首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The stability of proteins is known to be affected significantly in the presence of high concentration of salts and is highly pH dependent. Extensive studies have been carried out on the stability of proteins in the presence of simple electrolytes and evaluated in terms of preferential interactions and increase in the surface tension of the medium. We have carried out an in-depth study of the effects of a series of carboxylic acid salts: ethylene diamine tetra acetate, butane tetra carboxylate, propane tricarballylate, citrate, succinate, tartarate, malonate, and gluconate on the thermal stability of five different proteins that vary in their physico-chemical properties: RNase A, cytochrome c, trypsin inhibitor, myoglobin, and lysozyme. Surface tension measurements of aqueous solutions of the salts indicate an increase in the surface tension of the medium that is very strongly correlated with the increase in the thermal stability of proteins. There is also a linear correlation of the increase in thermal stability with the number of carboxylic groups in the salt. Thermal stability has been found to increase by as much as 22 C at 1 M concentration of salt. Such a high thermal stability at identical concentrations has not been reported before. The differences in the heat capacities of denaturation, deltaCp for RNase A, deduced from the transition curves obtained in the presence of varying concentrations of GdmCl and that of carboxylic acid salts as a function of pH, indicate that the nature of the solvent medium and its interactions with the two end states of the protein control the thermodynamics of protein denaturation. Among the physico-chemical properties of proteins, there seems to be an interplay of the hydrophobic and electrostatic interactions that lead to an overall stabilizing effect. Increase in surface free energy of the solvent medium upon addition of the carboxylic acid salts appears to be the dominant factor in governing the thermal stability of proteins.  相似文献   

2.
Two positively charged basic amino acids, arginine and lysine, are mostly exposed to protein surface, and play important roles in protein stability by forming electrostatic interactions. In particular, the guanidinium group of arginine allows interactions in three possible directions, which enables arginine to form a larger number of electrostatic interactions compared to lysine. The higher pKa of the basic residue in arginine may also generate more stable ionic interactions than lysine. This paper reports an investigation whether the advantageous properties of arginine over lysine can be utilized to enhance protein stability. A variant of green fluorescent protein (GFP) was created by mutating the maximum possible number of lysine residues on the surface to arginines while retaining the activity. When the stability of the variant was examined under a range of denaturing conditions, the variant was relatively more stable compared to control GFP in the presence of chemical denaturants such as urea, alkaline pH and ionic detergents, but the thermal stability of the protein was not changed. The modeled structure of the variant indicated putative new salt bridges and hydrogen bond interactions that help improve the rigidity of the protein against different chemical denaturants. Structural analyses of the electrostatic interactions also confirmed that the geometric properties of the guanidinium group in arginine had such effects. On the other hand, the altered electrostatic interactions induced by the mutagenesis of surface lysines to arginines adversely affected protein folding, which decreased the productivity of the functional form of the variant. These results suggest that the surface lysine mutagenesis to arginines can be considered one of the parameters in protein stability engineering.  相似文献   

3.
4.
Angiotensin-I-converting enzyme (ACE) plays a critical role in the regulation of blood pressure through its central role in the renin-angiotensin and kallikrein-kinin systems. ACE contains two domains, the N and C domains, both of which are heavily glycosylated. Structural studies of ACE have been fraught with severe difficulties because of surface glycosylation of the protein. In order to investigate the role of glycosylation in the N domain and to create suitable forms for crystallization, we have investigated the importance of the 10 potential N-linked glycan sites using enzymatic deglycosylation, limited proteolysis, and mass spectrometry. A number of glycosylation mutants were generated via site-directed mutagenesis, expressed in CHO cells, and analyzed for enzymatic activity and thermal stability. At least eight of 10 of the potential glycan sites are glycosylated; three C-terminal sites were sufficient for expression of active N domain, whereas two N-terminal sites are important for its thermal stability. The minimally glycosylated Ndom389 construct was highly suitable for crystallization studies. The structure in the presence of an N domain-selective phosphinic inhibitor RXP407 was determined to 2.0 Å resolution. The Ndom389 structure revealed a hinge region that may contribute to the breathing motion proposed for substrate binding.  相似文献   

5.
Several recent studies have shown that it is possible to increase protein stability by improving electrostatic interactions among charged groups on the surface of the folded protein. However, the stability increases are considerably smaller than predicted by a simple Coulomb's law calculation, and in some cases, a charge reversal on the surface leads to a decrease in stability when an increase was predicted. These results suggest that favorable charge-charge interactions are important in determining the denatured state ensemble, and that the free energy of the denatured state may be decreased more than that of the native state by reversing the charge of a side chain. We suggest that when the hydrophobic and hydrogen bonding interactions that stabilize the folded state are disrupted, the unfolded polypeptide chain rearranges to compact conformations with favorable long-range electrostatic interactions. These charge-charge interactions in the denatured state will reduce the net contribution of electrostatic interactions to protein stability and will help determine the denatured state ensemble. To support this idea, we show that the denatured state ensemble of ribonuclease Sa is considerably more compact at pH 7 where favorable charge-charge interactions are possible than at pH 3, where unfavorable electrostatic repulsion among the positive charges causes an expansion of the denatured state ensemble. Further support is provided by studies of the ionic strength dependence of the stability of charge-reversal mutants of ribonuclease Sa. These results may have important implications for the mechanism of protein folding.  相似文献   

6.
Rhodopsin has developed mechanisms to optimize its sensitivity to light by suppressing dark noise and enhancing quantum yield. We propose that an intramolecular hydrogen-bonding network formed by ~20 water molecules, the hydrophilic residues, and peptide backbones in the transmembrane region is essential to restrain thermal isomerization, the source of dark noise. We studied the thermal stability of rhodopsin at 55 °C with single point mutations (E181Q and S186A) that perturb the hydrogen-bonding network at the active site. We found that the rate of thermal isomerization increased by 1-2 orders of magnitude in the mutants. Our results illustrate the importance of the intact hydrogen-bonding network for dim-light detection, revealing the functional roles of water molecules in rhodopsin. We also show that thermal isomerization of 11-cis-retinal in solution can be catalyzed by wild-type opsin and that this catalytic property is not affected by the mutations. We characterize the catalytic effect and propose that it is due to steric interactions in the retinal-binding site and increases quantum yield by predetermining the trajectory of photoisomerization. Thus, our studies reveal a balancing act between dark noise and quantum yield, which have opposite effects on the thermal isomerization rate. The acquisition of the hydrogen-bonding network and the tuning of the steric interactions at the retinal-binding site are two important factors in the development of dim-light vision.  相似文献   

7.
The relationships between structure, activity, stability and flexibility of a cold-adapted aminopeptidase produced by a psychrophilic marine bacterium have been investigated in comparison with a mesophilic structural and functional human homolog. Differential scanning calorimetry, fluorescence monitoring of thermal- and guanidine hydrochloride-induced unfolding and fluorescence quenching were used to show that the cold-adapted enzyme is characterized by a high activity at low temperatures, a low structural stability versus thermal and chemical denaturants and a greater structural permeability to a quenching agent relative to the mesophilic homolog. These findings support the hypothesis that cold-adapted enzymes maintain their activity at low temperatures as a result of increased global or local structural flexibility, which results in low stability. Analysis of the thermodynamic parameters of irreversible thermal unfolding suggests that entropy-driven factors are responsible for the fast unfolding rate of the cold-adapted aminopeptidase. A reduced number of proline residues, a lower degree of hydrophobic residue burial and a decreased surface accessibility of charged residues may be responsible for this effect. On the other hand, the reduction in enthalpy-driven interactions is the primary determinant of the weak conformational stability.  相似文献   

8.
The thermodynamic and geometrical features of possible self-assembled structures of a series of chemically related glycosphingolipids differing in the complexity of their polar headgroup, and of their mixture with phospholipids, have been predicted according to the theory of self-assembly of hydrocarbon amphiphiles of Israelachvili et al. ((1980) Q. Rev. Biophys. 13, 340-357). The type and number of carbohydrate residues in the oligosaccharide chain of the polar headgroup are of paramount importance to determine the characteristics and thermodynamic stability of the possible self-assembled structure. In single component systems, the general prediction of the theory is that smaller aggregates may form as the polar headgroup of the glycosphingolipid is more complex and as the lateral surface pressure is smaller. In noninteracting two-component glycosphingolipid-phospholipid systems, the thermodynamic stability and the overall geometry of the possible aggregate appear to be determined by the proportion and type of glycosphingolipid present. Large and abrupt changes of the possible free energy per molecule, radius of curvature, and predicted asymmetry ratio for a particular glycosphingolipid may be triggered by relatively small changes of the molecular parameters, lipid composition, lateral surface pressure or vice-versa. If intermolecular interactions are taken into account with respect to the predictions for an ideal, noninteracting system, the theory indicates that two-component bilayer vesicles of polysialoganglioside-phosphatidylcholine may be thermodynamically and geometrically more stable. On the other hand, for systems constituted by phosphatidylcholine and neutral glycosphingolipids or monosialogangliosides, the possible bilayer vesicle is predicted to be less stable than in the ideal, noninteracting case. The results emphasize the general validity of the theory as applied to glycosphingolipid-containing systems.  相似文献   

9.
Recent findings in chronically instrumented animals challenge the classic concept that baroreflexes do not play a role in the chronic regulation of arterial pressure. As alterations in renal excretory function are of paramount importance in the chronic regulation of arterial pressure, several of these recent studies have focused on the long-term interactions between the baroreflex and the kidneys during chronic perturbations in arterial pressure and body fluid volumes. An emerging body of evidence indicates that the baroreflex is chronically activated in several experimental models of hypertension, but in most cases, the duration of these studies has not exceeded 2 wk. Although these studies suggest that the baroreflex may play a compensatory role in attenuating the severity of the hypertension, possibly even in primary hypertension with uncertain causes of sympathetic activation, there has been only limited assessment of the quantitative importance of this interaction in the regulation of arterial pressure. In experimental models of secondary hypertension, baroreflex suppression of renal sympathetic nerve activity is sustained and chronically promotes sodium excretion. This raises the possibility that the renal nerves may be the critical efferent link for baroreceptor-induced suppression of central sympathetic output through which long-term compensatory reductions in arterial pressure are produced. This contention is supported by strong theoretical evidence but must be corroborated by experimental studies. Finally, although it is now clear that pressure-induced increases in baroreflex activity persist for longer periods of time than previously suggested, studies using new tools and novel approaches and extending beyond 2 wk of hypertension are needed to elucidate the true role of the baroreflex in the pathogenesis of clinical hypertension.  相似文献   

10.
To gain insights into the role of quaternary structure in the TIM-barrel family of enzymes, we introduced mutations to the DHDPS enzyme of Thermotoga maritima, which we have previously shown to be a stable tetramer in solution. These mutations were aimed at reducing the number of salt bridges at one of the two tetramerization interface of the enzyme, which contains many more interactions than the well characterized equivalent interface of the mesophilic Escherichia coli DHDPS enzyme. The resulting variants had altered quaternary structure, as shown by analytical ultracentrifugation, gel filtration liquid chromatography, and small angle X-ray scattering, and X-ray crystallographic studies confirmed that one variant existed as an independent monomer, but with few changes to the secondary and tertiary structure. Reduction of higher order assembly resulted in a loss of thermal stability, as measured by a variety of methods, and impaired catalytic function. Binding of pyruvate increased the oligomeric status of the variants, with a concomitant increase in thermal stability, suggesting a role for substrate binding in optimizing stable, higher order structures. The results of this work show that the salt bridges located at the tetramerization interface of DHDPS play a significant role in maintaining higher order structures, and demonstrate the importance of quaternary structure in determining protein stability and in the optimization of enzyme catalysis.  相似文献   

11.
The stability of tetrameric malate dehydrogenase from the green phototrophic bacterium Chloroflexus aurantiacus (CaMDH) is at least in part determined by electrostatic interactions at the dimer-dimer interface. Since previous studies had indicated that the thermal stability of CaMDH becomes lower with increasing pH, attempts were made to increase the stability by removal of (excess) negative charge at the dimer-dimer interface. Mutation of Glu165 to Gln or Lys yielded a dramatic increase in thermal stability at pH 7.5 (+23.6 -- + 23.9 degrees C increase in apparent t(m)) and a more moderate increase at pH 4.4 (+4.6 -- + 5.4 degrees C). The drastically increased stability at neutral pH was achieved without forfeiture of catalytic performance at low temperatures. The crystal structures of the two mutants showed only minor structural changes close to the mutated residues, and indicated that the observed stability effects are solely due to subtle changes in the complex network of electrostatic interactions in the dimer-dimer interface. Both mutations reduced the concentration dependency of thermal stability, suggesting that the oligomeric structure had been reinforced. Interestingly, the two mutations had similar effects on stability, despite the charge difference between the introduced side-chains. Together with the loss of concentration dependency, this may indicate that both E165Q and E165K stabilize CaMDH to such an extent that disruption of the inter-dimer electrostatic network around residue 165 no longer limits kinetic thermal stability.  相似文献   

12.
Abstract The role of salt bridges in chromatin protein Sso7d, from S. solfataricus has previously been shown to be crucial for its unusual high thermal stability. Experimental studies have shown that single site mutation of Sso7d (F31A) leads to a substantial decrease in the thermal stability of this protein due to distortion of the hydrophobic core. In the present study, we have performed a total of 0.2 μs long molecular dynamics (MD) simulations on F31A at room temperature, and at 360 K, close to the melting temperature of the wild type (WT) protein to investigate the role of hydrophobic core on protein stability. Sso7d-WT was shown to be stable at both 300 and 360 K; however, F31A undergoes denaturation at 360 K, consistent with experimental results. The structural and energetic properties obtained using the analysis of MD trajectories indicate that the single mutation results in high flexibility of the protein, and loosening of intramolecular interactions. Correlation between the dynamics of the salt bridges with the structural transitions and the unfolding pathway indicate the importance of both salt bridges and hydrophobic in effecting thermal stability of proteins in general.  相似文献   

13.
Surface plasmon resonance is a technique for detecting binding events at the surface of a thin metal film. Through the commercial availability of instrumentation and sensor chips, the technique has found widespread application for determining the affinity and kinetics of macromolecular interactions. A variety of quadruplex forming oligonucleotides have been immobilized to sensor chips to permit analysis of their binding interactions with both small molecule and protein analytes. The fold of the quadruplex must be maintained through an appropriate choice of buffer, and care must be taken to ensure that data interpretation is not hampered by non-specific binding and adsorption of the analyte to the sensor surface and instrument. Affinity constants determined by surface plasmon resonance for interactions with quadruplexes correlate meaningfully with other methods, such as UV-visible and fluorescence titrations, enzyme linked immunosorbent assay, thermal melting studies and telomerase inhibition. Kinetic measurements of the association and dissociation of duplexes of quadruplex forming oligonucleotides and their complementary strands have enabled calculation of the folding and unfolding rates of the quadruplex itself, and determination of its stability as a function of buffer composition.  相似文献   

14.
In this article, we explain an often overlooked process that may significantly contribute to positive correlations between measures of species diversity and community stability. Empirical studies showing positive stability-diversity relationships have, for the most part, used a single class of stability (or, more accurately, instability) measures: the temporal variation in aggregate community properties such as biomass or productivity. We show that for these measures, stability will essentially always rise with species diversity because of the statistical averaging of the fluctuations in species' abundances. This simple probabilistic process will operate in the absence of any strong species interactions, although its strength is driven by the relative abundances of species, as well as by the existence of positive or negative correlations in the fluctuations of species. To explore the possible importance of this effect in real communities, we fit a simple simulation model to Tilman's grassland community. Our results indicate that statistical averaging might play a substantial role in explaining stability-diversity correlations for this and other systems. Models of statistical averaging can serve as a useful baseline for predictions of community stability, to which the influences of both negative and positive species interactions may then be added and tested.  相似文献   

15.
The role of salt bridges in chromatin protein Sso7d, from S. solfataricus has previously been shown to be crucial for its unusual high thermal stability. Experimental studies have shown that single site mutation of Sso7d (F31A) leads to a substantial decrease in the thermal stability of this protein due to distortion of the hydrophobic core. In the present study, we have performed a total of 0.2 s long molecular dynamics (MD) simulations on F31A at room temperature, and at 360 K, close to the melting temperature of the wild type (WT) protein to investigate the role of hydrophobic core on protein stability. Sso7d-WT was shown to be stable at both 300 and 360 K; however, F31A undergoes denaturation at 360 K, consistent with experimental results. The structural and energetic properties obtained using the analysis of MD trajectories indicate that the single mutation results in high flexibility of the protein, and loosening of intramolecular interactions. Correlation between the dynamics of the salt bridges with the structural transitions and the unfolding pathway indicate the importance of both salt bridges and hydrophobic in effecting thermal stability of proteins in general.  相似文献   

16.
Summary Headgroup and soft core interactions are added to a lipid monolayer-bilayer model and the surface pressure-area phase diagrams are calculated. The results show that quite small headgroup interactions can have biologically significant effects on the transition temperature and the phase diagram. In particular, the difference in transition temperatures of lecithins and phosphatidyl ethanolamines is easy to reproduce in the model. The phosphatidic acid systems seem to require weak transient hydrogen bonding which is also conjectured to play a role in most of the lipid systems. By a simple surface free energy argument it is shown that monolayers under a surface pressure of 50 dynes/cm should behave as bilayers, in agreement with experiment. Although the headgroup interactions are biologically very significant, in fundamental studies of the main phase transition in lipids they are secondary in importance to the hydrocarbon chain interactions (including the excluded volume interaction, the rotational isomerism, and the attractive van der Waals interaction).  相似文献   

17.
This study uses differential scanning calorimetry, X-ray crystallography, and molecular dynamics simulations to investigate the structural basis for the high thermal stability (melting temperature 97.5°C) of a FN3-like protein domain from thermophilic bacteria Thermoanaerobacter tengcongensis (FN3tt). FN3tt adopts a typical FN3 fold with a three-stranded beta sheet packing against a four-stranded beta sheet. We identified three solvent exposed arginine residues (R23, R25, and R72), which stabilize the protein through salt bridge interactions with glutamic acid residues on adjacent strands. Alanine mutation of the three arginine residues reduced melting temperature by up to 22°C. Crystal structures of the wild type (WT) and a thermally destabilized (?Tm ?19.7°C) triple mutant (R23L/R25T/R72I) were found to be nearly identical, suggesting that the destabilization is due to interactions of the arginine residues. Molecular dynamics simulations showed that the salt bridge interactions in the WT were stable and provided a dynamical explanation for the cooperativity observed between R23 and R25 based on calorimetry measurements. In addition, folding free energy changes computed using free energy perturbation molecular dynamics simulations showed high correlation with melting temperature changes. This work is another example of surface salt bridges contributing to the enhanced thermal stability of thermophilic proteins. The molecular dynamics simulation methods employed in this study may be broadly useful for in silico surface charge engineering of proteins.  相似文献   

18.
Non-enzymatic glycation of biomolecules has been implicated in the pathophysiology of aging and diabetes. Among the potential targets for glycation are biological membranes, characterized by a complex organization of lipids and proteins interacting and forming domains of different size and stability. In the present study, we analyse the effects of glycation on the interactions between membrane proteins and lipids. The phospholipid affinity for the transmembrane surface of the PMCA (plasma-membrane Ca(2+)-ATPase) was determined after incubating the protein or the phospholipids with glucose. Results show that the affinity between PMCA and the surrounding phospholipids decreases significantly after phosphospholipid glycation, but remains unmodified after glycation of the protein. Furthermore, phosphatidylethanolamine glycation decreases by approximately 30% the stability of PMCA against thermal denaturation, suggesting that glycated aminophospholipids induce a structural rearrangement in the protein that makes it more sensitive to thermal unfolding. We also verified that lipid glycation decreases the affinity of lipids for two other membrane proteins, suggesting that this effect might be common to membrane proteins. Extending these results to the in vivo situation, we can hypothesize that, under hyperglycaemic conditions, glycation of membrane lipids may cause a significant change in the structure and stability of membrane proteins, which may affect the normal functioning of membranes and therefore of cells.  相似文献   

19.
The significance of two interface arginine residues on the structural integrity of an obligatory dimeric enzyme thymidylate synthase (TS) from Lactobacillus casei was investigated by thermal and chemical denaturation. While the R178F mutant showed apparent stability to thermal denaturation by its decreased tendency to aggregate, the Tm of the R218K mutant was lowered by 5 degrees C. Equilibrium denaturation studies in guanidinium chloride (GdmCl) and urea indicate that in both the mutants, replacement of Arg residues results in more labile quaternary and tertiary interactions. Circular dichroism studies in aqueous buffer suggest that the protein interior in R218K may be less well-packed as compared to the wild type protein. The results emphasize that quaternary interactions may influence the stability of the tertiary fold of TS. The amino acid replacements also lead to notable alteration in the ability of the unfolding intermediate of TS to aggregate. The aggregated state of partially unfolded intermediate in the R178F mutant is stable over a narrower range of denaturant concentrations. In contrast, there is an exaggerated tendency on the part of R218K to aggregate in intermediate concentrations of the denaturant. The 3 A crystal structure of the R178F mutant reveals no major structural change as a consequence of amino acid substitution. The results may be rationalized in terms of mutational effects on both the folded and unfolded state of the protein. Site specific amino acid substitutions are useful in identifying specific regions of TS involved in association of non-native protein structures.  相似文献   

20.
Detailed knowledge of how networks of surface salt bridges contribute to protein thermal stability is essential not only to understand protein structure and function but also to design thermostable proteins for industrial applications. Experimental studies investigating thermodynamic stability through measurements of free energy associated with mutational alterations in proteins provide only macroscopic evidence regarding the structure of salt-bridge networks and assessment of their contribution to protein stability. Using explicit-solvent molecular dynamics simulations to provide insight on the atomic scale, we investigate here the structural stability, defined in terms of root-mean-square fluctuations, of a short polypeptide designed to fold into a stable trimeric coiled coil with a well-packed hydrophobic core and an optimal number of intra- and interhelical surface salt bridges. We find that the increase of configurational entropy of the backbone and side-chain atoms and decreased pair correlations of these with increased temperature are consistent with nearly constant atom-positional root-mean-square fluctuations, increased salt-bridge occupancies, and stronger electrostatic interactions in the coiled coil. Thus, our study of the coiled coil suggests a mechanism in which well-designed salt-bridge networks could accommodate stochastically the disorder of increased thermal motion to produce thermostability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号