首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes the application of recently developed nuclear magnetic resonance (NMR) pulse sequences to obtain information about the internal dynamics of isotopically enriched hydrophobic side chains in proteins. The two-dimensional spectra provided by the pulse sequences enable one to make accurate measurements of nuclear Overhauser effects (NOE) and longitudinal (T1) and transverse (T2) relaxation times of enriched methyl carbons in proteins. Herein, these techniques are used to investigate the internal dynamics of the 11 leucine side chains of staphylococcal nuclease (SNase), a small enzyme having Mr = 16.8K, in the absence and presence of ligands thymidine 3',5'-bisphosphate (pdTp) and Ca2+. We report the synthesis of [5,5'-13C2]leucine, the preparation of SNase containing the labeled leucine, the sequential assignment of the leucine methyl carbons and protons in the liganded and unliganded proteins, and the measurement of the 13C T1, T2, and NOE values for the SNase leucine methyl carbons. Analysis of the relaxation parameters using the formalism of Lipari and Szabo shows that the internal motions of the leucine methyl carbons are characterized by effective correlation times tau f (5-80 ps) and tau s (less than 2 ns). The fast motion is identified with the rapid rotation of the methyl group about the C gamma-C delta bond axis, while the slow motion is associated with reorientation of the C gamma-C delta bond axis itself. The mean squared order parameters associated with the latter motion, Ss2, lie in the range 0.34-0.92. The values of Ss2 correlate reasonably well with the temperature factors of the leucine methyl carbons obtained from the crystal structures, but some are smaller than anticipated on the basis of the fact that nearly all leucine methyl carbons are buried and have temperature factors no larger than that of the leucine backbone atoms. Five leucine residues in liganded SNase and eight in unliganded SNase have values of Ss2 less than 0.71. These order parameters correspond to large amplitude motions (angular excursions of 27-67 degrees) of the C gamma-C delta bond axis. These results indicate that, in solution, the internal motions of the leucine side chains of SNase are significantly larger than suggested by the X-ray structures or by qualitative analysis of NOESY spectra. Comparison of Ss2 values obtained from liganded and unliganded SNase reveals a strong correlation between delta Ss2 and distance between the leucine methyl carbon and the ligands.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Wang X  Wang M  Tong Y  Shan L  Wang J 《Biochimie》2006,88(10):1343-1355
1-79 residues SNase fragment (SNase79) has chain length containing a sequence for helix alpha(1), omega-loop, beta(I)-sheet, and partial beta(II)-sheet of native SNase. The incomplete "beta-barrel" structural region of SNase79 makes this fragment to be interested in investigation of its conformation. For this study, we use CD, fluorescence, and NMR spectroscopy to probe the folding capacity and the residual structures in SNase79. The optical spectra obtained for SNase79 and its mutants reveal the presence of retained capacity for folding of the fragment. The NMR derived (13)C(alpha) secondary chemical shifts, (3)J(NH-Halpha) coupling constants, amide-proton temperature coefficients, interresidue NOEs, and (15)N relaxation data determine the intrinsic propensities for helix- and turn- or beta-sheet-like conformations of SNase79, which is not the result of stabilizing inter-molecular interactions by oligomerization effects. The residual turn- and helix-like structures may serve as potential local nucleation sites, whereas the residual beta(I)-sheet-like structure can be regarded as a potential non-local nucleation site in the folding of SNase79. The intrinsic local and non-local interactions in these potential initiation sites are insufficient to stabilize the folding of SNase79 due to the shortage of relevant long-range interactions from other part of the fragment. The conformational ensemble of SNase79 is a highly heterogeneous collection of interconverting conformations having transiently populated helix- and beta-sheet- or turn-like structures.  相似文献   

3.
Catalysis of a rotational transition in a peptide by crystal forces   总被引:2,自引:0,他引:2  
D H Kitson  A T Hagler 《Biochemistry》1988,27(19):7176-7180
Detailed examination of the dynamics trajectories of the isolated cyclic peptide cyclo-(Ala-Pro-D-Phe)2 and of the molecule in its crystalline environment led to the unexpected observation that the methyl groups of the alanine residues rotated more frequently during a simulation in the crystal environment than in a simulation of the isolated peptide. In effect, the crystal environment is "catalyzing" the rotational isomerization of the methyl groups. In order to understand how the crystal forces increase the rate of this rotation, and to explore any possible analogy to the inducing of strained conformations of ligands by enzymes, the barriers to rotation in the two environments were studied by using the torsion angle forcing method. The crystal forces induce a different, higher energy, conformation of the peptide than is found for the isolated molecule, and the different rates of rotation have been explained in terms of the resulting specific intramolecular interactions that, it turns out, give rise to the lower rotational barrier. Molecular dynamics simulations of the peptide were also run at higher temperatures in order to calculate the barriers to rotation through the use of Arrhenius plots. The barriers obtained in this way agree well with the barriers obtained through an adiabatic reaction path derived by rotating the methyl through the barrier while minimizing all remaining degrees of freedom. The rates of rotation calculated from these adiabatic barriers also agree well with the rates observed during the 300 K simulations.  相似文献   

4.
Arthur EJ  Yesselman JD  Brooks CL 《Proteins》2011,79(12):3276-3286
Accurate computational methods of determining protein and nucleic acid pK(a) values are vital to understanding pH-dependent processes in biological systems. In this article, we use the recently developed method constant pH molecular dynamics (CPHMD) to explore the calculation of highly perturbed pK(a) values in variants of staphylococcal nuclease (SNase). Simulations were performed using the replica exchange (REX) protocol for improved conformational sampling with eight temperature windows, and yielded converged proton populations in a total sampling time of 4 ns. Our REX-CPHMD simulations resulted in calculated pK(a) values with an average unsigned error (AUE) of 0.75 pK units for the acidic residues in Δ + PHS, a hyperstable variant of SNase. For highly pK(a)-perturbed SNase mutants with known crystal structures, our calculations yielded an AUE of 1.5 pK units and for those mutants based on modeled structures an AUE of 1.4 pK units was found. Although a systematic underestimate of pK shifts was observed in most of the cases for the highly perturbed pK mutants, correlations between conformational rearrangement and plasticity associated with the mutation and error in pK(a) prediction was not evident in the data. This study further extends the scope of electrostatic environments explored using the REX-CPHMD methodology and suggests that it is a reliable tool for rapidly characterizing ionizable amino acids within proteins even when modeled structures are employed.  相似文献   

5.
We have performed quantum mechanical calculations for retinal model compounds to establish the rotational energy barriers for the C5-, C9-, and C13-methyl groups known to play an essential role in rhodopsin activation. Intraretinal steric interactions as well as electronic effects lower the rotational barriers of both the C9- and C13-methyl groups, consistent with experimental 2H NMR data. Each retinal methyl group has a unique rotational behavior which must be treated individually. These results are highly relevant for the parameterization of molecular mechanics force fields which form the basis of molecular dynamics simulations of retinal proteins such as rhodopsin.  相似文献   

6.
High field deuterium NMR spectra have been recorded for various horseradish peroxidase complexes reconstituted with hemins possessing specific 2H labels. The line width of the 2H NMR signals of deuteroheme reconstituted-horseradish peroxidase (HRP) and its cyano complex for the immobilized skeletal 2-2H and 4-2H labels yield the overall protein rotational correlation time (22 ms at 55 degrees C), which is consistent with expectations based on molecular weight. Meso-2H4 labels yield broad (1.3 kHz) signals just upfield from the diamagnetic protein envelope for HRP, and in the central portion of the protein envelope for the CN- ligated resting state HRP. Meso-2H4-labeled mesohemin-reconstituted HRP exhibits a similar signal but shifted further upfield by approximately 10 ppm. The net upfield meso-H hyperfine shifts confirm a five-coordinate structure for resting state HRP. 2Ha resonances for essentially rotationally immobile vinyl groups were detected in both resting state HRP and CN- ligated resting state HRP. Heme methyl-2H-labeling yields relatively narrow lines (approximately 80 Hz) indicative of effective averaging of the quadrupolar relaxation by rapid methyl rotation. Thus the 2H line width of rapidly rotating methyls in hemoproteins can be used effectively to determine the overall protein tumbling rate. Preliminary 2H experiments in meso-2H4-labeled compound I do not support large pi spin density at these positions on the porphyrin cation radical, and argue for a a1u rather than a a2u orbital ground state.  相似文献   

7.
It has been shown (Poole et al., 1991) that deletion of residues 44-49 from the sequence of staphylococcal nuclease (E43 SNase) results in an enzyme (E43 delta SNase) that is significantly more active than D43 SNase, an enzyme that differs from the wild-type enzyme by deletion of a single methylene group. In addition, both E43 delta SNase and D43 delta SNase are significantly more stable than their respective parent enzymes. Herein we use high-resolution 2D and 3D NMR spectroscopy to characterize the solution conformations of the four enzymes in order to better understand their differences in stability and activity. The backbone assignments of E43 SNase were extended to the three mutant proteins (uniformly 15N-enriched) by using 2D HSQC, 3D HOHAHA-HMQC, and 3D NOESY-HMQC spectra. The NOE patterns observed for E43 and D43 SNase in solution are consistent with the crystal structures of these proteins. The NOESY data further show that the intact and deleted proteins have essentially the same structures except that (a) the disordered omega-loops in the intact proteins are replaced by tight type II' turns, formed by residues 43-50-51-52, in the deleted proteins and (b) the orientation of the D43 side chain in crystalline D43 SNase differs from that found for D43 delta SNase in solution. Except for regions neighboring the omega-loops, the intact and deleted proteins show nearly identical amide 15N and 1H chemical shifts. In contrast, there are widespread, small and similar, chemical shift differences (a) between E43 SNase and D43 SNase and (b) between E43 delta SNase and D43 delta SNase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Myoglobin and hemoglobin rotational diffusion in the cell.   总被引:2,自引:1,他引:1       下载免费PDF全文
D Wang  U Kreutzer  Y Chung    T Jue 《Biophysical journal》1997,73(5):2764-2770
The detection of the 1H NMR signal of myoglobin (Mb) in tissue opens an opportunity to examine its cellular diffusion property, which is central to its purported role in facilitating oxygen transport. In perfused myocardium the field-dependent transverse relaxation analysis of the deoxy Mb proximal histidyl NdeltaH indicates that the Mb rotational correlation time in the cell is only approximately 1.4 times longer than it is in solution. Such a mobility is consistent with the theory that Mb facilitates oxygen diffusion from the sarcoplasm to the mitochondria. The microviscosities of the erythrocyte and myocyte environment are different. The hemoglobin (Hb) rotational correlation time is 2.2 longer in the cell than in solution. Because both the overlapping Hb and Mb signals are visible in vivo, a relaxation-based NMR strategy has been developed to discriminate between them.  相似文献   

9.
Cell signaling pathways rely on phosphotransfer reactions that are catalyzed by protein kinases. The protein kinases themselves are typically regulated by phosphorylation and concurrent structural rearrangements, both near the catalytic site and elsewhere. Thus, physiological function requires posttranslational modification and deformable structures. A prototypical example is provided by cyclic AMP-dependent protein kinase (PKA). It is activated by phosphorylation, is inhomogeneously phosphorylated when expressed in bacteria, and exhibits a wide range of dynamic properties. Here we use (31)P nuclear magnetic resonance (NMR) spectroscopy to characterize the phosphorylation states and to estimate the flexibility of the phosphorylation sites of 2-, 3-, and 4-fold phosphorylated PKA. The phosphorylation sites Ser10, Ser139, Thr197, and Ser338 are assigned to individual NMR resonances, assisted by complexation with AMP-PNP and dephosphorylation with alkaline phosphatase. Rotational diffusion correlation times estimated from resonance line widths show progressively increasing flexibilities for phosphothreonine 197, phosphoserines 139 and 338, and disorder at phosphoserine 10, consistent with crystal structures of PKA. However, because the apparent rotational diffusion correlation time fitted for phosphothreonine 197 of the activation loop is longer than the overall PKA rotational diffusion time, microsecond to millisecond time scale conformational exchange effects involving motions of phosphothreonine 197 are probable. These may represent "open"-"closed" transitions of the uncomplexed protein in solution. These data represent direct measurements of flexibilities also associated with functional properties, such as ATP binding and membrane association, and illustrate the applicability of (31)P NMR for functional and dynamic characterization of protein kinase phosphorylation sites.  相似文献   

10.
Shan J  Mehler EL 《Proteins》2011,79(12):3346-3355
The MM-SCP has been applied to predict pK(a) values of titratable residues in wild type and mutants of staphylococcal nuclease (SNase). The calculations were based on crystal structures made available by the Garcia-Moreno Laboratory. In the mutants, mostly deeply buried hydrophobic residues were replaced with ionizable residues, and thus their pK(a) values could be measured and calculated using various methods. The data set used here consisted of a set of WT SNase for which His pK(a) at several ionic strengths had been measured, a set of mutants for which measured pK(a) were available and a set of 11 mutants for which the measured pK(a) were not known at the time of calculation. For this latter set, blind predictions were submitted to the protein pK(a) cooperative, 2009 workshop at Telluride, where the results of the blind predictions were discussed (the RMSD of the submitted set was 1.10 pH units). The calculations on the structures with known pK(a) indicated that in addition to weaknesses of the method, structural issues were observed that led to larger errors (>1) in pK(a) predictions. For example, different crystallographic conditions or steric clashes can lead to differences in the local environment around the titratable residue, which can produce large differences in the calculated pK(a) . To gain further insight into the reliability of the MM-SCP, pK(a) of an extended set of 54 proteins belonging to several structural classes were carried out. Here some initial results from this study are reported to help place the SNase results in the appropriate context.  相似文献   

11.
The N-terminal large fragments of staphylococcal nuclease (SNase), SNase110 (1-110 residues), SNase121 (1-121 residues), and SNase135 (1-135 residues), and the fragment mutants G88W110, G88W121, V66W110 and V66W121 were studied by heteronuclear multidimensional NMR spectroscopy. Ensembles of co-existent native-like partially folded and unfolded states were observed for fragments. The persistent native-like tertiary interaction drives fragments to be in partially folded states, which reveal native-like beta-barrel conformations. G88W and V66W mutations modulate the extent of inherent native-like tertiary interaction in fragment molecules, and in consequence, fragment mutants fold into native-like beta-subdomain conformations. In cooperation with the inherent tertiary interaction, 2 M TMAO (trimethylamine N-oxide) can promote the folding reaction of fragments through the changes of unfolding free energy, and a native-like beta-subdomain conformation is observed when the chain length contains 135 residues. Heterogeneous partially folded conformations of 1-121 and 1-135 fragments due to cis and trans X-prolyl bond of Lys116-Pro117 make a non-unique folding pathway of fragments. The folding reaction of fragments can be characterized as a hierarchical process.  相似文献   

12.
Shan L  Tong Y  Xie T  Wang M  Wang J 《Biochemistry》2007,46(41):11504-11513
The role of cis-trans isomerizations of peptidyl-proline bonds in the enzyme activity of staphylococcal nuclease (SNase) was examined by mutation of proline residues. The proline-free SNase ([Pro-]SNase), namely, P11A/P31A/P42A/P47T/P56A/P117G-mutant SNase, was adopted for elucidating the correlation between the nuclease activity and the backbone conformational and dynamic states of SNase. The 3D solution structure of [Pro-]SNase has been determined by heteronuclear NMR experiments. Comparing the structure of [Pro-]SNase with the structure of SNase revealed the conformational differences between the two proteins. In the structure of [Pro-]SNase, conformational rearrangements were observed for the loop of residues Ala112-His121 containing a trans Lys116-Gly117 peptide bond and for the C-terminal alpha-helical loop of residues Leu137-Glu142. Mutation of proline at position 117 also caused the conformational rearrangement of the p-loop (Asp77-Leu89), which is remote from the Ala112-His121 loop. The Ala112-His121 loop and p-loop are placed closer to each other in [Pro-]SNase than in SNase. The backbone dynamic features of the omega-loop (Pro42-Pro56) of SNase are different from those of [Pro-]SNase. The backbone of the omega-loop exhibits restricted flexibility with slow conformational exchange motions in SNase, but is highly flexible in [Pro-]SNase. The analysis indicates that the restrained backbone conformation of the Ala112-His121 loop and restricted flexibility of the omega-loop are two dominant factors determining the enzyme activity of SNase. Of the two factors, the former is correlated with the strained cis Lys116-Pro117 peptide bond and the latter is correlated with the cis-trans isomerizations of the His46-Pro47 peptide bond.  相似文献   

13.
Dai J  Wang X  Feng Y  Fan G  Wang J 《Biopolymers》2004,75(3):229-241
The N-terminal short fragments of staphylococcal nuclease (SNase), SNase20, SNase28, and SNase36, corresponding to the sequence regions, Ala1-Gly20, Ala1-Lys28, and Ala1-Leu36, respectively, as well as an 8-residue peptide (Ala17-Ile18-Asp19-Gly20-Asp21-Thr22-Val23-Lys24) have been synthesized. The conformational states of these fragments were investigated using CD and NMR spectroscopy in aqueous solution and in trifluoroethanol (TFE)-H(2)O mixture. SNase20 containing a sequence corresponding to a bent peptide in native SNase shows a transient population of bend-like conformation around Ala12-Thr13-Leu14 in TFE-H(2)O mixture. The sequence region of Ala17-Thr22 of SNase28 displays a localized propensity for turn-like conformation in both aqueous solution and TFE-H(2)O mixture. The conformational ensemble of SNase36 in aqueous solution includes populated turn-like conformations localized in sequence regions Ala17-Thr22 and Tyr27-Gln30. The analysis suggests that these sequence regions, which form the regular secondary structures in native protein, may serve as the folding nucleation sites of SNase fragments of different chain lengths starting from the N-terminal end. Thus, the formation of bend- and turn-like conformations of these sequence regions may be involved in the early folding events of the SNase polypeptide chain in vitro.  相似文献   

14.
The dynamic properties of bovine brain calmodulin have been studied as a function of binding calcium ions, using a number of complementary spectroscopic methods. Rotational correlation times for proton-proton vectors within tyrosine and phenylalanine residues of calmodulin have been determined from time-dependent NOE measurements. In the presence of Ca2+, a range of rotational correlation times is observed. The longest value is consistent with Ca4-calmodulin having a markedly nonspherical shape in solution. In the absence of Ca2+, the rotational correlation times of all vectors are significantly shorter, indicating that several phenylalanine side chains in apocalmodulin have increased internal dynamics. Time-resolved tyrosine fluorescence anisotropy shows global correlation times broadly in agreement with the NMR results, but with an additional faster correlation time [approximately 600 ps]. Tyrosine residues in apocalmodulin have substantial segmental motion, which becomes significantly reduced, but not eliminated, when Ca2+ is bound. The correlation time for global rotation of Ca4-calmodulin increases from pH 7 to 4.5, indicating increased overall molecular asymmetry. This occurs without a significant change in total alpha-helix content as measured by circular dichroism. These results are consistent with the central region of Ca4-calmodulin being relatively flexible in solution at pH 7, but with the molecule adopting a more extended shape under more acidic conditions. The Ca(2+)-induced change in alpha-helix content can be mimicked by protonation. The alpha-helix content of Ca4-calmodulin in solution appears less than in the crystal structure; additional alpha-helix is induced in partially nonaqueous solutions, particularly at acidic pH, as used in crystallization conditions.  相似文献   

15.
Cyclophilins are proteins that catalyze X-proline cis-trans interconversion, where X represents any amino acid. Its mechanism of action has been investigated over the past years but still generates discussion, especially because until recently structures of the ligand in the cis and trans conformations for the same system were lacking. X-ray crystallographic structures for the complex cyclophilin A and HIV-1 capsid mutants with ligands in the cis and trans conformations suggest a mechanism where the N-terminal portion of the ligand rotates during the cis-trans isomerization. However, a few years before, a C-terminal rotating ligand was proposed to explain NMR solution data. In the present study we use molecular dynamics (MD) simulations to generate a trans structure starting from the cis structure. From simulations starting from the cis and trans structures obtained through the rotational pathways, the seeming contradiction between the two sets of experimental data could be resolved. The simulated N-terminal rotated trans structure shows good agreement with the equivalent crystal structure and, moreover, is consistent with the NMR data. These results illustrate the use of MD simulation at atomic resolution to model structural transitions and to interpret experimental data.  相似文献   

16.
Xie T  Liu D  Feng Y  Shan L  Wang J 《Biophysical journal》2007,92(6):2090-2107
Folding stability and cooperativity of the three forms of 1-110 residues fragment of staphylococcal nuclease (SNase110) have been studied by various biophysical and NMR methods. Samples of G-88W- and V-66W-mutant SNase110, namely G-88W110 and V-66W110, in aqueous solution and SNase110 in 2.0 M TMAO are adopted in this study. The unfolding transitions and folded conformations of the three SNase fragments were detected by far- and near-ultraviolet circular dichroism and intrinsic tryptophan fluorescence measurements. The tertiary structures and internal motions of the fragments were determined by NMR spectroscopy. Both G-88W and V-66W single mutations as well as a small organic osmolyte (Trimethylamine N-oxide, TMAO) can fold the fragment into a native-like conformation. However, the tertiary structures of the three fragments exhibit different degrees of folding stability and compactness. G-88W110 adopts a relatively rigid structure representing a most stable native-like beta-subdomain conformation of the three fragments. V-66W110- and TMAO-stabilized SNase110 produce less compact structures having a less stable "beta-barrel" structural region. The different folding status accounts for the different backbone dynamic and urea-unfolding transition features of the three fragments. The G-20I/G-29I-mutant variants of the three fragments have provided the evidence that the folding status is correlated closely to the packing of the beta-strands in the beta-barrel of the fragments. The native-like beta-barrel structural region acts as a nonlocal nucleus for folding the fragment. The tertiary folding of the three fragments is initiated by formation of the local nucleation sites at two beta-turn regions, I-18-D-21 and Y-27-Q-30, and developed by the formation of a nonlocal nucleation site at the beta-barrel region. The formation of beta-barrel and overall structure is concerted, but the level of cooperativity is different for the three 1-110 residues SNase fragments.  相似文献   

17.
Wang M  Shan L  Wang J 《Biopolymers》2006,83(3):268-279
Two synthetic peptides, SNasealpha1 and SNasealpha2, corresponding to residues G55-I72 and K97-A109, respectively, of staphylococcal nuclease (SNase), are adopted for detecting the role of helix alpha1 (E57-A69) and helix alpha2 (M98-Q106) in the initiation of folding of SNase. The helix-forming tendencies of the two SNase peptide fragments are investigated using circular dichroism (CD) and two-dimensional (2D) nuclear magnetic resonance (NMR) methods in water and 40% trifluoroethanol (TFE) solutions. The coil-helix conformational transitions of the two peptides in the TFE-H2O mixture are different from each other. SNasealpha1 adopts a low population of localized helical conformation in water, and shows a gradual transition to helical conformation with increasing concentrations of TFE. SNasealpha2 is essentially unstructured in water, but undergoes a cooperative transition to a predominantly helical conformation at high TFE concentrations. Using the NMR data obtained in the presence of 40% TFE, an ensemble of alpha-helical structures has been calculated for both peptides in the absence of tertiary interactions. Analysis of all the experimental data available indicates that formation of ordered alpha-helical structures in the segments E57-A69 and M98-Q106 of SNase may require nonlocal interactions through transient contact with hydrophobic residues in other parts of the protein to stabilize the helical conformations in the folding. The folding of helix alpha1 is supposed to be effective in initiating protein folding. The formation of helix alpha2 depends strongly on the hydrophobic environment created in the protein folding, and is more important in the stabilization of the tertiary conformation of SNase.  相似文献   

18.
19.
Deuteron spin-lattice relaxation times of specifically labelled methyl N-acetyl-D-glucosaminides associated to lysozyme were measured from 1H and 2H NMR spectra through bandshape analysis and FT inversion-recovery technique, respectively. Model calculations were carried out in order to assess the limits of the extreme narrowing approximation for the systems studied. Rotational correlation times of the acelamido methyl groups were analyzed in terms of anisolropic overall reorientation combined with internal rotation. The acetamido methyl group undergoes fast internal rotation in the α-glycoside complex about an axis nearly parallel with the major ellipsoidal axis of lysozyme. More rotational freedom is likely to occur in the β-glycoside complex.  相似文献   

20.
Streptomyces subtilisin inhibitor (SSI) contains three methionine residues in a subunit: two (at positions 73 and 70) in the crucial enzyme-recognition sites P1 and P4, respectively, and one (Met 103) in the hydrophobic core. The motions of the side chains of these three Met residues and the changes in mobility on binding with subtilisin were studied by deuterium NMR spectroscopy in solution and in crystalline and powder solids. For this purpose, the wild-type SSI was deuterium-labeled at the methyl groups of all three Met residues, and three artificial mutant proteins were labeled at only one specific Met methyl group each. In solution, for methionines 73 and 70, the effective correlation times were only 0.8-1.0 x 10(-10)s indicating that the two side chains on the surface fluctuate almost freely. On formation of a complex with subtilisin, however, these high mobilities were quenched, giving a correlation time of 1.1 x 10(-8)s for the side chains of methionines 70 and 73. The correlation time of Met 103, located in the hydrophobic core, was at least 1.0 x 10(-8)s in free SSI, showing that its side chain motion is highly restricted. The nature of the internal motions of the three Met side chains was examined in more detail by deuterium NMR spectroscopy of powder and crystalline samples. The spectral patterns of the powder samples depended critically on hydration: immediately after lyophilization, the side-chain motions of the three Met residues were nearly quenched. With gradual hydration to 0.20 gram of water per gram protein-water, the orientational fluctuation of the methyl axes of methionines 70 and 73 was selectively enhanced in both amplitude and frequency (to about 1 MHz) and, at nearly saturating hydration (0.60 gram of water per gram protein-water), became extremely high in amplitude and frequency (> 10 MHz). In contrast, the polycrystalline wild-type SSI spectrum showed fine structures, reflecting characteristic motions of the Met side chains. The polycrystalline spectrum could be reproduced reasonably well by the same motion models and parameters used to simulate the powder spectrum at the final level of hydration, suggesting that the side-chain motions are similar in the fully hydrated powder and in crystals. Spin-lattice relaxation measurements gave evidence that, even in crystals, the methyl axes of all three Met residues undergo rapid motions with correlation times between 10(-8) and 10(-10)s, comparable to the correlation times in solution. Finally, in the hydrated stoichiometric complex of SSI with subtilisin BPN' in the solid state, large-amplitude motions are absent, but the side chains of methionines 70 and/or 73 are likely to have small-amplitude motions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号