首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stereochemistry of the hydrogen transfer to NAD catalyzed by (S)alanine dehydrogenase [ (S)alanine: NAD oxidoreductase (EC 1.4.1.1) ] from B. subtilis was investigated. The label at C-2 of (S) [2,3--3H] alanine was enzymatically transferred to NAD, and the [4--3H]NADH produced isolated and the stereochemistry at C-4 investigated. It was found that the label was exclusively located at the (R) position which indicates that (S)alanine dehydrogenase is an A-type enzyme. This result was confirmed in an alternate way by reducing enzymatically [4--3H]NAD with non labeled (S)alanine and (S)alanine dehydrogenase and investigating the stereochemistry of the ]4--3H]NADH produced. As expected, the label was now exclusively located at the (S) position. This proves that (S)alanine dehydrogenase isolated from B. subtilis should be classified as an A-enzyme with regard to the stereochemistry of the hydrogen transfer to NAD.  相似文献   

2.
The presence and activities of isocitrate lyase (EC 4.1.3.1 [EC] )and malate synthase (EC 4.1.3.2 [EC] ) were studied during senescenceof pumpkin cotyledons (Cucurbita sp. Amakuri Nankin). Afterincubation of detached cotyledons in permanent darkness, theactivities appeared and increased up to the eighth day and thendeclined, while the activities of catalase (EC 1.11.1.6 [EC] ), glycolateox-idase (EC 1.1.3.1 [EC] ), and hydroxypyruvate reductase (EC 1.1.1.81 [EC] )decreased dramatically. After fractionation of cell organellesby sucrose density gradient, we detected isocitrate lyase andmalate synthase activities in peroxisomal fractions. The activityof the two key enzymes of the glyoxylate cycle also increasedduring senescence in vivo and we confirmed the presence of thetwo enzymes in the peroxisomal fractions after sucrose gradientcentrifugation. At every point examined, the level of malatesynthase was demonstrated by immunoblotting. It is concludedthat the development of isocitrate lyase and malate synthaseactivities represents the transition from leaf peroxisomes toglyoxysomes and that such a phenomenon is associated with senescence. (Received January 25, 1991; Accepted March 22, 1991)  相似文献   

3.
Phosphoprotein phosphatase [phosphoprotein phosphohydrolase EC 3.1.3.16] in the soluble fraction of rabbit skeletal muscle, when assayed with phosphorylase a[EC 2.4.1.1] from rabbit skeletal muscle and phosphohistone as substrates, was resolved into three active fractions (Fractions I, II, and III in order of elution) by DEAE-cellulose column chromatography. Sucrose density gradient centrifugation showed that these fractions were composed of subfractions of different molecular size (I: 7.3S and 4S; II: 8S and 4S; III; 6.7S). Components with larger molecular size in the major fractions, II and III, were dissociated to a molecular size similar to that of the smallest component on freezing in the presence of mercaptoethanol. These results indicate that phosphoprotein phosphatase from skeletal muscle occurs in multiple forms very similar to those of the liver enzyme reported previously (Kobayashi, Kato and Sato (1975) Biochim. Biophys. Acta. 373, 343-355).  相似文献   

4.
The activities of the two unique enzymes of the glyoxylate cycle,isocitrate lyase (EC 4.1.3.1 [EC] ) and malate synthase (EC 4.1.3.2 [EC] ),were undetectable in petals of pumpkin (Cucurbita sp. AmakuriNankin) until the end of blooming, but they appeared duringsenescence. The activity of catalase (EC 1.11.1.6 [EC] ) increased,glycolate oxidase (EC 1.1.3.1 [EC] ) activity did not change, whilehydroxypyruvate reductase (EC 1.1.1.81 [EC] ) activity peaked at fullblooming stage and declined thereafter. After fractionationof cellular organelles on a sucrose density gradient, we detectedisocitrate lyase and malate synthase activities in peroxisomalfractions only from petals at the senescing stage. Northernblot analysis revealed that malate synthase mRNA increased duringpetal senescence. Citrate synthase (EC 4.1.3.7 [EC] ) and malate dehydrogenase(EC 1.1.1.37 [EC] ) activities were also present, while aconitase(EC 4.2.1.3 [EC] ) was not detectable in peroxisomal fractions. Moreoverthe presence of 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35 [EC] )and urate oxidase (EC 1.7.3.3 [EC] ) in the peroxisomal fractionsfrom senescing petals indicates that peroxisomes could be involvedboth in the ß-oxidation pathway and in the purinecatabolism during petal senescence. (Received May 25, 1991; Accepted September 25, 1991)  相似文献   

5.
Lysosomal membrane fractions were prepared from lysosomes of mouse liver by freeze-thawing in a hypotonic buffer: 54% of beta-glucosidase [EC 3.2.1.45] in lysosomes was associated with the membrane fractions, whereas 96% of beta-glucuronidase [EC 3.2.1.31] was recovered in the soluble fractions of lysosomes. beta-glucosidase was solubilized by pH 9.5 treatment or by Triton treatment of membranes. The enzyme solubilized with alkali and concentrated with (NH4)2SO4 was rapidly inactivated in a solution of pH 9.5, but could be protected against inactivation by acidic detergent. Gel filtration analysis indicated that beta-glucosidase was in an aggregated form at neutral pH and could be disaggregated by alkali and detergents. The enzyme dissociated with detergents also showed a higher activity than the alkali-treated enzyme. These results suggested that beta-glucosidase is a peripheral enzyme bound to acidic lipids in membranes. beta-Glucosidase was purified to apparent homogeneity by (NH4)2SO4 fractionation and chromatographies with Sephacryl S-300, hydroxylapatite and cation exchangers in the presence of detergents. The catalytic activity of the purified enzyme was maximally stimulated by phosphatidylserine and heat-stable protein in the presence of a low concentration of Triton X-100. The stimulation was mainly due to an increase in Vmax.  相似文献   

6.
The stereochemistry of the hydrogen transfer to NADP catalyzed by D-galactose dehydrogenase (EC 1.1.1.48) from P. fluorescens was investigated. The label at C-1 of D-[1-3H] galactose was enzymatically transferred to NADP and the resulting [4-3H]NADPH was isolated and its stereo-chemistry at C-4 investigated. It was found that the label was exclusively located at the 4(S) position in NADPH which calls for classification as a B-enzyme. The correlation of this finding with tentative classification rules of NAD(P)-linked dehydrogenases in regard to their stereo-chemistry of hydrogen transfer to the coenzyme is discussed.  相似文献   

7.
Schistosoma mansoni: surface membrane isolation by polycationic beads   总被引:1,自引:0,他引:1  
The Schistosoma mansoni surface membrane complex was isolated by binding polycationic beads to the worm surface in a sucrose- or sorbitol-acetate buffer, pH 5.0, at 4 C. The ratio of incorporation [3H]cholesterol/[14C]arachidonic acid was measured as well as the specific activities of the alkaline phosphatase (EC 3.1.3.1), Type I phosphodiesterase (EC 3.1.4.1), and Ca2+-adenosine triphosphatase (EC 3.6.1.3). The results indicated that membranes isolated on beads were of comparable or greater purity than membranes isolated by sucrose gradient centrifugation. The isolation procedure was rapid (30 min) and produced membrane fractions whose cytoplasmic surfaces were probably exposed.  相似文献   

8.
Subcellular distribution of hepatic bile acid-conjugating enzymes.   总被引:2,自引:1,他引:1       下载免费PDF全文
1. The subcellular location of enzymes conjugating bile acids with glycine or taurine was investigated by centrifugation of rat liver homogenates. 2. [14C]Cholic acid-conjugating activity was predominantly associated with the soluble-microsomal region of the gradient after centrifugation in a Ti-15 zonal rotor but the bulk of the conjugating activity sedimented with mitochondrial-lysosomal fractions in differential pelleting experiments. 3. Cholate: CoA ligase (EC 6.2.1.7) and cholyltransferase (EC 2.3.1) were not enriched in purified Golgi or plasma-membrane fractions. Cholate: CoA ligase was distributed evenly between rough- and smooth-surfaced microsomal subfractions but cholyltransferase showed a dual soluble-rough microsomal activity distribution. 4. Sedimentation of cholyltransferase in mitochondria-enriched fractions prepared by differential centrifugation appears to be an artefact of sedimentation of rough microsomal membranes in mitochondrial fractions. 5. The subcellular distribution of bile acid-conjugating enzymes is discussed with reference to hepatic processing of bile acids.  相似文献   

9.
After Wistar male rats had been fed on a diet containing 0.25% of ethyl p-chlorophenoxyisobutyrate (CPIB) for 28 days, changes in the enzyme activities and centrifugal behavior of rat liver peroxisomes were investigated. (1) Compared with control rats fed on the basal diet, the catalase [EC 1.11.1.6] activity of rat livers after the administration of CPIB increased about 2.5-fold, while urate oxidase [EC 1.7.3.3] activity did not change significantly. Though D-amino acid oxidase [EC 1.4.3.3] activity markedly decreased to approximately one-sixth of the control, the activity of L-alpha-hydroxy acid oxidase [EC 1.1.3.15], a flavin enzyme like D-amino acid oxidase, was not affected significnatly after the administration of CPIB. (2) When the hepatic cells of CPIB-treated rats were fractionated by differential centrifugation, most of the increase of catalase activity appeared in the supernatant fraction. A decrease in the hepatic D-amino acid oxidase activity of CPIB-treated rats was observed in all the fractions. As for the subcellular distribution of the particle-bound enzymes, the specific activities of both catalase and urate oxidase of CPIB-treated rat livers were higher in the light mitochondrial fraction than in other fractions. (3) Sedimentation patterns in a sucrose density gradient did not show any difference between normal peroxisomers, and CPIB-treated ones. (4) In the case of CPIB-treated rats, studies of their sedimentation patterns by Ficoll density gradient centrifugation showed two main particulate peaks containing both catalase and urate oxidase, although only a single peak was observed in the case of control rats.  相似文献   

10.
The stereochemistry of the hydrogen transfer to NAD catalyzed by ribitol dehydrogenase (ribitol:NAD 2-oxidoreductase, EC 1.1.1.56) from Klebsiella pneumoniae and D-mannitol-1-phosphate dehydrogenase (D-mannitol-1-phosphate:NAD 2-oxidoreductase, EC 1.1.1.17) from Escherichia coli was investigated. [4-3H]NAD was enzymatically reduced with nonlabelled ribitol in the presence of ribitol dehydrogenase and with nonlabelled D-mannitol 1-phosphate and D-mannitol 1-phosphate dehydrogenase, respectively. In both cases the [4-3H]-NADH produced was isolated and the chirality at the C-4 position determined. It was found that after the transfer of hydride, the label was in both reactions exclusively confined to the (4R) position of the newly formed [4-3H]NADH. In order to explain these results, the hydrogen transferred from the nonlabelled substrates to [4-3H]NAD must have entered the (4S) position of the nicotinamide ring. These data indicate for both investigated inducible dehydrogenases a classification as B or (S) type enzymes. Ribitol also can be dehydrogenated by the constitutive A-type L-iditol dehydrogenase (L-iditol:NAD 5-oxidoreductase, EC 1.1.1.14) from sheep liver. When L-iditol dehydrogenase utilizes ribitol as hydrogen donor, the same A-type classification for this oxidoreductase, as expected, holds true. For the first time, opposite chirality of hydrogen transfer to NAD in one organic reaction--ribitol + NAD = D-ribu + NADH + H--is observed when two different dehydrogenases, the inducible ribitol dehydrogenase from K. pneumoniae and the constitutive L-iditol dehydrogenase from sheep liver, are used as enzymes. This result contradicts the previous generalization that the chirality of hydrogen transfer to the coenzyme for the same reaction is independent of the source of the catalyzing enzyme.  相似文献   

11.
During the preparation of spheroplasts, adenine phosphoribosyltransferase (EC 2.4.2.7) and hypoxanthine phosphoribosyltransferase (EC 2.4.2.8) were released in parallel with cytidine deaminase (EC 3.5.4.5) and uridine phosphorylase (EC 2.4.2.3), which, on other evidence, are considered to be located intracellularly. The two phosphoribosyltransferases and uridine phosphorylase were not significantly associated with purified membrane fractions as was purine nucleoside phosphorylase (EC 2.4.2.1). The effects of the poorly permeable enzyme-inactivating reagents, 4-diazoniumbenzenesulphonate, 7-diazonium-1,3-naphthalene-disulphonate and 2,4,6-trinitrobenzenesulphonate, on Escherichia coli indicate that all the above-mentioned enzymes and also the xanthine-guanine phosphoribosyltransferase [Miller, Ramsey, Krenitsky & Elion (1972) Biochemistry 11, 4723--4731] are located intracellularly.  相似文献   

12.
Placental aldose reductase (EC 1.1.1.21) was incubated with glucose in the presence of [4A-2H] NADPH prepared in the oxidation of [2-2H] isocitrate by isocitrate dehydrogenase (EC 1.1.1.42) or [4B-2H] NADPH prepared in the oxidation of [1-2H] glucose-6-phosphate dehydrogenase (EC 1.1.1.49). The sorbitol formed from [4A-2H] NADPH contained deuterium and from [4B-2H] NADPH it did not. Therefore, aldose reductase in an A-type enzyme.  相似文献   

13.
Regulation of phosphatidylinositol kinase (EC 2.7.1.67) and phosphatidylinositol 4-phosphate (PtdIns4P) kinase (EC 2.7.1.68) was investigated in highly enriched plasma-membrane and cytosolic fractions derived from cloned rat pituitary (GH3) cells. In plasma membranes, phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] added exogenously enhanced incorporation of [32P]phosphate from [gamma-32P]MgATP2- into PtdIns(4,5)P2 and PtdIns4P to 150% of control; half-maximal effect occurred with 0.03 mM exogenous PtdIns(4,5)P2. Exogenous PtdIns4P and phosphatidylinositol (PtdIns) had no effect. When plasma membranes prepared from cells prelabelled to isotopic steady state with [3H]inositol were used, there was a MgATP2- dependent increase in the content of [3H]PtdIns(4,5)P2 and [3H]PtdIns4P that was enhanced specifically by exogenous PtdIns(4,5)P2 also. Degradation of 32P- and 3H-labelled PtdIns(4,5)P2 and PtdIns4P within the plasma-membrane fraction was not affected by exogenous PtdIns(4,5)P2. Phosphoinositide kinase activities in the cytosolic fraction were assayed by using exogenous substrates. Phosphoinositide kinase activities in cytosol were inhibited by exogenously added PtdIns(4,5)P2. These findings demonstrate that exogenously added PtdIns(4,5)P2 enhances phosphoinositide kinase activities (and formation of polyphosphoinositides) in plasma membranes, but decreases these kinase activities in cytosol derived from GH3 cells. These data suggest that flux of PtdIns to PtdIns4P to PtdIns(4,5)P2 in the plasma membrane cannot be increased simply by release of membrane-associated phosphoinositide kinases from product inhibition as PtdIns(4,5)P2 is hydrolysed.  相似文献   

14.
Chain shortening via beta-oxidation from the omega-end has been recognized as the major pathway for the degradation of cysteinyl leukotrienes as well as leukotriene B4 (LTB4). The metabolic compartmentation of this pathway was studied using peroxisomes purified from normal and clofibrate-treated rat liver. beta-Oxidation products of omega-carboxy-LTB4, including omega-carboxy-dinor-LTB4 identified by gas chromatography-mass spectrometry, were formed by the isolated peroxisomes. The reaction was dependent on CoA, ATP, and NAD and was stimulated by FAD. NADPH was necessary for the further metabolism of omega-carboxy-dinor-LTB4. Together with microsomes a degradation of omega-carboxy-LTB4 also proceeded in isolated mitochondria in the presence of CoA, ATP, and carnitine. beta-Oxidation of the cysteinyl leukotriene omega-carboxy-N-acetyl-leukotriene E4 was observed only with isolated peroxisomes in combination with lipid-depleted microsomes. Direct photoaffinity labeling using omega-carboxy-[3H] LTB4 and omega-carboxy-N-[3H]acetyl-LTE4 served to identify peroxisomal leukotriene-binding proteins. The bifunctional protein (EC 4.2.1.17 and 1.1.1.35) and 3-ketoacyl-CoA thiolase (EC 2.3.1.16) of the peroxisomal beta-oxidation system were the predominantly labeled polypeptides as revealed by precipitation with monospecific antibodies. In vivo studies with N-acetyl-[3H2]LTE4, N-acetyl-[3H8]LTE4, and N-[14C]acetyl-LTE4 after treatment with the peroxisome proliferator clofibrate indicated formation and biliary excretion of large amounts of metabolites more polar than omega-carboxy-tetranor-N-acetyl-LTE3 including omega-carboxy-tetranor-delta 13-N-acetyl-LTE4 and omega-carboxy-hexanor-N-acetyl-LTE3. Increased formation of beta-oxidized catabolites of N-acetyl-LTE4 and LTB4 was also observed in hepatocytes isolated after clofibrate treatment. Our results indicate that peroxisomes play a major role in the beta-oxidation of leukotrienes from the omega-end. Whereas omega-carboxy-LTB4 was beta-oxidized both in isolated peroxisomes and mitochondria, the cysteinyl leukotriene omega-carboxy-N-acetyl-LTE4 was exclusively degraded in peroxisomes.  相似文献   

15.
In germinating radish seeds, [U-14C]-4-thiouridine was convertedto 4-thio-UMP, 4-thio-UDP, 4-thio-UTP, 4-thio-UDP glucose and4-thiouracil, of which 4-thiouracil accounted for 60–85%.4-Thio-UTP is incorporated into RNAs of radish seedlings [Shibataet al. (1980) FEBS Lett. 119: 85]. These same metabolites werelabeled following germination of radish seeds with [2-14C]-4-thiouracil.4-Thiouridine was hydrolyzed by the uridine nucleosidase (EC3.2.2.3 [EC] ) of radish seedlings as effectively as was uridine.The activity of uridine nucleosidase was increased by germinationwith 4-thiouridine. These results are a strong indication that4-thiouridine is converted to 4-thiouracil, then to 4-thio-UMPby uracil phosphoribosyltransferase (EC 2.4.2.9 [EC] ). The alternativeformation of 4-thio-UMP from 4-thiouridine by uridine kinase(EC 2.7.1.48 [EC] ) also was suggested. A possible mechanism whichmay cause inhibition of chloroplast biogenesis in 4-thiouridine-culturedseedlings is discussed. (Received October 12, 1981; Accepted January 14, 1982)  相似文献   

16.
Carbobenzoxy-L-phenylalanyl-triethylenetetraminyl-Sepharose (Z-L-Phe-T-Sepharose) was found to be an effective affinity adsorbent for bovine pancreatic alpha-chymotrypsin [EC 3.4.21.1] as well as neutral [EC 3.4.24.4] and alkaline [EC 3.4.21.14] proteases of Bacillus species. These enzymes were adsorbed in the neutral pH range. alpha-Chymotrypsin was recovered by elution with 0.1 A acetic acid while neutral subtilopeptidase was eluted with 0.5 M NaCl at pH 0. Thermolysin and subtilisin were found in eluates with 1.5 and 2.0 M guanidine-HCl at pH 7.2, respectively. The resulting enzymes appeared homogeneous on disc-electrophoresis and showed higher specific activities than those of crystalline or highly purified preparations available commercially. Modifications of the active site serines of alpha-chymotrypsin and subtilisin by treatment with diisopropylfluorophosphate (DFP) or phenylmethanesulfonyl fluoride (PMSF) resulted in loss in their binding abilities to the adsorbent. Complexes of porcine alpha2-macroglobulin with each of these four enzymes and that of Streptomyces-subtilisin inhibitor (S-SI) with subtilisin were also found in nonadsorbed fractions.  相似文献   

17.
Analysis of the soluble protein fractions from the rat parotid, submandibular and sublingual glands by polyacrylamide-gel electrophoresis reveals similarities in overall patterns of protein synthesis at birth. Tissue-specific changes in protein and glycoprotein synthesis occur shortly after birth and again at the time of weaning, 21--28 days later. Incorporation of [3H]thymidine into DNA was at its highest after birth and gradually decreased in both the parotid and submandibular gland, whereas [3H]thymidine incorporation in the sublingual gland was low throughout the time of neonatal development. [14C]Leucine incorporation into total protein increased in all glands with age after birth, showing an accelerated rate 21--28 days later. Trichloroacetic acid/phosphotungstic acid-precipitable [3H]fucose in glycoproteins declined over the time of neonatal development in the parotid and submandibular gland, but its incorporation remained higher in the sublingual gland. alpha-Amylase (EC 3.2.1.1) in the salivary glands increased at the time of weaning, as judged by detectability in sodium dodecyl sulphate/polyacrylamide gels and by immune precipitation. Two membrane-bound enzymes, UDP-galactose:2-acetamido-2-deoxy-D-glucosamine 4 beta-galactosyltransferase (EC 2.4.1.22) and UDP-galactose:2-acetamido-2-deoxy-D-galactosaminyl-protein 3 beta-galactosyltransferase (no EC number), undergo tissue-specific change rather than changes induced by physiological stimulation of the salivary glands.  相似文献   

18.
Amino acid racemases inherently catalyze the exchange of alpha-hydrogen of amino acids with deuterium during racemization in 2H2O. When the reactions catalyzed by alanine racemase (EC 5.1.1.1) and L-alanine dehydrogenase (EC 1.4.1.1), which is pro-R specific for the C-4 hydrogen transfer of NADH, are coupled in 2H2O, [4R-2H]NADH is exclusively produced. Similarly, [4S-2H]NADH is made in 2H2O with amino-acid racemase with low substrate specificity (EC 5.1.1.10) and L-leucine dehydrogenase (EC 1.4.1.9), which is pro-S specific. We have established a simple procedure for the in situ analysis of stereospecificity of C-4 hydrogen transfer of NADH by an NAD-dependent dehydrogenase by combination with either of the above two couples of enzymes in the same reaction mixture. When the C-4 hydrogen of NAD+ is fully retained after sufficient incubation, the stereospecificity of hydrogen transfer by a dehydrogenase is the same as that of alanine dehydrogenase or leucine dehydrogenase. However, when the C-4 hydrogen of NAD+ is exchanged with deuterium, the enzyme to be examined shows the different stereospecificity from alanine dehydrogenase or leucine dehydrogenase. Thus, we can readily determine the stereospecificity by 1H NMR measurement without isolation of the coenzymes and products.  相似文献   

19.
The angiotensinase (EC 3.4.99.3) activity of the subcellular fractions of guinea pig aorta has been studied in relation to their [14C]angiotensin binding capacity. The enzyme activity occurs in the following decreasing order: supernatant greater than plasma membrane fraction greater than 105 000 X g pellet greater than mitochondrial fraction. The specific binding of [14C]angiotensin to these fractions follows the same pattern. Pretreatment of the subcellular fractions at 47 degrees C for 20 min was performed in an attempt to differentiate binding of angiotensin to the pharmacological receptor from binding to the destroying enzymes. This procedure decreased the angiotensinase activity in the plasma membrane fraction only whereas the specific binding of [14C]angiotensin to this fraction was not significantly decreased, suggesting that the plasma membrane angiotensinase is a thermolabile enzyme.  相似文献   

20.
Guanylate cyclase [EC 4.6.1.2] activity in Tetrahymena pyriformis cells was associated with particulate fractions, but not with soluble fractions. Mg2+ was much more effective than Mn2+ in activating the cyclase activity. Both specific and total cyclase activities with Mg2+ in the particulate fraction were very much lower than those in the original homogenate. The addition of the soluble fraction resulted in a marked enhancement of the particulate-bound cyclase activity, while the adenylate cyclase [EC 4.6.1.1] activity was not enhanced. The enhancement was dependent on Ca2+, and the activating factor is suggested to be a protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号