenosine had no effect on these responses. These data indicate that neither adenosine induced synaptic depression nor stimulation-induced synaptic depression are caused by reductions in Ca2+ entry into the presynaptic terminal in the frog neuromuscular junction.  相似文献   

14.
Pore properties that distinguish two cloned, voltage-gated K+ channels, Kv2.1 and Kv3.1, include single-channel conductance, block by external and internal tetraethylammonium, and block by 4-aminopyridine. To define the inner mouth of voltage-gated K+ channels, segmental exchanges and point mutations of nonconserved residues were used. Transplanting the cytoplasmic half of either transmembrane segments S5 or S6 from Kv3.1 into Kv2.1 reduced sensitivity to block by internal tetraethylammonium, increased sensitivity to 4-aminopyridine, and reduced single-channel conductance. In S6, changes in single-channel conductance and internal tetraethylammonium sensitivity were associated with point mutations V400T and L403 M, respectively. Although individual residues in both S5 and S6 were found to affect 4-aminopyridine blockade, the most effective change was L327F in S5. Thus, both S5 and S6 contribute to the inner mouth of the pore but different residues regulate ion conduction and blockade by internal tetraethylammonium and 4-aminopyridine.  相似文献   

15.
Presynaptic calcium and control of vesicle fusion   总被引:13,自引:0,他引:13  
Vesicle fusion and transmitter release at synapses is driven by a highly localized Ca2+ signal that rapidly builds up around open Ca2+-channels at and near presynaptic active zones. It has been difficult to estimate the amplitude and the kinetics of this 'microdomain' signal by direct Ca2+-imaging approaches. Recently, Ca2+ uncaging at large CNS synapses, among them the calyx of Held, has shown that the intrinsic cooperativity of Ca2+ in inducing vesicle fusion is high, with 4-5 Ca2+ ions needed to trigger vesicle fusion. Given the Ca2+-sensitivity of vesicle fusion as determined by Ca2+-uncaging, it was found that a surprisingly small (10-25 microM) and brief (<1 ms) local Ca2+ signal is sufficient to achieve the amount, and the kinetics of the physiological transmitter release. The high cooperativity of Ca2+ in inducing vesicle fusion and the non-saturation of the Ca2+-sensor for vesicle fusion renders small changes of the local Ca2+-signal highly effective in changing the release probability; an insight that is important for our understanding of short-term modulation of synaptic strength.  相似文献   

16.
Canine basilar artery rings precontracted with 5-hydroxytryptamine (0.1-0.5 microM) relaxed in the presence of acetylcholine (25-100 microM), sodium nitroprusside (0.1 microM), or stimulation of the electrogenic sodium pump by restoration of extracellular K+ (4.5 mM) after K(+)-deprivation. Acetylcholine-induced relaxation is believed to be caused by the release of endothelium-derived relaxing factor (EDRF) and is prevented by mechanical removal of the endothelium, while relaxations induced by sodium nitroprusside or restarting of the sodium pump are endothelium-independent. Acetylcholine-induced relaxation was selectively blocked by pretreatment of the tissue with the nonselective K+ conductance inhibitors, 4-aminopyridine (4-AP, 3 mM), Ba2+ (1 mM), and tetraethylammonium (20 mM), 4-AP also blocked ACh-mediated relaxation in muscles contracted with elevated external K+. Relaxation of 5-hydroxytryptamine-induced contraction by sodium nitroprusside, or by addition of K+ to K(+)-deprived muscle, was not affected by 4-AP. Relaxation of basilar artery with acidified sodium nitrite solution (containing nitric oxide) was reduced by 4-AP. These results suggest that 4-AP and possibly Ba2+ inhibit acetylcholine-induced endothelium-dependent relaxation by inhibition of the action of EDRF on the smooth muscle rather than through inhibition of release of EDRF. The increase in K+ conductance involved in acetylcholine-induced relaxation is not due to ATP-inhibited K+ channels, as it is not blocked by glyburide (10(-6) M). Endothelium-derived relaxant factor(s) may relax smooth muscle by mode(s) of action different from that of sodium nitroprusside or by hyperpolarization due to the electrogenic sodium pumping.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We have studied the role of src family tyrosine kinases in regulating synaptic transmitter release from rat brain synaptosomes by using two assays that measure different aspects of synaptic vesicle exocytosis: glutamate release (that directly measures exocytosis of vesicle contents) and release of FM 2-10 styryl dye (that is proportional to the time the synaptic vesicle is fused to the plasma membrane). Depolarisation was induced by KCl (30 mM) or 4-aminopyridine (4AP: 0.3mM) to induce release by full fusion (FF) exocytosis, or by 1 mM 4AP to induce release by both FF and kiss-and-run (KR)-like exocytosis. The src family selective inhibitor, PP1 (10 microM), increased KCl and 0.3 mM 4AP-evoked Ca2+ -dependent release of glutamate, but had little effect upon exocytosis evoked by 1mM 4AP. PP1 did not affect the release of FM 2-10 under any of the depolarisation conditions used. PP1 also had no effect on overall intracellular calcium levels, as measured by FURA2, suggesting that the effects of the inhibitor are downstream of calcium entry. At the same concentration the inactive analogue of this compound, PP3, had no effect on any measure. Immunoblotting with an antibody to phosphotyrosine revealed that phosphorylation of many synaptosomal proteins was reduced by PP1. The immunoreactivity of three protein bands increased upon depolarisation and this increase was blocked by PP1. Phosphorylation of src at tyrosine-416 was reduced by PP1 but changes in its phosphorylation did not correlate with the effects of PP1 on release. These results suggest one or more members of the src family of tyrosine kinases is a negative regulator of the KR mode of exocytosis in synaptosomes, perhaps by tonically inhibiting KR under normal stimulation conditions.  相似文献   

18.
Mb1 bipolar cells (ON-type cells) of the goldfish retina have exceptionally large (approximately 10 microns in diameter) presynaptic terminals, and thus, are suitable for investigating presynaptic mechanisms for transmitter release. Using enzymatically dissociated Mb1 bipolar cells under whole-cell voltage clamp, we measured the Ca2+ current (ICa), the intracellular free Ca2+ concentration ([Ca2+]i), and membrane capacitance changes associated with exocytosis and endocytosis. Release of transmitter (glutamate) was monitored electrophysiologically by a glutamate receptor-rich neuron as a probe. L-type Ca2+ channels were localized at the presynaptic terminals. The presynaptic [Ca2+]i was strongly regulated by cytoplasmic Ca2+ buffers, the Na(+)-Ca2+ exchanger and the Ca2+ pump in the plasma membrane. Once ICa was activated, a steep Ca2+ gradient was created around Ca2+ channels; [Ca2+]i increased to approximately 100 microM at the fusion sites of synaptic vesicles whereas up to approximately 1 microM at the cytoplasm. The short delay (approximately 1 ms) of exocytosis and the lack of prominent asynchronous release after the termination of ICa suggested a low-affinity Ca2+ fusion sensor for exocytosis. Depending on the rate of Ca2+ influx, glutamate was released in a rapid phasic mode as well as a tonic mode. Multiple pools of synaptic vesicles as well as vesicle cycling seemed to support continuous glutamate release. Activation of protein kinase C increased the size of synaptic vesicle pool, resulting in the potentiation of glutamate release. Goldfish Mb1 bipolar cells may still be an important model system for understanding the molecular mechanisms of transmitter release.  相似文献   

19.
Activation of Ca2+-dependent K+ conductance has long been postulated to contribute to the cyclical pauses in glucose-induced electrical activity of pancreatic islet B cells. Here we have examined the gating, permeation and blockade by cations of a large-conductance, Ca2+-activated K+ channel in these cells. This channel shares many features with BK (or maxi-K+) Ca2+-activated K+ channels in other cells. (1) Its 'permeability' selectivity sequence is PT1+: PK+: PRb+: PNH4+: PNa+, Li+, Cs+ = 1.3:1.0:0.5:0.17: less than 0.05. Permeant, as well as impermeant, cations reduce channel conductance. (2) Its conductance saturates at 325-350 pS with bath KCl greater than 400 mM (144 mM KCl pipette). (3) It shows asymmetric blockade by tetraethylammonium ion (TEA) and Na+. (4) It is sensitive to Ca2+i over the range 5 nM-100 microM; over the range 50-200 nM, channel activity varies as [Ca2+ free]1-2. (5) It is sensitive to internal pH over the range 6.85-7.35, but the decrease in channel activity seen with reduced pHi may be partially compensated by the increase in free Ca2+ concentration which occurs on acidification of buffered Ca2+/EGTA solutions.  相似文献   

20.
We examined the effects of the endocannabinoide-anandamide (AEA), the synthetic cannabinoid, WIN55,212-2, and the active phorbol ester, 4-beta-phorbol 12-myristate 13-acetate (4-beta-PMA), on the release of [(3)H]d-Aspartate ([(3)H]d-ASP) from rat hippocampal synaptosomes. Release was evoked with three different stimuli: (1) KCl-induced membrane depolarization, which activates voltage-dependent Ca(2+) channels and causes limited neurotransmitter exocytosis, presumably from ready-releasable vesicles docked in the active zone; (2) exposure to the Ca(2+) ionophore-A23187, which causes more extensive transmitter release, presumably from intracellular reserve vesicles; and (3) K(+) channel blockade by 4-aminopyridine (4-AP), which generates repetitive depolarization that stimulates release from both ready-releasable and reserve vesicles. AEA produced concentration-dependent inhibition of [(3)H]d-ASP release stimulated with 15 mM KCl (E(max)=47.4+/-2.8; EC(50)=0.8 microM) but potentiated the release induced by 4-AP (1mM) (+22.0+/-1.3% at 1 microM) and by A23187 (1 microM) (+98.0+/-5.9% at 1 microM). AEA's enhancement of the [(3)H]d-ASP release induced by the Ca(2+) ionophore was mimicked by 4-beta-PMA, which is known to activate protein kinase C (PKC), and the increases produced by both compounds were completely reversed by synaptosome treatment with staurosporine (1 microM), a potent PKC blocker. In contrast, WIN55,212-2 inhibited the release of [(3)H]d-ASP evoked by KCl (E(max)=47.1+/-2.8; EC(50)=0.9 microM) and that produced by 4-AP (-26.0+/-1.5% at 1 microM) and had no significant effect of the release induced by Ca(2+) ionophore treatment. AEA thus appears to exert a dual effect on hippocampal glutamatergic nerve terminals. It inhibits release from ready-releasable vesicles and potentiates the release observed during high-frequency stimulation, which also involves the reserve vesicles. The latter effect is mediated by PKC. These findings reveal novel effects of AEA on glutamatergic nerve terminals and demonstrate that the effects of endogenous and synthetic cannabinoids are not always identical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号