共查询到20条相似文献,搜索用时 0 毫秒
1.
Daisuke Yamamoto Hiroshi Washio Jun-Ichi Fukami 《Archives of insect biochemistry and physiology》1983,1(1):33-39
The mechanism of action of chlordimeform on the mealworm nerve-muscle preparation was studied with microelectrodes. Chlordimeform affected neither the mean amplitude nor the frequency of spontaneous miniature excitatory postsynaptic potentials. Extracellular focal recordings show that in the presence of 0.8 mM chlordimeform the presynaptic spike is almost unchanged, but the quantal content for evoked transmitter release is reduced. It is suggested that chlordimeform decreases the influx of calcium at the presynaptic terminal during the active phase of the nerve terminal action potential, thereby inhibiting evoked transmitter release. 相似文献
2.
3.
For the purpose of elucidating the mechanism of action of stannous ion (Sn2+), we investigated effects of stannous chloride (SnCl2) on the twitch and on the electrical phenomena in the muscle fiber. Sciatic nerve-sartorius muscle preparations from the bullfrog were used as the material. Effect of SnCl2 was examined on the twitch partially inhibited by pretreatment with d-tubocurarine. SnCl2 (1-100 microM) antagonized d-tubocurarine and enhanced the twitch dose-dependently. Tartaric acid, which is the solvent used for SnCl2 solution, had no augmentative effect on the twitch, even at a concentration as high as 250 microM. SnCl2 (1-50 microM) increased the amplitude of the endplate potential; that is, it exerted an anti-curare action. The resting potential and the membrane resistance of the muscle fiber were not altered by 30 microM SnCl2. These findings lead to the conclusion that Sn2+ enhances the twitch by increasing the endplate potential of the muscle fibers. 相似文献
4.
The time course of carbachol-induced desensitization onset and recovery of sensitivity after desenitization have been compared at the frog neuromuscular junction. The activation-desensitization sequence was determined from input conductance measurements using potassium-depolarized muscle preparations. Both desensitization onset and recovery from desensitization could be adequately described by single time constant expressions, with tauonset being considerably shorter than taurecovery. In nine experiments, tauonset was 13+/-1.3 s and taurecovery was 424+/-51 s with 1 mM carbachol. Elevating the external calcium or carbachol concentration accelerated desensitization onset without changing the recovery of sensitivity after equilibrium desensitization. Desensitization onset was accelerated by a prior activation-desensitization sequence to an extent determined by the recovery interval that followed the initial carbachol application. The time course of return of tauonset was closely parallel to, but slower than the time course of recovery of sensitivity. These results are consistent with a cyclic model in which intracellular calcium is a factor controlling the rate of development of desensitization. 相似文献
5.
D A Saint 《Canadian journal of physiology and pharmacology》1989,67(9):1045-1050
The effect of 4-aminopyridine and tetraethylammonium on the time course of neurotransmitter release was examined at the neuromuscular junction using a computer-aided method which directly measured the time of occurrence of individual quanta. It is apparent that the action of 4-aminopyridine, at concentrations of 0.1 to 1 mM, when examined in isolation from other experimental manipulations, is to cause a greatly enhanced probability of release at times subsequent to the time over which the initial phase is essentially unchanged, i.e., there is no evidence of an increased latency of release caused by 4-aminopyridine. Similar results were obtained with tetraethylammonium, although the prolongation of release was much less, even at a concentration of 1 mM. The results are consistent with the view that the predominant action of 4-aminopyridine is to block the potassium conductance responsible for repolarization of the action potential and hence cause a prolonged Ca2+ current. The action of tetraethylammonium is consistent with the block of a different K+ conductance, with consequent enhancement of action potential effectiveness, but with little prolongation of release. The observation of multiple peaks, or oscillations in the release probability function at high (ca. 1 mM) concentrations of 4-aminopyridine, may be related, as is suggested, to oscillations of presynaptic membrane potential, or perhaps to changes in the electrochemical gradient for Ca2+ influx. 相似文献
6.
Synaptic vesicle pools at the frog neuromuscular junction 总被引:12,自引:0,他引:12
We have characterized the morphological and functional properties of the readily releasable pool (RRP) and the reserve pool of synaptic vesicles in frog motor nerve terminals using fluorescence microscopy, electron microscopy, and electrophysiology. At rest, about 20% of vesicles reside in the RRP, which is depleted in about 10 s by high-frequency nerve stimulation (30 Hz); the RRP refills in about 1 min, and surprisingly, refilling occurs almost entirely by recycling, not mobilization from the reserve pool. The reserve pool is depleted during 30 Hz stimulation with a time constant of about 40 s, and it refills slowly (half-time about 8 min) as nascent vesicles bud from randomly distributed cisternae and surface membrane infoldings and enter vesicle clusters spaced at regular intervals along the terminal. Transmitter output during low-frequency stimulation (2-5 Hz) is maintained entirely by RRP recycling; few if any vesicles are mobilized from the reserve pool. 相似文献
7.
Shakirzianova AV Bukharaeva EA Giniatullin RA Nikol'skiĭ EE 《Rossi?skii fiziologicheski? zhurnal imeni I.M. Sechenova / Rossi?skaia akademiia nauk》2006,92(6):761-770
Experiments on the frog sartorius muscle showed that nonhydrolisable acetylcholine analog carbachol (CCh) depresses spontaneous quantal mediator release via muscarinic M2 receptors of nerve ending. Adenosine (Ade) acting via inhibitory A1 receptors is another strong spontaneous quantal release modulator. Inhibition of pertussis toxin (PTx)-sensitive G-proteins only partly eliminated CCh and Ade depressive action. It means metabotropic A1 and M2 receptors of the frog nerve ending regulate spontaneous quantal release via activating of both PTx-sensitive and PTx-insensitive inhibitory mechanisms. 相似文献
8.
Mitochondria with high membrane potential (ΔΨm) are enriched in the presynaptic nerve terminal at vertebrate neuromuscular junctions, but the exact function of these localized synaptic mitochondria remains unclear. Here, we investigated the correlation between mitochondrial ΔΨm and the development of synaptic specializations. Using mitochondrial ΔΨm-sensitive probe JC-1, we found that ΔΨm in Xenopus spinal neurons could be reversibly elevated by creatine and suppressed by FCCP. Along naïve neurites, preexisting synaptic vesicle (SV) clusters were positively correlated with mitochondrial ΔΨm, suggesting a potential regulatory role of mitochondrial activity in synaptogenesis. Indicating a specific role of mitochondrial activity in presynaptic development, mitochondrial ATP synthase inhibitor oligomycin, but not mitochondrial Na+/Ca2+ exchanger inhibitor CGP-37157, inhibited the clustering of SVs induced by growth factor–coated beads. Local F-actin assembly induced along spinal neurites by beads was suppressed by FCCP or oligomycin. Our results suggest that a key role of presynaptic mitochondria is to provide ATP for the assembly of actin cytoskeleton involved in the assembly of the presynaptic specialization including the clustering of SVs and mitochondria themselves. 相似文献
9.
Calcium-activated potassium conductance in presynaptic terminals at the crayfish neuromuscular junction
下载免费PDF全文

Membrane potential changes that typically evoke transmitter release were studied by recording intracellularly from the excitor axon near presynaptic terminals of the crayfish opener neuromuscular junction. Depolarization of the presynaptic terminal with intracellular current pulses activated a conductance that caused a decrease in depolarization during the constant current pulse. This conductance was identified as a calcium-activated potassium conductance, gK(Ca), by its disappearance in a zero-calcium/EGTA medium and its block by cadmium, barium, tetraethylammonium ions, and charybdotoxin. In addition to gK(Ca), a delayed rectifier potassium conductance (gK) is present in or near the presynaptic terminal. Both these potassium conductances are involved in the repolarization of the membrane during a presynaptic action potential. 相似文献
10.
Mitochondrial clustering at the vertebrate neuromuscular junction during presynaptic differentiation
During vertebrate neuromuscular junction (NMJ) development, presynaptic motor axons differentiate into nerve termini enriched in synaptic vesicles (SVs). At the nerve terminal, mitochondria are also concentrated, but how mitochondria become localized at these specialized domains is poorly understood. This process was studied in cultured Xenopus spinal neurons with mitochondrion-specific probe MitoTracker and SV markers. In nerve-muscle cocultures, mitochondria were concentrated stably at sites where neurites and muscle cells formed NMJs, and mitochondria coclustered with SVs where neurites were focally stimulated by beads coated with growth factors. Labeling with a mitochondrial membrane potential-dependent probe JC-1 revealed that these synaptic mitochondria were with higher membrane potential than the extrasynaptic ones. At early stages of bead-stimulation, actin-based protrusions and microtubule fragmentation were observed in neurites at bead contact sites, suggesting the involvement of cytoskeletal dynamics and rearrangement during presynaptic differentiation. Treating the cultures with an actin polymerization blocker, latrunculin A (Ltn A), almost completely abolished the formation of actin-based protrusions and partially inhibited bead-induced mitochondrial and SV clustering, whereas the microtubule disrupting agent nocodazole was ineffective in inhibiting the clustering of mitochondria and SVs. Lastly, in contrast to Ltn A, which blocked bead-induced clustering of both mitochondria and SVs, the ser/thr phosphatase inhibitor okadaic acid inhibited SV clustering but not mitochondrial clustering. These results suggest that at developing NMJs, synaptogenic stimuli induce the clustering of mitochondria together with SVs at presynaptic terminals in an actin cytoskeleton-dependent manner and involving different intracellular signaling molecules. 相似文献
11.
Action of Co and Ni at the frog neuromuscular junction 总被引:2,自引:0,他引:2
12.
A model for 4-aminopyridine action on K channels: similarities to tetraethylammonium ion action.
下载免费PDF全文

We present a model for the action of 4-aminopyridine (4AP) on K channels. The model is closely based on the gating current studies of the preceding paper and has been extended to account for ionic current data in the literature. We propose that 4AP, like tetraethylammonium ion and other quaternary ammonium ions, enters and leaves the channel only when the activation gate is open, a proposal that is strongly supported by the literature. Once in the open channel, 4AP's major action is to bias the activation gate toward the closed conformation by approximately the energy of a hydrogen bond. S4 segment movement, as reflected in gating currents, is almost normal for a 4AP-occupied channel; only the final opening transition is affected. The model is qualitatively the same as the one used for many years to explain the action of quaternary ammonium ions. 相似文献
13.
C P Ko 《The Journal of cell biology》1984,98(5):1685-1695
The active zone is a unique specialization of the presynaptic membrane and is believed to be the site of transmitter release. The formation of the active zone and the relationship of this process to transmitter release were studied at reinnervated neuromuscular junctions in the frog. At different times after a nerve crush, the cutaneous pectoris muscles were examined with intracellular recording recording and freeze-fracture electron microscopy. The P face of a normal active zone typically consists of two double rows of particles lined up in a continuous segment located opposite a junctional fold. In the initial stage of reinnervation, clusters of large intramembrane particles surrounding membrane elevations appeared on the P face of nerve terminals. Like normal active zones, these clusters were aligned with junctional folds. Vesicle openings, which indicate transmitter release, were seen at these primitive active zones, even though intramembrane particles were not yet organized into the normal pattern of two double rows. The length of active zones at this stage was only approximately 15% of normal. During the secondary stage, every junction was reinnervated and most active zones had begun to organize into the normal pattern with normal orientation. Unlike normal, there were often two or more discontinuous short segments of active zone aligned with the same junctional fold. The total length of active zone per junctional fold increased to one-third of normal, mainly because of the greater number of segments. In the third stage, the number of active zone segments per junctional fold showed almost no change when compared with the secondary stage. However, individual segments elongated and increased the total length of all active zone segments per junctional fold to about two-thirds of the normal length. The dynamic process culminated in the final stage, during which elongating active zones appeared to join together and the number of active zone segments per junctional fold decreased to normal. Thus, in most regions, regeneration of the active zones was complete. These results suggest that the normal organization of two double rows is not necessary for the active zone to be functional. Furthermore, localization of regenerating active zones is related to junctional folds and/or their associated structures. 相似文献
14.
《The Journal of cell biology》1984,98(2):685-698
Frog nerve-muscle preparations were quick-frozen at various times after a single electrical stimulus in the presence of 4-aminopyridine (4-AP), after which motor nerve terminals were visualized by freeze-fracture. Previous studies have shown that such stimulation causes prompt discharge of 3,000-6,000 synaptic vesicles from each nerve terminal and, as a result, adds a large amount of synaptic vesicle membrane to its plasmalemma. In the current experiments, we sought to visualize the endocytic retrieval of this vesicle membrane back into the terminal, during the interval between 1 s and 2 min after stimulation. Two distinct types of endocytosis were observed. The first appeared to be rapid and nonselective. Within the first few seconds after stimulation, relatively large vacuoles (approximately 0.1 micron) pinched off from the plasma membrane, both near to and far away from the active zones. Previous thin-section studies have shown that such vacuoles are not coated with clathrin at any stage during their formation. The second endocytic process was slower and appeared to be selective, because it internalized large intramembrane particles. This process was manifest first by the formation of relatively small (approximately 0.05 micron) indentations in the plasma membrane, which occurred everywhere except at the active zones. These indentations first appeared at 1 s, reached a peak abundance of 5.5/micron2 by 30 s after the stimulus, and disappeared almost completely by 90 s. Previous thin-section studies indicate that these indentations correspond to clathrin-coated pits. Their total abundance is comparable with the number of vesicles that were discharged initially. These endocytic structures could be classified into four intermediate forms, whose relative abundance over time suggests that, at this type of nerve terminal, endocytosis of coated vesicles has the following characteristics: (a) the single endocytotic event is short lived relative to the time scale of two minutes; (b) earlier forms last longer than later forms; and (c) a single event spends a smaller portion of its lifetime in the flat configuration soon after the stimulus than it does later on. 相似文献
15.
Identification of an intracellular postsynaptic antigen at the frog neuromuscular junction 总被引:6,自引:16,他引:6
下载免费PDF全文

《The Journal of cell biology》1982,94(3):521-530
A layer of amorphous, electron-dense material is situated at the cytoplasmic surface of the postsynaptic membrane of vertebrate neuromuscular synapses. The function of this structure is not clear, but its location suggests that it may have an important role in the formation and/or maintenance of the synapse. This paper demonstrates that a monoclonal antibody raised against antigens from Torpedo electric organ binds to an intracellular, postsynaptic protein at the frog neuromuscular synapse. Indirect immunofluorescence on frozen sections of frog muscle was used to demonstrate that the antigen is concentrated at synaptic sites in normal muscle. In denervated muscle, the antigen remains concentrated at synaptic sites, but is also present at extrasynaptic regions of denervated myofibers. The antigen cannot be labeled in intact, whole muscle, but only in whole muscle that has been permeabilized with nonionic detergents. The antibody staining pattern in Triton X-100-permeabilized whole-mounts of the frog neuromuscular synapse is arranged in elongate, arborized areas which are characteristic of the frog neuromuscular synapse. The stained areas are striated and the striations occur with a periodicity that corresponds to the regular folding of the postsynaptic membrane. Immunoferritin labeling of fixed, saponin-permeabilized muscle demonstrates that the antigen is associated with amorphous material that is situated between the postsynaptic membrane and an underlying layer of intermediate filaments. The antigen, solubilized from membrane and an underlying layer of intermediate filaments. The antigen, solubilized from Torpedo electric organ by high ionic strength, was identified by antibody binding to nitrocellulose replicas of SDS gels of Torpedo tissue. In Torpedo tissue, the antibody binds to a single protein band at 51,000 daltons (51 kd). The 51-kd protein shares an antigenic determinant with intermediate filament proteins, since a monoclonal antibody to all intermediate filaments reacts with the same 51-kd protein. The monoclonal antibody also reacts with a 55-kd protein in frog skin which is localized to the perinuclear region of the epithelial cells. 相似文献
16.
17.
18.
The effects were studied of ethimizol, a substance activating memory processes, on features of synaptic transmission during experiments on frog cutaneous pectoris muscle. It was found that the presynaptic action of ethimizol consists of raising the frequency of miniature potentials, when used at a concentration of 0.5–10 mM, and modulating quantal content of synaptic transmission due to changes in binomial quantal release parameters p and n when 0.5–2 mM ethimizol was used. This substance facilitated transmission at synapses with a low initial level of transmitter release. This substance facilitated transmission at synapses with a low initial level of transmitter release. Ethimizol was also found to have a postsynaptic action, consisting of reducing amplitude at a concentration of 5–10 mM and prolonging synaptic currents and potentials when concentrations of 0.5–10 mM were used. The latter effect produced a considerable increase in the time integral of endplate potentials. The postsynaptic action of ethimizol is perhaps seen in its effects on features of postsynaptic ionic channels. The effects of ethimizol are discussed with a view to how it may act within the central nervous system as a nonspecific modulator.A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 17, No. 6, pp. 757–763, November–December, 1985. 相似文献
19.
The population of large dense-core vesicles (LDCVs) in motor nerve terminals of the frog cutaneous pectoris muscle was analysed after various experimental protocols leading to large acetylcholine release. Three types of LDCVs classified according to their size and the core density were detected. Vesicles, 100–150 nm in diameter, with a large and very dense core (type 1) or with an irregular and diffuse dense core (type 2) were present in similar proportions (45 and 50% respectively) in controls. Smaller vesicles, 50–80 nm in diameter, with a very dense core (type 3) were rare, representing around 5% of the cored vesicles. The relative proportion of type 1 and type 2 LDCVs was not modified after prolonged treatment with 25 mM K+. In contrast, the proportion of type 2 LDCVs significantly increased whereas that of type 1 LDCVs decreased after two or three series of 20 Hz electrical stimuli applied to the nerve at 5 s intervals. These changes suggest that type 2 LDCVs are newly recycled LDCVs in the process of reloading. Images of fusion of LDCVs with the axolemma in regions facing Schwann cell digitations were observed both in K+- and in electrically stimulated preparations. They indicate that exocytosis of LDCVs at the frog neuromuscular junction takes place preferentially away from the active zones. The presence of a clathrin-like coat on large pockets still containing a core and of both type 1 and type 2 LDCVs in the vicinity of coated pockets strongly suggests that LDCVs might undergo a combined process of exo–endocytosis at the same site. 相似文献
20.
Divalent cation effects on acetylcholine-activated channels at the frog neuromuscular junction 总被引:1,自引:0,他引:1
Carol A. Lewis 《Cellular and molecular neurobiology》1984,4(3):273-284
The effects of the divalent cations Ca and Mg on the properties of ACh-activated channels at the frog neuromuscular junction were studied using a two-microelectrode voltage clamp. The divalent cation concentration was varied from 2 to 40 mM in solutions containing 50% normal Na. The reversal potential was determined by interpolation of the acetylcholine (ACh)-induced current versus voltage relationship. The single-channel conductance and the mean channel lifetime were calculated from fluctuation analysis of the ACh-induced end-plate current. Extracellular Na and/or divalent cations affected the reversal potential of endplate channels in a way that cannot be described by the Goldman-Hodgkin-Katz equation or by a simple two-barrier, one-binding site model of the channel if the assumption was made that permeability ratios were constant and not a function of ion concentrations. Increasing the divalent cation concentration decreased the single-channel conductance to approximately 10 pS in solutions with 50% Na and 40 mM divalent cation concentrations. The effect of the divalent cations Ca and Mg on the mean channel lifetime was complex and dependent on whether the divalent cation was Ca or Mg. The mean channel lifetime was not significantly changed in most solutions with increased Ca concentration, while it was slightly prolonged by increased Mg concentration. 相似文献