首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Double detection of microsphere light scattering and quantum dot emission was demonstrated for lab-on-a-chip immunoassay without using stationary support. We conjugated quantum dots (QDs) onto microspheres to enable multiplex assays as well as to enhance the limit of detection (LOD). We named this configuration "nano-on-micro" or "NOM". Upon radiation with UV light (380nm), a stronger light scattering signal is observed with NOMs than QDs or microspheres alone. Additionally, NOMs are easier to handle than QDs. Since QDs also provide fluorescent emission, we are able to utilize an increase in light scattering for detecting antigen-antibody reaction and a decrease in QD emission to identify which antibody (or antigen) is present. Two types of NOM combinations were used. One batch of microspheres was coated with QDs emitting at 655 nm and mouse IgG (mIgG); the other with QDs emitting at 605 nm and bovine serum albumin (BSA). A mixture of these two NOMs was used to identify either anti-mIgG or anti-BSA. NOM particles and target solutions were mixed in a microfluidic device (using highly carboxylated microspheres as previously demonstrated by our group) and on-chip detection was performed using proximity optical fibers. Forward light scattering at 380 nm was collected. With the positive target, the scattering signal was increased. The LOD was as low as 50 ng ml(-1) (330 pM) with p<0.05. Fluorescent emission (655 or 605 nm) was simultaneously collected. With the positive target, the emission signal was attenuated. Therefore, we were able to detect two different antibodies simultaneously with two different detection protocols. We believe this NOM bioassay has the ability to screen for and detect multiple antibodies with minimal sample processing and handling (one-step lab-on-a-chip immunoassay).  相似文献   

2.
Polystyrene fluorescent microspheres prepared by deposition of CdTe quantum dots (QDs) are used in an immunoassay in this study. CdTe QDs/polyelectrolyte multilayers on the surface of polystyrene microspheres have been formed by layer-by-layer self-assembly via electrostatic interactions. As a model antigen, rabbit IgG has been bound to the outermost layer of the fluorescent microspheres. The immunoreaction between fluorescent microspheres/rabbit IgG and the corresponding antibody was confirmed by change of the fluorescence spectrum and competitive immunoassay. This approach allowed detection of the antigen (rabbit IgG) in the range 1-500 mg/L, based on the change in the fluorescence intensity of the reporter (fluorescent microspheres/rabbit IgG). A novel microfluidic chip device with a laser-induced fluorescence system was established and used for the detection of fluorescent microspheres in this study.  相似文献   

3.
With excellent optical properties, quantum dots (QDs) have been made as attractive molecular probes for labelling cells in biological research. In this study high‐quality CdSe QDs prepared in a paraffin–oleic acid system were used as fluorescent labels in direct and indirect detection of carcinoembryonic antigen (CEA), a cancer marker expressed on the surface of HeLa cells. The primary antibody (Ab) (rabbit anti‐CEA8) and secondary Ab (goat anti‐rabbit IgG) were covalently linked to carboxyl‐functioned CdSe QDs, and both the QDs–antibody and QDs–IgG probes were successfully used to label HeLa cells. The present study demonstrates the practicability of CdSe QDs as an attractive type of fluorescent labels for biological applications such as protein probes and cell imaging. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
In this study, tri‐functional immunofluorescent probes (Ce6–IgG–QDs) based on covalent combinations of quantum dots (QDs), immunoglobulin G (IgG) and chlorin e6 (Ce6) were developed and their photodynamic ability to induce the death of cancer cells was demonstrated. Strategically, one type of second‐generation photosensitizer, Ce6, was first coupled with anti‐IgG antibody using the EDC/NHS cross‐linking method to construct the photosensitive immunoconjugate Ce6–IgG. Then, a complex of Ce6–IgG–QDs immunofluorescent probes was obtained in succession by covalently coupling Ce6–IgG to water soluble CdTe QDs. The as‐manufactured Ce6–IgG–QDs maintained the bio‐activities of both the antigen–antibody‐based tumour targeting effects of IgG and the photodynamic‐related anticancer activities of Ce6. By way of polyclonal antibody interaction with rabbit anti‐human epidermal growth factor receptor (anti‐EGFR antibody, N‐terminus), Ce6–IgG–QDs were labelled indirectly onto the surface of human hepatocarcinoma (HepG2) cells in cell recognition and killing experiments. The results indicated that the Ce6–IgG–QDs probes have excellent tumour cell selectivity and higher photosensitivity in photodynamic therapy (PDT) compared with Ce6 alone, due to their antibody‐based specific recognition and location of HepG2 cells and the photodynamic effects of Ce6 killed cells based on efficient fluorescence resonance energy transfer between QDs and Ce6. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
In this work, donor-acceptor complexes were formed based on antibody-antigen interactions. Immunoglobulin antigen (mouse-IgG) was effectively conjugated to mercaptopropyl acid-modified CdTe quantum dot synthesized in aqueous solution via electrostatic interaction, while organic dyes-tetramethylrhodamine isothiocyanate (TRITC) were attached to the corresponding antibody (anti-mouse IgG). The mutual affinity of the antigen and antibody brought the CdTe quantum dot and TRITC sufficiently close together to allow the resonance dipole-dipole coupling required for fluorescence resonance energy transfer to occur. The formation of immunocomplexes resulted in fluorescence resonance energy transfer from the CdTe quantum dot donors to the TRITC acceptors.  相似文献   

6.
Summary A model antibody, goat anti-rabbit IgG antibody, was adsorbed onto a disk of polyester cloth and then fixed into a column apparatus. The macroporosity of the cloth allowed rapid immunoconcentration of a model antigen, rabbit IgG, by passing a large volume of the dilute antigen through the antibody-coated cloth. Such immunoconcentration permitted detection of the dilute antigen which otherwise would have gone undetected.  相似文献   

7.
A recently developed immunocytochemical double-staining method for ultrathin Epon and Lowicryl K4M sections has been adopted for use on ultrathin cryosections. The essential features of the method include: staining for the first antigen by the indirect method using sufficient concentrations of second antibodies conjugated to colloidal gold particles to saturate available epitopes on the primary antibodies; supporting the cryosections by methyl cellulose followed by paraformaldehyde vapour treatment (30-60 min at 80 degrees C); removal of the methyl cellulose followed by staining for the second antigen using primary antiserum from the same species and another size class of colloidal gold particles conjugated to second antibodies. Contaminating staining does not occur if the paraformaldehyde vapour treatment exceeds 30 min, as this treatment destroys the combining sites on the second antibodies applied in the first staining cycle. Successful double-staining was documented using primary rabbit antibodies to growth hormone and corticotropin and anti-rabbit IgG conjugated to 5 and 15 nm colloidal gold particles. Following double-staining, the ultrathin cryosections may be silver-enhanced to improve detectability of the markers at low magnification.  相似文献   

8.
A monoclonal mouse antibody directed against rabbit IgG has been conjugated with horseradish peroxidase and used to identify immunoprecipitates which contain rabbit antibodies. By combining a specific rabbit antisera with a general antiserum from another species (e.g., goat antiserum against human serum), immunoprecipitates containing the antigen(s) recognized by the rabbit antibodies have been selectively identified by colorimetric development of peroxidase activity. Since the monoclonal antibody is specific for rabbit IgG and nonprecipitating, the peroxidase conjugate can be included in the agarose with the primary antisera.  相似文献   

9.
The label-free amperometric detection of a rabbit IgG antigen by an anti-rabbit IgG antibody is achieved by observing the electrochemistry at a glassy carbon electrode modified with antibody entrapped in an electrodeposited polypyrrole membrane. In a flow injection apparatus the electrode is pulsed between -0.2 and +0.4 V versus Ag/AgCl. The pulsing of the electrode switches the polypyrrole membrane between the oxidised and reduced states. When antigen is injected into the flow stream a change in current is observed at the electrode despite the antigen or antibody being redox inactive at the potentials employed. It is proposed that this current is due to a change in the flux of ions into and out of the polypyrrole matrix during a pulse when the poly-anionic antigen is present. The immunoreaction was reversible because the 200 ms pulse at each potential was too short to allow secondary bonding forces (hydrogen bonding and hydrophobic forces) which are responsible for the strength of the antibody-antigen complex to be established. The consequence of the reversibility of the antigen-antibody binding is a low apparent affinity constant but an easily regenerated recognition interface.  相似文献   

10.
Summary A recently developed immunocytochemical double-staining method for ultrathin Epon and Lowicryl K4M sections has been adopted for use on ultrathin cryosections. The essential features of the method include: staining for the first antigen by the indirect method using sufficient concentrations of second antibodies conjugated to colloidal gold particles to saturate available epitopes on the primary antibodies; supporting the cryosections by methyl cellulose followed by paraformaldehyde vapour treatment (30–60 min at 80°C); removal of the methyl cellulose followed by staining for the second antigen using primary antiserum from the same species and another size class of colloidal gold particles conjugated to second antibodies. Contaminating staining does not occur if the paraformaldehyde vapour treatment exceeds 30 min, as this treatment destroys the combining sites on the second antibodies applied in the first staining cycle. Succesful double-staining was documented using primary rabbit antibodies to growth hormone and corticotropin and anti-rabbit IgG conjugated to 5 and 15 nm colloidal gold particles. Following double-staining, the ultrathin cryosections may be silver-enhanced to improve detectability of the markers at low magnification.  相似文献   

11.
Immunoglobulin G (IgG) in tick haemolymph was analysed immunochemically and biochemically for its antigenicity, antibody activity and relative concentration in a soft tick, Ornithodoros moubata (Murray) sensu Walton 1962 (Acari: Argasidae). Ouchterlony immunodiffusion tests showed that haemolymph from a tick engorged on rabbit IgG (or human IgG) through an artificial membrane, reacted with anti-rabbit IgG (anti-human IgG) but not with anti-human IgG (anti-rabbit IgG). This indicates that haemolymph of the fed tick contains IgG with a similar antigen specificity to host blood IgG. IgG from tick haemolymph was demonstrated by enzyme immunoassay to have the same antibody activity as ingested IgG. The IgG concentration in tick haemolymph was measured by a quantitative single immunodiffusion test. Changes of IgG titre after a bloodmeal were correlated with IgG activity, which was low for 5 days after a bloodmeal and then suddenly increased. The IgG titre reached a maximum 7 days post-engorgement, and remained high for over 4 months during and after oviposition. 125I-labelled IgG was injected into the tick haemocoel to determine the persistence of IgG in the haemolymph. Recovery of labelled IgG was low at 1 and 3 days, and high at 5, 8 and 16 days after engorgement. The data suggest that IgG in haemolymph disappears quickly soon after engorgement possibly by degradation and/or absorption (adhesion to tissues).  相似文献   

12.
目的: 以聚赖氨酸(polylysine,PL)为骨架提高辣根过氧化物酶(horseradish peroxidase,HRP)与羊抗兔IgG的连接数量,比较几种化学偶联剂的偶联效果,通过免疫检测技术对其灵敏度进行检测和比较。方法: 对HRP与PL、聚合物HRP-PL与N-琥珀酰-S-乙酰乙酸(N-succinimidyl-S-acetylthioacetate,SATA)和2-亚氨基硫烷(Traut’s)两种试剂、羊抗兔IgG与琥珀酰亚胺基4-(N-马来酰亚胺甲基)环己烷-1-羧酸酯[succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate,Sulfo-SMCC]、活化后羊抗兔IgG及HRP-PL进行摩尔比的优化;对偶联物IgG-PL-HRP及商品化二抗分别进行斑点免疫印迹、ELISA和免疫组化,并计算偶联物IgG-PL-HRP的检测放大倍数。结果: 当PL与HRP摩尔比为1∶5,HRP-PL与Traut’s摩尔比为1∶15,羊抗兔IgG与Sulfo-SMCC摩尔比为1∶30,羊抗兔IgG与HRP-PL摩尔比为1∶10时,反应效率较高;商品化二抗及偶联物IgG-PL-HRP在斑点免疫印迹实验中的最低检测限分别为2.5 μg和312.5 ng,最大稀释倍数分别为50和100倍;在ELISA实验中的最大稀释倍数分别为5 000和20 000倍;在免疫组化实验中偶联物IgG-PL-HRP的检测特异性及强度均大于商品化二抗。结论: 成功合成抗体偶联物IgG-PL-HRP,且免疫检测信号放大倍数为商品化二抗的3~7倍,这对后续免疫诊断及生物学的研究具有重要意义。  相似文献   

13.
Summary A model antigen, rabbit immunoglobulin G, was immobilized onto polyester cloth by adsorption. The antigen cloth was reacted with sheep anti-rabbit IgG antibody. Antibody bound to the antigen cloth was nearly quantitatively eluted by saturated MgCl2, whereas a commercial antibody eluent slowly eluted only about 70 % of the antibody. Exposure of antibody to saturated MgCl2 for 30 min resulted in no loss of immunoactivity. Saturated MgCl2, therefore, is an ideal eluent in immunoaffinity purification of antibodies.  相似文献   

14.
The aim of this work is to detect immune complexes without any kind of labelling of each of the immunological species, with a view to create a very sensitive biosensor. This is achieved by using the atomic force microscopy. We have proceeded by imaging the antibody (anti-rabbit IgG) or anti-rabbit IgG moieties adsorbed onto mica surface, before and after incubation of two kinds of antigens: a specific (rabbit IgG) and a non-specific one (sheep IgG). The analysis using the height histograms reveals many interesting features. We propose a general framework for interpreting these analysis, which enables the discrimination between specific and non-specific complexes.  相似文献   

15.
Localization of antisera to neurofilament antigens derived from rat peripheral nerve was carried out in tissues of rat and human peripheral and central nervous systems by indirect immunofluorescence. Unfixed and chloroform-methanol-fixed frozen sections of tissues were incubated in purified IgG of the experimental rabbit antisera and subsequently exposed to goat anti-rabbit IgG conjugated with fluorescein isothiocyanate. Control studies were conducted on identical tissue preparations incubated in the same concentrations of nonspecific rabbit IgG or in experimental rabbit IgG absorbed with extracts of rat peripheral nerve containing neurofilament antigen. Extensive immunofluorescence was observed in rat and human peripheral and central nervous systems. The distribution and configuration of immunofluorescence corresponded to neurofilament-rich structural components of these tissues. Prominent immunofluorescence was also noted in neuronal cell bodies of spinal sensory ganglia, especially in perikarya of the large neuronal type. Immunofluorescence of the central nervous system was located predominantly in myelinated axons of the white matter in cerebrum, cerebellum, brain stem, and spinal cord. Less intense immunofluorescence was also seen in neuronal perikarya and in short thin linear processes of grey matter.  相似文献   

16.
Band gap tunable cadmium selenide (CdSe) quantum dots (QDs) were synthesized within earthworms that emit in the middle of the visible spectrum. We demonstrated that this luminescence emission is a combination of the earthworm's protein and QD luminescence, such that the contribution of QDs in the luminescence was negligible. Eisenia fetida earthworms were used for QD biosynthesis and were exposed to different concentrations of CdCl2 and Na2SeO3 in standard soil for an adequate exposure time. The size of the CdSe QDs based on the effective mass model was in agreement with the size measured from the transmission electron microscopy analysis, with an average diameter of 7 nm. Ultraviolet–visible and photoluminescence analyses confirmed the synthesis of CdSe QDs with unique absorption and luminescence at 430 nm and 605 nm, respectively.  相似文献   

17.
In this work, CdSe quantum dots (QDs) were synthesized by a simple and rapid microwave activated approach using CdSO4, Na2SeO3 as precursors and thioglycolic acid (TGA) as capping agent molecule. A novel photochemical approach was introduced for the growth of CdS QDs and this approach was used to grow a CdS shell around CdSe cores for the formation of a CdSe/CdS core–shell structure. The core–shells were structurally verified using X‐ray diffraction, transmission electron microscopy and FTIR (Fourier‐transform infrared (FTIR)) spectroscopy. The optical properties of the samples were examined by means of UV–Vis and photoluminescence (PL) spectroscopy. It was found that CdS QDs emit a broad band white luminescence between 400 to 700 nm with a peak located at about 510 nm. CdSe QDs emission contained a broad band resulting from trap states between 450 to 800 nm with a peak located at 600 nm. After CdS shell growth, trap states emission was considerably quenched and a near band edge emission was appeared about 480 nm. Optical studies revealed that the core–shell QDs possess strong ultraviolet (UV) ? visible light photocatalytic activity. CdSe/CdS core–shell QDs, showed an enhancement in photodegradation of Methyl orange (MO) compared with CdSe QDs.  相似文献   

18.
A composite self-excited PZT-glass cantilever (4mm in length and 2mm wide) was fabricated and used to measure the binding and unbinding of model proteins. A key feature of the cantilever is that its resonant frequency is dependent on its mass. The fabricated cantilever has mass change sensitivity in liquid of 7.2 x 10(-11)g/Hz. Resonant frequency change was measured as protein reacted or bound with the sensing glass cantilever surface. Protein concentrations, 0.1 and 1.0mg/mL, which resulted in nanogram mass change were successfully detected. The mass change sensitivity gave a total mass change of 54+/-0.45 ng for the binding of anti-rabbit IgG (biotin conjugated) to rabbit IgG immobilized cantilever and the subsequent binding of captavidin. The unbinding of anti-rabbit IgG and captavidin gave a total mass change of 54+/-1.70 ng. Fluorescence based assays showed the combined mass of both proteins in the released samples was 54+/-2.24 ng. The binding kinetics of the model proteins is modeled as first order. The initial binding rate constant of anti-rabbit IgG to rabbit IgG was 1.36+/-0.02(min(mg/mL))(-1). The initial binding rate constant of captavidin to biotinylated anti-rabbit IgG was (2.57 x 10(-1))+/-0.003(min(mg/mL))(-1). The significance of the results we report here is that millimeter-sized PZT-actuated glass cantilevers have the sensitivity to measure in real-time protein-protein binding, and the binding rate constant.  相似文献   

19.
The native cysteine residues of green fluorescent protein (GFP) at positions 48 and 70 were replaced by non-thiolic amino acids, and new cysteine sites were introduced at specific, surface positions. Based on molecular modeling of the GFP structure, the sites chosen for mutagenesis to Cys were glutamic acid at position 6 and isoleucine at position 229. These new, unique cysteine sites provided reactive thiol groups suitable for site-specific chemical modification by eosin-based fluorescence labels. The new constructs were designed to serve as the basis of proof of principle for fluorescence resonance energy transfer (FRET) using an enzyme-activated (trypsin) intervening sequence between native and chemically conjugated fluorophores. These eosin moieties provided chemical FRET partners for the native GFP chromophore. On excitation, these GFP-eosin constructs exhibited strong intramolecular FRET, with quenching of the native GFP (511 nm) fluorophore emission and emission around 540 nm, corresponding to eosin. GFP mutants engineered with trypsin-sensitive sequences close to the eosin site, so that on trypsinolysis FRET was destroyed, the emission wavelength switching from that of the chemical FRET partner back to that of the native GFP fluorophore, providing efficient, ratio-based detection. This protein engineering provides the basis for novel bioprobes for enzymatic triggering using intramolecular FRET between GFP and carefully sited chemical labels.  相似文献   

20.
We present a new approach for performing fluorescence immunoassay in whole blood using fluorescently labeled anti-rabbit immunoglobulin G (IgG) on a silver surface. This approach, which is based on surface plasmon-coupled emission (SPCE), provides increased sensitivity and substantial background reduction due to exclusive selection of the signal from the fluorophores located near a bioaffinity surface. This article describes the effect of an optically dense sample matrix, namely human whole blood and serum, on the intensity of the SPCE. An antigen (rabbit IgG) was adsorbed to a slide covered with a thin silver metal layer, and the SPCE signal from the fluorophore-labeled anti-rabbit antibody, binding to the immobilized antigen, was detected. The effect of the sample matrix (buffer, human serum, or human whole blood) on the end-point immunoassay SPCE signal was studied. It was demonstrated that the kinetics of binding could be monitored directly in whole blood or serum. The results showed that human serum and human whole blood attenuate the SPCE end-point signal and the immunoassay kinetic signal only approximately two- and threefold, respectively, as compared with buffer, resulting in signals that are easily detectable even in whole blood. The high optical absorption of the hemoglobin can be tolerated because only fluorophores within a couple of hundred nanometers from the metallic film contribute to SPCE. Excited fluorophores outside the 200-nm layer do not contribute to SPCE, and their free space emission is not transmitted through the opaque metallic film into the glass substrate. We believe that SPCE has the potential of becoming a powerful approach for performing immunoassays based on surface-bound analytes or antibodies for many biomarkers directly in dense samples such as whole blood with no need for washing steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号