首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kim D 《Bio Systems》2004,76(1-3):7-20
Certain species of fireflies show a group behavior of synchronous flashing. Their synchronized and rhythmic flashing has received much attention among many researchers, and there has been a study of biological models for their entrainment of flashing. The synchronous behavior of fireflies resembles the firing synchrony of integrate-and-fire neurons with excitatory or inhibitory connections. This paper shows an analysis of spiking neurons specialized for a firefly flashing model, and provides simulation results of multiple neurons with various transmission delays and coupling strengths. It also explains flashing patterns of some firefly species and examines the synchrony conditions depending on transmission delays and coupling strengths.  相似文献   

2.
3.
The Cauchy problem for one-dimensional spiking neuron models   总被引:1,自引:1,他引:0  
I consider spiking neuron models defined by a one-dimensional differential equation and a reset—i.e., neuron models of the integrate-and-fire type. I address the question of the existence and uniqueness of a solution on for a given initial condition. It turns out that the reset introduces a countable and ordered set of backward solutions for a given initial condition. I discuss the implications of these mathematical results in terms of neural coding and spike timing precision.
Romain BretteEmail:
  相似文献   

4.
In this paper we make a rigorous mathematical analysis of one-dimensional spiking neuron models in a unified framework. We find that, under conditions satisfied in particular by the periodically and aperiodically driven leaky integrator as well as some of its variants, the spike map is increasing on its range, which leaves no room for chaotic behavior. A rigorous expression of the Lyapunov exponent is derived. Finally, we analyse the periodically driven perfect integrator and show that the restriction of the phase map to its range is always conjugated to a rotation, and we provide an explicit expression of the invariant measure.  相似文献   

5.
Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN) cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal filter and a static non-linear transformation. These simplified models leave out the biophysical details of action potential generation. It is not a priori clear to which extent the input-output mapping of biophysically more realistic, spiking neuron models can be reduced to a simple linear-nonlinear cascade. Here we investigate this question for the leaky integrate-and-fire (LIF), exponential integrate-and-fire (EIF) and conductance-based Wang-Buzsáki models in presence of background synaptic activity. We exploit available analytic results for these models to determine the corresponding linear filter and static non-linearity in a parameter-free form. We show that the obtained functions are identical to the linear filter and static non-linearity determined using standard reverse correlation analysis. We then quantitatively compare the output of the corresponding linear-nonlinear cascade with numerical simulations of spiking neurons, systematically varying the parameters of input signal and background noise. We find that the LN cascade provides accurate estimates of the firing rates of spiking neurons in most of parameter space. For the EIF and Wang-Buzsáki models, we show that the LN cascade can be reduced to a firing rate model, the timescale of which we determine analytically. Finally we introduce an adaptive timescale rate model in which the timescale of the linear filter depends on the instantaneous firing rate. This model leads to highly accurate estimates of instantaneous firing rates.  相似文献   

6.
The large number of variables involved in many biophysical models can conceal potentially simple dynamical mechanisms governing the properties of its solutions and the transitions between them as parameters are varied. To address this issue, we extend a novel model reduction method, based on “scales of dominance,” to multi-compartment models. We use this method to systematically reduce the dimension of a two-compartment conductance-based model of a crustacean pyloric dilator (PD) neuron that exhibits distinct modes of oscillation—tonic spiking, intermediate bursting and strong bursting. We divide trajectories into intervals dominated by a smaller number of variables, resulting in a locally reduced hybrid model whose dimension varies between two and six in different temporal regimes. The reduced model exhibits the same modes of oscillation as the 16 dimensional model over a comparable parameter range, and requires fewer ad hoc simplifications than a more traditional reduction to a single, globally valid model. The hybrid model highlights low-dimensional organizing structure in the dynamics of the PD neuron, and the dependence of its oscillations on parameters such as the maximal conductances of calcium currents. Our technique could be used to build hybrid low-dimensional models from any large multi-compartment conductance-based model in order to analyze the interactions between different modes of activity.  相似文献   

7.
8.
A generalization of an earlier paper (Capocelli and Ricciardi, 1971), dealing with a diffusion approximation for a neuron subject to one excitatory and one inhibitory Poisson input, is provided by not imposing any restrictions on number and magnitude if synaptic inputs. An equation for the neuron's transition p.d.f. is derived, use of which is made to determine the moments of the membrane potential. It is finally shown that a diffusion approximation is possible and that the resulting diffusion process is characterized by constant infinitesimal variance and linear drift.  相似文献   

9.
Journal of Mathematical Biology - We use conductance based neuron models, and the mathematical modeling of optogenetics to define controlled neuron models and we address the minimal time control of...  相似文献   

10.
It is difficult to design electronic nonlinear devices capable of reproducing complex oscillations because of the lack of general constructive rules, and because of stability problems related to the dynamical robustness of the circuits. This is particularly true for current analog electronic circuits that implement mathematical models of bursting and spiking neurons. Here we describe a novel, four-dimensional and dynamically robust nonlinear analog electronic circuit that is intrinsic excitable, and that displays frequency adaptation bursting and spiking oscillations. Despite differences from the classical Hodgkin–Huxley (HH) neuron model, its bifurcation sequences and dynamical properties are preserved, validating the circuit as a neuron model. The circuit's performance is based on a nonlinear interaction of fast–slow circuit blocks that can be clearly dissected, elucidating burst's starting, sustaining and stopping mechanisms, which may also operate in real neurons. Our analog circuit unit is easily linked and may be useful in building networks that perform in real-time.  相似文献   

11.
Performance of a model for a local neuron population   总被引:2,自引:0,他引:2  
A model of a local neuron population is considered that contains three subsets of neurons, one main excitatory subset, an auxiliary excitatory subset and an inhibitory subset. They are connected in one positive and one negative feedback loop, each containing linear dynamic and nonlinear static elements. The network also allows for a positive linear feedback loop. The behaviour of this network is studied for sinusoidal and white noise inputs. First steady state conditions are investigated and with this as starting point the linearized network is defined and conditions for stability is discovered. With white noise as input the stable network produces rhythmic activity whose spectral properties are investigated for various input levels. With a mean input of a certain level the network becomes unstable and the characteristics of these limit cycles are investigated in terms of occurence and amplitude. An electronic model has been built to study more closely the waveforms under both stable and unstable conditions. It is shown to produce signals that resemble EEG background activity and certain types of paroxysmal activity, in particular spikes.  相似文献   

12.
The electrical activity of a neuron is strongly dependent on the ionic channels present in its membrane. Modifying the maximal conductances from these channels can have a dramatic impact on neuron behavior. But the effect of such modifications can also be cancelled out by compensatory mechanisms among different channels. We used an evolution strategy with a fitness function based on phase-plane analysis to obtain 20 very different computational models of the cerebellar Purkinje cell. All these models produced very similar outputs to current injections, including tiny details of the complex firing pattern. These models were not completely isolated in the parameter space, but neither did they belong to a large continuum of good models that would exist if weak compensations between channels were sufficient. The parameter landscape of good models can best be described as a set of loosely connected hyperplanes. Our method is efficient in finding good models in this complex landscape. Unraveling the landscape is an important step towards the understanding of functional homeostasis of neurons.  相似文献   

13.
A first approximation model, which accounts for the strongest phenomena defining kindling is suggested. It is based on an excitatory-inhibitory coupling of neural aggregates, to which a self-stimulation element for the excitatory aggregate was added. The functional linking hypothesis views the representation of kindling as a process of gradual transition through structural changes from a stable system to a system showing stability for small perturbations and an oscillatory orbit for larger perturbations, to a purely oscillatory system. The anatomical linking hypothesis views the excitatory aggregate as representing the hypothalamus, the inhibitory aggregate as representing the hippocampal-septal-preoptic complex, and the selfstimulating element of the excitatory aggregate as representing the amygdaloid-pyriform complex. The model was realized on a digital computer with graphic capabilities and showed good qualitative agreement with the experimental data related to kindling. In addition, the use of the model for generating new experiments is discussed.  相似文献   

14.
Cortical computations are critically dependent on interactions between pyramidal neurons (PNs) and a menagerie of inhibitory interneuron types. A key feature distinguishing interneuron types is the spatial distribution of their synaptic contacts onto PNs, but the location-dependent effects of inhibition are mostly unknown, especially under conditions involving active dendritic responses. We studied the effect of somatic vs. dendritic inhibition on local spike generation in basal dendrites of layer 5 PNs both in neocortical slices and in simple and detailed compartmental models, with equivalent results: somatic inhibition divisively suppressed the amplitude of dendritic spikes recorded at the soma while minimally affecting dendritic spike thresholds. In contrast, distal dendritic inhibition raised dendritic spike thresholds while minimally affecting their amplitudes. On-the-path dendritic inhibition modulated both the gain and threshold of dendritic spikes depending on its distance from the spike initiation zone. Our findings suggest that cortical circuits could assign different mixtures of gain vs. threshold inhibition to different neural pathways, and thus tailor their local computations, by managing their relative activation of soma- vs. dendrite-targeting interneurons.  相似文献   

15.
We obtain computational results for a new extended spatial neuron model in which the neuronal electrical depolarization from resting level satisfies a cable partial differential equation and the synaptic input current is also a function of space and time, obeying a first order linear partial differential equation driven by a two-parameter random process. The model is first described explicitly with the inclusion of all biophysical parameters. Simplified equations are obtained with dimensionless space and time variables. A standard parameter set is described, based mainly on values appropriate for cortical pyramidal cells. When the noise is small and the mean voltage crosses threshold, a formula is derived for the expected time to spike. A simulation algorithm, involving one-dimensional random processes is given and used to obtain moments and distributions of the interspike interval (ISI). The parameters used are those for a near balanced state and there is great sensitivity of the firing rate around the balance point. This sensitivity may be related to genetically induced pathological brain properties (Rett's syndrome). The simulation procedure is employed to find the ISI distribution for some simple patterns of synaptic input with various relative strengths for excitation and inhibition. With excitation only, the ISI distribution is unimodal of exponential type and with a large coefficient of variation. As inhibition near the soma grows, two striking effects emerge. The ISI distribution shifts first to bimodal and then to unimodal with an approximately Gaussian shape with a concentration at large intervals. At the same time the coefficient of variation of the ISI drops dramatically to less than 1/5 of its value without inhibition.  相似文献   

16.
We formulate and analyze a mathematical model that couples an idealized dendrite to an active boundary site to investigate the nonlinear interaction between these passive and active membrane patches. The active site is represented mathematically as a nonlinear boundary condition to a passive cable equation in the form of a space-clamped FitzHugh-Nagumo (FHN) equation. We perform a bifurcation analysis for both steady and periodic perturbation at the active site. We first investigate the uncoupled space-clamped FHN equation alone and find that for periodic perturbation a transition from phase locked (periodic) to phase pulling (quasiperiodic) solutions exist. For the model coupling a passive cable with a FHN active site at the boundary, we show for steady perturbation that the interval for repetitive firing is a subset of the interval for the space-clamped case and shrinks to zero for strong coupling. The firing rate at the active site decreases as the coupling strength increases. For periodic perturbation we show that the transition from phase locked to phase pulling solutions is also dependent on the coupling strength.This work was supported in part by NSF Grants MCS 83-00562 and MDS 85-01535  相似文献   

17.
18.
The eight-variable model for the giant neuron localized in the esophageal ganglia of the marine pulmonate mollusk Onchidium verruculatum is reduced to four-and-three-dimensional systems by regrouping variables with similar time scales. These reduced models replicate the complex behavior including beating, periodic bursting and aperiodic bursting displayed by the original full model when the parameter I ext representing the intensity of the constant DC current stimulation is varied across a wide range. The complex behavior of the full model arises from the interaction of fast and slow dynamics, and depends on the time scale C s of the slow dynamics. The four-variable reduced model is constructed independently from the parameter C s so that it reproduces the two-dimensional bifurcation structure of the full model for the two parameters I ext and C s . The three-variable reduced model is derived for a specific value of C s . The parameters of this model are tuned so that its one-parameter bifurcation diagram for I ext closely matches that of the full model. Correspondence between bifurcation structures ensures that both reduced models reproduce the various discharge patterns of the full model. Similarity between the full and reduced models is also confirmed by comparing mean firing frequencies and membrane potential waveforms in various regimes. The reduction exposes the factors essential for reproducing the dynamics of the full model; indeed, it shows that the eight variables representing the membrane potential and seven gating variables of six ionic currents in the full model account, in fact, for three basic processes responsible for excitability, post-discharge refractoriness and slow membrane modulation. Received: 7 May 1996 / Accepted 4 December 1997  相似文献   

19.
We describe a neural network model of the cerebellum based on integrate-and-fire spiking neurons with conductance-based synapses. The neuron characteristics are derived from our earlier detailed models of the different cerebellar neurons. We tested the cerebellum model in a real-time control application with a robotic platform. Delays were introduced in the different sensorimotor pathways according to the biological system. The main plasticity in the cerebellar model is a spike-timing dependent plasticity (STDP) at the parallel fiber to Purkinje cell connections. This STDP is driven by the inferior olive (IO) activity, which encodes an error signal using a novel probabilistic low frequency model. We demonstrate the cerebellar model in a robot control system using a target-reaching task. We test whether the system learns to reach different target positions in a non-destructive way, therefore abstracting a general dynamics model. To test the system's ability to self-adapt to different dynamical situations, we present results obtained after changing the dynamics of the robotic platform significantly (its friction and load). The experimental results show that the cerebellar-based system is able to adapt dynamically to different contexts.  相似文献   

20.
This paper discusses a neuronal model based on a model of Coleman and Gastwirth (1969). It is assumed that the excitatory input forms a Poisson process while the inhibitory input forms a stationary renewal process. The proposed interaction scheme is as follows: an inhibitor deletes at most N consecutive excitatory inputs and a response only occurs after the cummalative storage of M excitatory inputs. The Laplace transform of the probability density function (p.d.f.) of the inter-response intervals is derived together with results of the numerical inversions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号