首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent structures of putative intermediates in the bacteriorhodopsin photocycle have provided valuable snapshots of the mechanism by which protons are pumped across the membrane. However, key steps remain highly controversial, particularly the proton transfer occurring immediately after retinal trans-->cis photoisomerization. The gradual release of stored energy is inherently nonequilibrium: which photocycle intermediates are populated depends not only on their energy but also on their interconversion rates. To understand why the photocycle follows a productive (i.e., pumping), rather than some unproductive, relaxation pathway, it is necessary to know the relative energy barriers of individual steps. To discriminate between the many proposed scenarios of this process, we computed all its possible minimum-energy paths. This reveals that not one, but three very different pathways have energy barriers consistent with experiment. This result reconciles the conflicting views held on the mechanism and suggests a strategy by which the protein renders this essential step resilient.  相似文献   

2.
Aquaporins are an important class of membrane channels selective for water and linear polyols but impermeable to ions, including protons. Recent computational studies have revealed that the relay of protons through the water-conduction pathway of aquaporin channels is opposed by a substantial free energy barrier peaking at the signature NPA motifs. Here, free-energy simulations and continuum electrostatic calculations are combined to examine the nature and the magnitude of the contribution of specific structural elements to proton blockage in the bacterial glycerol uptake facilitator, GlpF. Potential of mean-force profiles for both hop and turn steps of structural diffusion in the narrow pore are obtained for artificial variants of the GlpF channel in which coulombic interactions between the pore contents and conserved residues Asn68 and Asn203 at the NPA signature motifs, Arg206 at the selectivity filter, and the peptidic backbone of the two half-helices M3 and M7, which are arranged in head-to-head fashion around the NPA motifs, are turned off selectively. A comparison of these results with electrostatic energy profiles for the translocation of a probe cation throughout the water permeation pathway indicates that the free-energy profile for proton movement inside the narrow pore is dominated by static effects arising from the distribution of charged and polar groups of the channel, whereas dielectric effects contribute primarily to opposing the access of H+ to the pore mouths (desolvation penalty). The single most effective way to abolish the free-energy gradients opposing the movement of H+ around the NPA motif is to turn off the dipole moments of helices M3 and M7. Mutation of either of the two NPA Asn residues to Asp compensates for charge-dipole and dipole-dipole effects opposing the hop and turn steps of structural diffusion, respectively, and dramatically reduces the free energy barrier of proton translocation, suggesting that these single mutants could leak protons.  相似文献   

3.
The process of proton transfer along a proton channel is considered using bacteriorhodopsin as a model system, for which a large body of experimental data is available. The possible amino acid composition of the external proton half-channel of bacteriorhodopsin and the stepwise scheme of proton transfer consistent with experimental data are proposed. The rate of proton transfer between fixed centers is assessed for certain regions of this channel for which spectroscopic data are available.  相似文献   

4.
The process of proton transfer across the membrane via the external proton channel in bacteriorhodopsin is considered. A possible amino acid composition of the channel is suggested and the step-by-step mechanism of proton transfer is proposed which agrees with the experimental data. The rate of proton transfer between fixed centers at several chains of the channel was estimated for which the spectroscopic data are available.  相似文献   

5.
In recent years the number of determined three-dimensional structures of serine proteases that are accompanied by detailed mutational studies has grown rapidly. In particular, spatial structures have been described for enzymes involved in processes of critical medical significance, often related to severe pathophysiological diseases. There has also been significant progress in the understanding of the structural grounds for the substrate specificity of serine proteases. This review is concerned mainly with primary structural determinants of the S1 specificity, the crucial component of substrate selectivity, often in relation to more distant specificity elements, which cooperatively influence the S1 site.  相似文献   

6.
7.
8.
Events in proton pumping by bacteriorhodopsin.   总被引:1,自引:3,他引:1       下载免费PDF全文
The short-circuit photoresponse of a bacteriorhodopsin-based photoactive membrane is studied. The membrane is formed by first coating a Teflon membrane with lipid and then fusing bacteriorhodopsin vesicles to it. An incandescent light source was used to obtain the rise time of the photocurrent in response to a step-function illumination. A fast response, less than 1 ms, characterizes the initial rise and decay of the photocurrent. The trailing edge of the rise and trailing edge of the decay each exhibit different time constants both greater than 1 ms. These slower components show a sensitivity to membrane charging, the presence of diethylether in the bathing solution, and the presence of a charged cation complex in the lipid region. The photoresponse is not analyzed by means of the usual equivalent electrical circuit, but rather in terms of image charges in the conducting electrolyte bathing the membrane. Further experiments using a pulsed laser (pulse width less than 1 microseconds) resolve at least three time constants in the photoresponse: 0.057 ms, 1.06 ms, and 13 ms. Three distinct charge displacements (4.4, 7.5, and 33.1 A) are derived from the data, each corresponding to one of the above time constants.  相似文献   

9.
10.
A proton channel in bacteriorhodopsin   总被引:1,自引:0,他引:1  
T Konishi  L Packer 《FEBS letters》1978,89(2):333-336
  相似文献   

11.
12.
The pH dependencies of the rate constants in the photocycles of recombinant D96N and D115N/D96N bacteriorhodopsins were determined from time-resolved difference spectra between 70 ns and 420 ms after photoexcitation. The results were consistent with the model suggested earlier for proteins containing D96N substitution: BR hv----K----L----M1----M2----BR. Only the M2----M1 back-reaction was pH-dependent: its rate increased with increasing [H+] between pH 5 and 8. We conclude from quantitative analysis of this pH dependency that its reverse, the M1----M2 reaction, is linked to the release of a proton from a group with a pKa = 5.8. This suggests a model for wild-type bacteriorhodopsin in which at pH greater than 5.8 the transported proton is released on the extracellular side from this as yet unknown group and on the 100-microseconds time scale, but at pH less than 5.8, the proton release occurs from another residue and later in the photocycle most likely directly from D85 during the O----BR reaction. We postulate, on the other hand, that proton uptake on the cytoplasmic side will be by D96 and during the N----O reaction regardless of pH. The proton kinetics as measured with indicator dyes confirmed the unique prediction of this model: at pH greater than 6, proton release preceded proton uptake, but at pH less than 6, the release was delayed until after the uptake. The results indicated further that the overall M1----M2 reaction includes a second kinetic step in addition to proton release; this is probably the earlier postulated extracellular-to-cytoplasmic reorientation switch in the proton pump.  相似文献   

13.
The cytoplasmic surface of bacteriorhodopsin is characterized by a group of carboxylates that function as a proton attractive domain [Checover, S., Nachliel, E., Dencher, N. A., and Gutman, M. (1997) Biochemistry 36, 13919-13928]. To identify these carboxylates, we selectively mutated them into cysteine residues and monitored the effects of the dynamics of proton transfer between the bulk and the surface of the protein. The measurements were carried out without attachment of a pH-sensor to the cysteine residue, thus avoiding any structural perturbation and change in the surface charge caused by the attachment of a reporter group, and the protein was in its BR state. The purple membranes were suspended in an unbuffered solution of pyranine (8-hydroxypyrene-1,3,6-trisulfonate) and exposed to a train of 1000 laser pulses (2.1 mJ/pulse, lambda = 355 nm, at 10 Hz). The excitation of the dye ejected the hydroxyl's proton, and a few nanoseconds later, a pair of free protons and ground-state pyranine anion was formed. The experimental observation was the dynamics of the relaxation of the system to the prepulse state. The observed signals were reconstructed by a numeric method that replicates the chemical reactions proceeding in the perturbed space. The detailed reconstruction of the measured signal assigned the various proton-binding sites with rate constants for proton binding and proton exchange and the pK values. Comparison of the results obtained by the various mutants indicates that the dominant proton-binding cluster of the wild-type protein consists of D104, E161, and E234. The replacement of D104 or E161 with cysteine lowered the proton binding capacity of the cluster to approximately 60% of that of the native protein. The replacement of E234 with cysteine disrupted the structure of the cluster, causing the two remaining carboxylates to function as isolated residues that do not interact with each other. The possibility of proton transfer between monomers is discussed.  相似文献   

14.
Site-specific mutagenesis has identified amino acids involved in bR proton transport. Biophysical studies of the mutants have elucidated the roles of two membrane-embedded residues: Asp-85 serves as the acceptor for the proton from the isomerized retinylidene Schiff base, and Asp-96 participates in reprotonation of this group. The functions of Arg-82, Leu-93, Asp-212, Tyr-185, and other residues that affect bR properties when substituted are not as well understood. Structural characterization of the mutant proteins will clarify the effects of substitutions at these positions. Current efforts in the field remain directed at understanding how retinal isomerization is coupled to proton transport. In particular, there has been more emphasis on determining the structures of bR and its photointermediates. Since well-ordered crystals of bR have not been obtained, continued electron diffraction studies of purple membrane offer the best opportunity for structure refinement. Other informative techniques include solid-state nuclear magnetic resonance of isotopically labeled bR (56) and electron paramagnetic resonance of bR tagged with nitroxide spin labels (2, 3, 13, 15). Site-directed mutagenesis will be essential in these studies to introduce specific sites for derivatization with structural probes and to slow the decay of intermediates. Thus, combining molecular biology and biophysics will continue to provide solutions to fundamental problems in bR.  相似文献   

15.
Y Cao  G Váró  M Chang  B F Ni  R Needleman  J K Lanyi 《Biochemistry》1991,30(45):10972-10979
During the M in equilibrium with N----BR reaction sequence in the bacteriorhodopsin photocycle, proton is exchanged between D96 and the Schiff base, and D96 is reprotonated from the cytoplasmic surface. We probed these and the other photocycle reactions with osmotically active solutes and perturbants and found that the M in equilibrium with N reaction is specifically inhibited by withdrawing water from the protein. The N----BR reaction in the wild-type protein and the direct reprotonation of the Schiff base from the cytoplasmic surface in the site-specific mutant D96N are much less affected. Thus, it appears that water is required inside the protein for reactions where a proton is separated from a buried electronegative group, but not for those where the rate-limiting step is the capture of a proton at the protein surface. In the wild type, the largest part of the barrier to Schiff base reprotonation is the enthalpy of separating the proton from D96, which amounts to about 40 kJ/mol. We suggest that in spite of this D96 confers an overall kinetic advantage because when this residue becomes anionic in the N state its electric field near the cytoplasmic surface lowers the free energy barrier of the capture of a proton in the next step. In the D96N protein, the barrier to the M----BR reaction is 20 kJ/mol higher than what would be expected from the rates of the M----N and N----BR partial reactions in the wild type, presumably because this mechanism is not available.  相似文献   

16.
Photoinduced changes in absorption of the deprotonated M-form in the mutant bacteriorhodopsin without primary proton acceptor Asp-85 were studied and additional evidence in support of the complete transmembrane proton transfer in photocycle was obtained. Measurements of the absorption spectrum were carried out at various pH, temperature, and humidity. The direction of proton transfer was the same as in the normal photocycle of the wild-type bacteriorhodopsin: from the internal to the external side of the membrane. The effect on this process of a terminal acceptor Glu-204 was shown.  相似文献   

17.
In a light-driven proton-pump protein, bacteriorhodopsin (BR), protonated Schiff base of the retinal chromophore and Asp85 form ion-pair state, which is stabilized by a bridged water molecule. After light absorption, all-trans to 13-cis photoisomerization takes place, followed by the primary proton transfer from the Schiff base to Asp85 that triggers sequential proton transfer reactions for the pump. Fourier transform infrared (FTIR) spectroscopy first observed O-H stretching vibrations of water during the photocycle of BR, and accurate spectral acquisition has extended the water stretching frequencies into the entire stretching frequency region in D(2)O. This enabled to capture the water molecules hydrating with negative charges, and we have identified the water O-D stretch at 2171 cm(-1) as the bridged water interacting with Asp85. We found that retinal isomerization weakens the hydrogen bond in the K intermediate, but not in the later intermediates such as L, M, and N. On the basis of the observation particularly on the M intermediate, we proposed a model for the mechanism of proton transfer from the Schiff base to Asp85. In the "hydration switch model", hydration of a water molecule is switched in the M intermediate from Asp85 to Asp212. This will have raised the pK(a) of the proton acceptor, and the proton transfer is from the Schiff base to Asp85.  相似文献   

18.
19.
Blue light effect on proton pumping by bacteriorhodopsin.   总被引:4,自引:1,他引:3       下载免费PDF全文
Proton pumping in closed vesicular systems containing bacteriorhodopsin that is initiated by an orange flash, is diminished by a subsequent blue flash. This blue light effect is due to light absorbed by the photocycle intermediate M412 (M), which was formed by the orange flash. A kinetic analysis of the blue-light-induced reduction of proton pumping shows that of the two components of M, only the slowly decaying component is involved in the reduction of proton movement. This may be the first correlation between a proton movement and a specific photochemical intermediate of bacteriorhodopsin. Furthermore, we report that blue light, acting on the slowly decaying intermediate, probably causes a movement of the protons in a direction opposite to that normally seen for light absorbed by bacteriorhodopsin.  相似文献   

20.

Background  

Laccases are enzymes that couple the oxidation of substrates with the reduction of dioxygen to water. They are the simplest members of the multi-copper oxidases and contain at least two types of copper centres; a mononuclear T1 and a trinuclear that includes two T3 and one T2 copper ions. Substrate oxidation takes place at the mononuclear centre whereas reduction of oxygen to water occurs at the trinuclear centre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号