首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
盐胁迫下大麦根系木质部压力的自调节现象   总被引:9,自引:0,他引:9  
用植物木质部压力探针测定的结果表明,水培大麦幼苗根的木质部压力在环境条件恒定不变时始终保持波动,并且在受到轻度的盐胁迫和当盐胁迫解除时表现出高度的自调节现象.这种波动和自调节现象将对植物水势的测定和根的径向反射系数的测定产生很大的影响,并可能与植物的抗盐性有关.小麦根在同样条件下未表现出上述现象.  相似文献   

2.
盐磷耦合胁迫下大豆的生长和钠、磷离子长距离运输   总被引:3,自引:0,他引:3  
以2个耐盐性和磷效率有差异的大豆品种为材料,采用水培方法,探讨盐分与缺磷耦合胁迫对大豆生长和钠、磷离子长距离运输影响的结果表明:(1)盐分和低磷胁迫对大豆生长有交互作用,磷浓度相对较高(2MMOL·L-1)时大豆耐盐性降低;(2)钠由木质部的向顶部运输增加,钠在韧皮部的再分配增多;(3)盐胁迫下磷在木质部的运输能力提高,韧皮部中磷的再分配受影响不大;(4)磷盐互作对大豆生长的影响在品种之间无差异。  相似文献   

3.
盐胁迫对一年生盐生野大豆幼苗活性氧代谢的影响   总被引:37,自引:9,他引:37  
以国际上通用的栽培大豆品种Lee68(耐盐性较强)和非盐生野大豆N23232种群(耐盐性较弱)为参照材料,研究了在低盐(150mmol·L-1NaCl)和高盐(300mmol·L-1NaCl)胁迫下,盐生野大豆BB52种群幼苗体内的O-·2水平和MDA含量,活性氧清除酶系统中超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)、抗坏血酸过氧化物酶(APX)等酶活性,以及抗坏血酸(AsA)、类胡萝卜素(Car)、谷胱甘肽(GSH)等活性氧清除物质含量的变化。结果表明,在150和300mmol·L-1NaCl胁迫2d时,盐生野大豆BB52种群幼苗根和叶中的O-·2产生速率下降,SOD活性上升,其中叶片表现明显,且叶中APX活性也有增加。在不同浓度NaCl胁迫下,根中MDA含量均未见明显上升,叶片中略有增加。叶中AsA、Car和GSH含量均上升,且升幅相对较大。  相似文献   

4.
盐胁迫对四种基因型冬小麦幼苗Na+、K+吸收和累积的影响   总被引:13,自引:0,他引:13  
以4种不同基因型冬小麦品种为试验材料,研究了盐胁迫下小麦幼苗的生长及Na^+、K^+和Cl^-的吸收、累积规律。结果表明,盐胁迫下小麦吸水困难,幼苗生长受抑;幼苗含水量、生物量及干物质量明显下降;Na^+、Cl^-含量和单株累积量显著增加。K^+含量和单株累积量则明显降低。Na^+/K^+比值随介质中的盐浓度的增加而升高。盐胁迫下各基因型冬小麦幼苗Na^+、K^+和Cl^-的单株累积量及其在地上部分和根系中的含量变化较大,说明小麦根系对Na^+、K^+和Cl^-的吸收存在基因型差异。盐处理下,暖型小麦NR9405对K^+的选择吸收能力强,对Na^+的吸收和累积少,植株体内的K^+浓度较高,Na^+/K^+比值小;幼苗的生物量较大,耐盐性强。冷型小麦RB6对K^+的选择能力差,对Na^+的吸收和累积量大,幼苗的Na^+/K^+比值大,生物量小,耐盐性较差。低盐浓度下,Na^+可作为渗透调节物质维持植物体内渗透平衡。高盐浓度下,Na^+的过度吸收和累积可能是盐害的主要原因。维持体内较低的Na^+水平和Na^+/K^+比值是小麦耐盐性的一个重要特征。  相似文献   

5.
IAA对盐胁迫下大豆幼苗膜伤害及抗盐力的影响   总被引:21,自引:1,他引:21  
采用溶液培养法研究了IAA(吲哚乙酸)对盐胁迫下豆幼苗膜伤害及抗盐力的影响。结果表明:一定浓度的IAA处理可促进盐胁迫下大豆幼苗的生长,使其干物质产量增加,叶面积增大,提高叶片光合速率,增强了保护酶系统活性,降低膜脂过氧化产物MDA含量及膜相对透性(相对导一),增强了幼苗对盐渍环境的抵抗能力,缓解了盐害。  相似文献   

6.
盐胁迫下水稻苗期Na+和K+吸收与分配规律的初步研究   总被引:10,自引:0,他引:10       下载免费PDF全文
选择苗期耐盐性较强的水稻(Oryza sativa)品种(株系)'AB52'、'02402'和'02435'及敏感品种'日本晴',在网室周转箱内,设置5 000和8 000 mg·L-1NaCl两种盐处理,以清水为对照,研究盐胁迫下苗期水稻植株不同部位Na+和K+的吸收和分配与品种耐盐性的关系.结果表明,盐胁迫下,株高、绿叶干重和绿叶面积下降,绿叶中的水分含量降低,但茎鞘中的水分含量有所上升.5 000 mg·L-1NaCl胁迫处理10 d,耐盐品种所受的生长影响和叶片伤害程度低于敏感品种,但8 000 mg·L-1NaCl胁迫处理下品种间差异变小.盐胁迫下,水稻植株吸收Na+和置换出K+,但不同器官部位中Na+和K+的区域化分布特征明显,各部位的Na+含量由低到高依次为绿叶、根、茎鞘和枯叶.下部老叶能优先积累较多Na+而枯黄;绿叶吸收Na+相对较少,维持较低的Na+水平,同时保持较高且稳定的K+含量;植株茎鞘通过选择性吸收大量Na+和置换出一部分K+到叶片中,保持绿叶较稳定的K+含量和相对较低的Na+含量,维持较高的K+/Na+比,从而使植株少受盐害.敏感品种'日本晴'在盐胁迫下绿叶中的Na+含量相对较高,且5 000 mg·L-1NaCl胁迫下绿叶Na+含量已接近高值,与在8 000 mg·L-1NaCl胁迫下差异不大,而耐盐品种绿叶吸收较少的Na+.另一方面,耐盐品种茎鞘的含K+相对较高,在盐胁迫下能吸收容纳较多的Na+,而绿叶中K+/Na+比较高.可以认为,绿叶的K+/Na+比可作为一个衡量耐盐性的相对指标.  相似文献   

7.
武玉妹  周强  於丙军 《生态学报》2011,31(22):6669-6676
大豆异黄酮( Soybean isoflavones)是在大豆生长过程中形成并在成熟种子和叶片中积累较多的一类具有生物活性的次生代谢物,通常可作为人们日常生活中的一类营养保健品.研究了外源大豆苷或染料木苷溶液(0.01 mg/L)浸种处理对盐胁迫栽培大豆(N23674品种)和滩涂野大豆(BB52种群)及其经逐代耐盐性筛选的杂交后代(4076株系,F5)幼苗叶片伤害率、光合作用、Na+含量和Na+/K+值、活性氧清除酶活性及内源大豆异黄酮含量等生理指标的影响.结果表明:盐胁迫下,两种外源大豆异黄酮浸种处理均可显著抑制叶片相对电解质渗透率和硫代巴比妥酸反应物(TBARS)含量的上升及净光合速率(Pn)的下降,降低Na+含量和Na+/K+值,增强超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性,提高内源大豆异黄酮含量,从而表现对盐害的缓解效应,其中对耐盐性较弱的栽培大豆N23674品种效应更明显.这为大豆异黄酮在大豆耐盐育种、化学调控和盐碱地种植利用等提供了理论依据.  相似文献   

8.
木质部是植株体内水分传输的主要通路,其水力特性的变化会影响植株的水分关系和果实的水分积累。目前关于番茄植株木质部解剖结构和水力特性对水分和盐分胁迫的响应及其与植株生长和果实含水量之间的关系尚不明确。本研究通过日光温室番茄盆栽试验,设置3个处理:对照,土壤含水量(θ)为75%~95%田间持水量(FC),初始电导率(EC)为0.398 dS·m-1;水分胁迫,开花前θ为75%~95% FC,开花后至成熟期θ为45%~65% FC,EC为0.398 dS·m-1;盐分胁迫,θ为75%~95% FC,EC为1.680 dS·m-1,研究了樱桃型番茄(红宝石)和中果型番茄(北番501)植株在水分和盐分胁迫下的植株生长、果实含水量以及木质部水力特性的变化。结果表明: 与对照相比,水分和盐分胁迫下茎秆横截面积和木质部导管直径分别减小了22.0%~40.7%和10.0%~18.3%,茎秆比导水率和桁架柄比导水率分别降低了8.8%~41.1%和12.9%~28.4%,抑制了植株生长,减少了地上部鲜重、果实大小、果实鲜重和含水量,且与樱桃型番茄相比,中果型番茄的降幅更大。此外,果实含水量分别与茎秆和桁架柄比导水率呈显著正相关。综上,番茄植株在水分和盐分胁迫下木质部水力特性指标减小,生长被抑制,果实鲜重显著降低,最终导致产量降低。其中,中果型番茄相较于樱桃型番茄对水分和盐分胁迫更敏感。  相似文献   

9.
采用不同浓度的NaCl、Na2SO4、Na2CO3及三者的混合盐的胁迫,对野大豆种子的发芽率、发芽势、发芽指数及胚生长的影响进行测定分析.结果表明,随盐溶液浓度的增加,野大豆种子的发芽率、发芽速度、发芽指数均呈下降趋势,而低浓度的Na2SO4(10 ~ 50 mmol/L),Na2CO3(≤10 mmol/L)促进种子萌发,高浓度的NaCl(> 200mmol/L)、Na2SO4 (≥200 mmol/L)、Na2CO3(>75 mmol/L)抑制种子萌发;胚根和胚轴对不同种类盐胁迫表现出不同的反应.低浓度的盐分促进了胚根和胚轴的生长.  相似文献   

10.
孟娜  徐航  魏明  魏胜华 《西北植物学报》2017,37(10):1988-1995
以大豆栽培品种‘中黄13’为试验材料,在筛选合适的盐胁迫及烯效唑(S3307)浓度基础上,采用大豆幼苗期盐胁迫以及叶面喷施S3307的方法,分析比较相关生理指标及营养器官(根、茎和叶)解剖结构的差异,从组织结构形态和生理两方面探讨叶面喷施S3307对大豆苗期盐胁迫的缓解效应及其作用机制。结果显示:(1)与正常生长的对照相比,盐胁迫下大豆根和叶中硫代巴比妥酸反应物的含量均显著增加,叶绿素含量显著降低;而且叶片较薄,海绵组织和栅栏组织细胞排列混乱;根部中柱所占比例较对照明显变小,但皮层所占比例变大,外表皮细胞向内凹陷,次生导管平均孔径较小且含有侵填体;茎部解剖结构的变化与根部相类似。(2)叶面喷施80mg/L S3307后,盐胁迫大豆植株根和叶中硫代巴比妥酸反应物和叶绿素含量均恢复到接近对照的水平,且根、茎和叶解剖结构变化介于正常对照与盐胁迫处理之间。研究表明,叶面喷施80mg/L S3307能够有效缓解盐胁迫对大豆的伤害,且这种缓解作用与叶片细胞膜伤害、光合色素含量以及根、茎和叶内部组织结构改变有关,叶面喷施S3307可能是生产上提高大豆耐盐性的一种有效措施。  相似文献   

11.
Na+ and K+ transport in excised soybean roots   总被引:1,自引:0,他引:1  
Uptake, accumulation and xylem transport of K+ and Na+ in excised roots of soybean were investigated by use of a perfusion technique. This technique permitted independent quantification of, on the one hand, entry of ions into the roots and their transport through the cortex to the xylem vessels, and on the other hand reabsorption from the xylem vessels to the neighbouring cells and the external medium. Data are consistent with a low degree of selective uptake of K+ over Na+. However, Na+ depletion of the xylem stream by reabsorption limits, although weakly, its translocation to the shoots. Na+ reabsorbed is for a great part reexcreted into the external medium. The low efficiency of these processes is discussed in relation to the Na+ sensitivity of soybean.  相似文献   

12.
Xylem probe measurements in the roots of intact plants of wheat and barley revealed that the xylem pressure decreased rapidly when the roots were subjected to osmotic stress (NaCl or sucrose). The magnitude of the xylem pressure response and, in turn, that of the radial reflection coefficients (σr) depended on the transpiration rate. Under very low transpiration conditions (darkness and high relative humidity), σr assumed values of the order of about 0·2–0·4. The σr values of excised roots were also found to be rather low, in agreement with data obtained using the root pressure probe of Steudle. For transpiring plants (light intensities at least 10 μmol m?2 s?1; relative humidity 20–40%) the response was nearly 1:1, corresponding to radial reflection coefficients of σr= 1. Further increase of the light intensity to about 400 μmol m?2 s?1 resulted in a slight but significant decrease of the σr values to about 0·8. Similar measurements on maize roots confirmed our previous results (Zhu et al. 1995, Plant, Cell and Environment 18, 906–912) that, in intact transpiring plants at low light intensities of about 10 μmol m?2 s?1 and at relative humidities of 20–40% as well as in excised roots, the xylem pressure response was much less than expected from the external osmotic pressure (σr values 0·3–0·5). In contrast to wheat and barley, very high light intensities (about 700 μmol m?2 s?1) were needed to shift the radial reflection coefficients of maize roots to values of about 0·9. Osmotically induced xylem pressure changes were apparently linked to changes in turgor pressure in the root cortical parenchyma cells, as shown by simultaneous measurements of xylem and cell turgor pressure. In analogy to the σr values of the respective glycophytes, the σc values of the root cortical cells of wheat and barley were close to unity, whereas σc for maize was significantly smaller (about 0·7) under laboratory conditions. When the light intensity was increased up to about 700 μmol m?2 s?1 the cellular reflection coefficient of maize roots increased to about 0·95. In contrast to the σr values, the σc values of the three species investigated remained almost unchanged when the leaves were exposed to darkness and humidified air or when the roots were cut. The transpiration-dependent (species-specific) pattern of the cellular and radial reflection coefficients of the root compartment of the three glycophytes apparently resulted from (flow-dependent) concentration-polarization and sweep-away effects in the roots of intact plants. The data could be explained straightforwardly terms of theoretical considerations outlined previously by Dainty (1985, Acta Horticulturae 171, 21–31). The far-reaching consequences of this finding for root pressure probe measurements on excised roots, for the occurrence of pressure gradients under transpiring conditions, and for the non-linear flow-force relationships in roots found by other investigators are discussed.  相似文献   

13.
The absolute pressure in conducting xylem vessels of roots of 2-week-old, slowly transpiring intact maize plants (bathed in nutrition medium) was determined to be +0·024 ± 0·044 MPa using the xylem pressure probe. When the roots were subjected to osmotic stress (NaCI, KCI or sucrose), the xylem pressure decreased immediately and became more negative. However, the response of xylem pressure to osmotic stress was considerably attenuated, indicating that the radial reflection coefficients, σ13 of the maize root for these solutes were rather low (between 0·2 and 0·4 depending on the concentration of the osmoticum). The low values of a, may be caused (partly) by unstirred layer effects. In repeated osmoticum/nutrition regimes a complex pattern of changes in xylem pressure was observed which was apparently linked to the interplay between transpiration and (passive and/or active) solute loading of the xylem. These processes were not observed when the roots were subjected to osmotic stress after excision. In this case, a biphasic response was observed comparable to that found for excised roots using the root pressure probe.  相似文献   

14.
NaCl胁迫对阿月浑子各器官Na+、K+吸收的影响   总被引:3,自引:1,他引:2  
在温室盆栽条件下,用NaCl处理新疆长果阿月浑子与美国品种Kerman,处理浓度为50、150、250和500 mmol·L-1,盐处理后5、10、20 d分别取叶、茎和根,测定各器官中Na+、K+含量及Na+/K+变化规律.研究结果表明,随着土壤盐浓度的增加,长果阿月浑子和Kerman的叶、茎和根中Na+离子含量在盐处理5、10、20 d后每个处理都表现出升高趋势;而两个品种的叶、根和茎中的K+含量在盐处理后其变化规律都不稳定.长果阿月浑子叶片、茎和根系中Na+/K+的比值在盐处理5 d和10 d都升高.Kerman的叶和根系中Na+/K+比值在处理5、10、20 d后升高;茎中Na+/K+处理10 d后升高,但20 d后没有明显变化.实验结果表明NaCl胁迫后,长果阿月浑子的叶片中Na+含量增加幅度均大于Kerman,Kerman根和茎中的Na+含量增加幅度大于长果阿月浑子;NaCl胁迫5 d和10 d后,长果阿月浑子叶片中的Na+/K+的比值高于Kerman,Kerman茎和根部中的Na+/K+的比值高于长果阿月浑子,表明了长果阿月浑子和Kerman都具有一定的耐盐性,但Kerman的耐盐性强于长果阿月浑子.由于叶片和根中Na+和Na+/K+比值的变化很稳定,可以确定为阿月浑子主要抗盐指标,茎中Na+/K+的变化规律较稳定,可以作为抗盐性参考指标.  相似文献   

15.
The rise of sap in mangroves has puzzled plant physiologists for many decades. The current consensus is that negative pressures in the xylem exist which are sufficiently high to exceed the osmotic pressure of seawater (2.5 MPa). This implies that the radial reflection coefficients of the mangrove roots are equal to unity. However, direct pressure probe measurements in xylem vessels of the roots and stems of mangrove (Rhizophora mangle) grown in the laboratory or in the field yielded below-atmospheric, positive (absolute) pressure values. Slightly negative pressure values were recorded only occasionally. Xylem pressure did not change significantly when the plants were transferred from tap water to solutions containing up to 1700 mOsmol kg?1 NaCl. This indicates that the radial reflection coefficient of the roots for salt, and therefore the effective osmotic pressure of the external solution, was essentially zero as already reported for other halophytes. The low values of xylem tension measured with the xylem pressure probe were consistent with previously published data obtained using the vacuum/leafy twig technique. Values of xylem tension determined with these two methods were nearly two orders of magnitude smaller than those estimated for mangrove using the pressure chamber technique (?3 to ?6MPa). Xylem pressure probe measurements and staining experiments with alcian blue and other dyes gave strong evidence that the xylem vessels contained viscous, mucilage- and/or protein-related compounds. Production of these compounds resulting from wound or other artifactual reactions was excluded. The very low sap flow rates of about 20–50 cm h?1 measured in these mangrove plants were consistent with the presence of high molecular weight polymeric substances in the xylem sap. The presence of viscous substances in the xylem sap of mangroves has the following implications for traditional xylem pressure measurement techniques, development of xylem tension, and longdistance water transport: (1) high external balancing pressures in the pressure chamber are needed to force xylem sap to the cut surface of the twig; (2) stable tensions much larger than 0.1 MPa can be developed only occasionally because viscous solutions provide nucleation sites for gas bubble formation; (3) the frequent presence of small gas bubbles in viscous solutions allows water transport by interfacial, gravity-independent streaming at gas/water interfaces and (4) the increased density of viscous solutions creates (gravity-dependent) convectional flows. Density-driven convectional flows and interfacial streaming, but also the very low radial reflection coefficient of the roots to NaCl are apparently the means by which R. mangle maintains water transport to its leaves despite the high salinity of the environment.  相似文献   

16.
The response of halophyte arrowleaf saltbush (Atriplex triangularis Willd) plants to a gradient of salt stress were investigated with hydroponically cultured seedlings. Under salt stress, both the Na+ uptake into root xylem and negative pressures in xylem vessels increased with the elevation of salinity (up to 500 mol/m3) in the root environment. However, the increment in negative pressures in root xylem far from matches the decrease in the osmotic potential of the root bathing solutions, even when the osmotic potential of xylem sap is taken into consideration. The total water potential of xylem sap in arrowleaf saltbush roots was close to the osmotic potential of root bathing solutions when the salt stress was low, but a progressively increased gap between the water potential of xylem sap and the osmotic potential of root bathing solutions was observed when the salinity in the root environment was enhanced. The maximum gap was 1.4 MPa at a salinity level of 500 mol/m3 without apparent dehydration of the tested plants. This discrepancy could not be explained with the current theories in plant physiology. The radial reflection coefficient of root in arrowleaf saltbush decreased with the enhanced salt stress was and accompanied by an increase in the Na+ uptake into xylem sap. However, the relative Na+ in xylem exudates based on the corresponding NaCl concentration in the root bathing solutions showed a tendency of decrease. The results showed that the reduction in the radial reflection coefficient of roots in the arrowleaf saltbush did not lead to a mass influx of NaCl into xylem when the radial reflection coefficient of the root was considerably small; and that arrowleaf saltbush could use small xylem pressures to counterbalance the salt stresses, either with the uptake of large amounts of salt, or with the development of xylem pressures dangerously negative. This strategy could be one of the mechanisms behind the high resistance of arrowleaf saltbush plants to salt stress.  相似文献   

17.
Xylem development and cell wall changes of soybean seedlings grown in space   总被引:2,自引:0,他引:2  
BACKGROUND AND AIMS: Plants growing in altered gravity conditions encounter changes in vascular development and cell wall deposition. The aim of this study was to investigate xylem anatomy and arrangement of cellulose microfibrils in vessel walls of different organs of soybean seedlings grown in Space. METHODS: Seeds germinated and seedlings grew for 5 d in Space during the Foton-M2 mission. The environmental conditions, other than gravity, of the ground control repeated those experienced in orbit. The seedlings developed in space were compared with those of the control test on the basis of numerous anatomical and ultrastructural parameters such as number of veins, size and shape of vessel lumens, thickness of cell walls and deposition of cellulose microfibrils. KEY RESULTS: Observations made with light, fluorescence and transmission electron microscopy, together with the quantification of the structural features through digital image analysis, showed that the alterations due to microgravity do not occur at the same level in the various organs of soybean seedlings. The modifications induced by microgravity or by the indirect effect of space-flight conditions, became conspicuous only in developing vessels at the ultrastructural level. The results suggested that the orientation of microfibrils and their assembly in developing vessels are perturbed by microgravity at the beginning of wall deposition, while they are still able to orient and arrange in thicker and ordered structures at later stages of secondary wall deposition. CONCLUSIONS: The process of proper cell-wall building, although not prevented, is perturbed in Space at the early stage of development. This would explain the almost unaltered anatomy of mature structures, accompanied by a slower growth observed in seedlings grown in Space than on Earth.  相似文献   

18.
研究了渗透胁迫和盐胁迫下一年生胡杨(Populus euphratica Oliv.)幼苗的木质部汁液脱落酸(ABA)、离子浓度及叶片气体交换的变化.PEG 6000 (溶液渗透势 -0.24 MPa)、50 mmol/L含钠离子的盐溶液 (NaNO3∶NaHCO3∶NaH2PO4=5∶4∶1, pH 6.8, 渗透势 -0.24 MPa)和50 mmol/L含氯离子的盐溶液 (KCl∶NH4Cl=1∶1, 渗透势 -0.24 MPa) 3种处理都显著降低了苗木的净光合速率(Pn)和蒸腾速率(TRN),但盐处理植株的TRN高于PEG处理的苗木.木质部汁液ABA的浓度在PEG处理后1 h达到峰值,之后开始下降,降到对照水平后又逐渐回升.盐处理苗木的ABA也是在处理开始后就迅速升高,但之后ABA水平明显高于PEG处理的植株.结果显示,渗透胁迫和离子胁迫都能提高胡杨木质部汁液ABA的浓度: 盐处理开始后ABA的迅速升高主要是渗透胁迫的作用,而此后离子胁迫(Na+和Cl-)对ABA水平的提高具有重要作用.钠盐处理对胡杨净光合速率和蒸腾速率的抑制作用高于氯盐处理,其木质部汁液中较高水平的ABA和盐离子(Na+和Cl-)是可能的原因.钠盐处理苗木的盐离子(Na+和Cl-)水平高于氯盐处理,主要是由以下两方面的原因所致: (1)细胞膜上的Ca2+被Na+所取代, 增加了膜的透性; (2)胡杨根细胞液泡对Na+的区隔化能力较弱(与区隔Cl-相比).另外,盐胁迫下胡杨能保持对营养元素K+、Ca2+和Mg2+的吸收,这也是其抗盐性强的重要原因.  相似文献   

19.
The response of halophyte arrowleaf saltbush(Atriplex triangularis Willd)plants to a gradient of salt stress were investigatedwith hydroponically cultured seedlings.Under salt stress,both the Na~ uptake into root xylem and negative pressures inxylem vessels increased with the elevation of salinity(up to 500 mol/m~3)in the root environment.However,the increment innegative pressures in root xylem far from matches the decrease in the osmotic potential of the root bathing solutions,evenwhen the osmotic potential of xylem sap is taken into consideration.The total water potential of xylem sap in arrowleafsaltbush roots was close to the osmotic potential of root bathing solutions when the salt stress was low,but a progressivelyincreased gap between the water potential of xylem sap and the osmotic potential of root bathing solutions was observedwhen the salinity in the root environment was enhanced.The maximum gap was 1.4 MPa at a salinity level of 500 mol/m~3without apparent dehydration of the tested plants.This discrepancy could not be explained with the current theories inplant physiology.The radial reflection coefficient of root in arrowleaf saltbush decreased with the enhanced salt stress wasand accompanied by an increase in the Na~ uptake into xylem sap.However,the relative Na~ in xylem exudates based onthe corresponding NaCl concentration in the root bathing solutions showed a tendency of decrease.The results showedthat the reduction in the radial reflection coefficient of roots in the arrowleaf saltbush did not lead to a mass influx of NaClinto xylem when the radial reflection coefficient of the root was considerably small;and that arrowleaf saltbush could usesmall xylem pressures to counterbalance the salt stresses,either with the uptake of large amounts of salt,or with thedevelopment of xylem pressures dangerously negative.This strategy could be one of the mechanisms behind the highresistance of arrowleaf saltbush plants to salt stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号