首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Close correlations in species numbers may make it possible to indirectly assess the species richness of difficult taxonomic groups by investigating indicator groups, for which data are more easily collected. We asked if species numbers correlate among the four dominating groups of primary producers in boreal forests (liverworts, macrolichens, mosses, and vascular plants) and if substrate affiliation of species (ground vs. other substrates), sample plot size (0.01–1000 m2), and stand age (young vs. old) influence correlation strength. We used three sets of study plots from northern Sweden each including wide ranges of species richness. Although there are large differences in the ecophysiology and substrate use of vascular plants and the two bryophyte groups (mosses and liverworts), we found strong positive correlations among them not previously reported from boreal forests. In contrast, no correlation in total species richness was found between macrolichens and the two bryophyte groups, despite large overlaps in their ecology. We suggest that the positive correlations among land plants (liverworts, mosses, and vascular plants) are linked to positive relationships between site moisture and species number for all three groups. In contrast, total species number of macrolichens has not been shown to be strongly associated with moisture. However, ground‐living lichens and mosses correlated negatively in old forests. This may relate to the inability of macrolichens to exploit shaded and wet old forest ground, a habitat that is used by many moss species. Furthermore, lichens and mosses of ‘other substrates’ correlated positively in old forests, probably because the amount of boulders was positively related to species richness in both groups. Generally, correlations became stronger with increasing plot size, whereas stand age had relatively little influence. We conclude that vascular plants could be used as an indicator group for species richness of mosses and liverworts in boreal landscapes.  相似文献   

2.
生物多样性的空间分布及其相关机制一直是生态学、生物地理学和保护生物学研究的热点问题。山地生态系统生境异质性和生物多样性高, 适合研究生物多样性空间分布及其相关机制。喜马拉雅山脉位于青藏高原南缘, 是全球生态热点区域。其地形复杂, 海拔落差大(100-8,844 m), 具有明显的垂直气候带。本研究通过整合野外调查和文献资料, 系统地分析了10目23科160属313种喜马拉雅山地区哺乳动物物种多样性的垂直分布格局, 发现该区域哺乳动物总体及其子集的物种多样性垂直分布格局都为左偏倚的中峰格局, 物种多样性在海拔900-1,400 m之间最高, 不同物种子集的物种多样性垂直分布格局的模式有所不同。UPGMA聚类分析表明, 喜马拉雅山地区哺乳动物群落沿海拔梯度可以划分为5个聚类簇(海拔100-1,500 m、1,500-2,000 m、2,000-3,000 m、3,000-4,200 m以及4,200-6,000 m的地区), 大致与该地区植被的垂直带分布相吻合。喜马拉雅山地区哺乳动物物种多样性在中低海拔最为丰富, 可能跟东洋界与古北界生物群扩散后的交汇地带相关。喜马拉雅山区贯通南北的沟谷是生物扩散和迁移的通道, 沟谷内水热资源较好, 气候稳定性高, 为高山生态系统内各种生物创造了栖息条件。综上, 喜马拉雅山沟谷地区是生物多样性热点地区, 也是生物扩散和交流关键的“生态走廊”, 应加强对喜马拉雅山沟谷地区的保护, 以维系该区域较高的生物多样性。  相似文献   

3.
Abstract. 1. The seasonal distribution of macrolepidopteran species richness on Finnish deciduous trees vaned from positively skewed (peak in spring) to negatively skewed (peak in autumn).
2. The skewness values of species richness had a significant negative correlation ( r = - 0.98) with the duration of the seasonal shoot-growth period of the tree species.
3. Trees which complete their shoot growth early in the season ( Quercus type) produce new leaves only during spring, while trees whose shoot growth continues to autumn ( Populus type) do so throughout the summer.
4. Consequently, there is a difference in the number of available resources in the late summer foliage of different tree species, Trees ceasing leaf production early such as oak ( Quercus robur ) and bird cherry ( Prunus padus ) have one major resource type (mature leaves) in late-season foliage while trees like birches and alders have two Ooung and mature leaves).
5. Because young leaves formed late in the season are preferred to mature ones by some species of herbivores and because other species prefer mature leaves at the same time, the species richness of Populus-type trees is higher later in the season than the species richness of Quercus-type of trees, which have just one type of resource available.  相似文献   

4.
Question: What is the relative importance of environmental gradients and surface microtopography (variation in vertical level within sampling units) for fine‐scale plant species richness in Picea abies swamp forests? Location: 11 swamp forests in SE Norway. Methods: We recorded species richness (number of species of vascular plants, mosses, Sphagnum and hepatics), depth to water table, soil base status and vertical range (microtopographic relief) in 2400 microplots, (each 1/16 m2), in 150 1‐m2 plots in the 11 swamp forests. Relationships between species richness and environmental predictors were modelled by GLMM. Results: Moss and hepatic species richness increased with increasing microtopographic relief, most strongly for wet acid sites, in which similar trends were also found for Sphagnum. Relief was a poor predictor of vascular plant species richness. Conclusions: Microtopographic relief is a good predictor of local species richness in Picea abies swamp forests, partly because larger vertical variability means higher within‐plot habitat diversity with respect to the wet‐dry gradient, and partly because qualitatively new microhabitats associated with steep slopes are added in drier sites. The relationship between species richness and microtopographic relief is context dependent, differing in complex ways among species groups and among sites with different environmental conditions.  相似文献   

5.
Species richness patterns of amphibians in southwestern Ontario ponds   总被引:5,自引:0,他引:5  
Abstract. In southwestern Ontario amphibian species richness (α-diversity) was investigated at 180 ponds from 1992 to 1994. Patterns of species richness were compared among regions and the relationship between species richness and local habitat and regional landscape variables was investigated. Patterns of incidence differed among regions, with species that use woodlands being rare in one of the regions. Repeated measures analysis of variance indicated that species richness differed significantly among regions but not among sub-regions nested within regions. Species richness did not change significantly over time and there was no region by year effect. Species richness was highly correlated with local variables related to fish predation and to regional variables related to forest cover. Multiple regression indicated that a combination of local and regional variables best accounted for the variance in species richness, but the amount of regional woodlands was the single most important variable. The pattern of species richness can be explained by historical deforestation as the primary process.  相似文献   

6.
Larch forests are important for species diversity, as well as soil and water conservation in mountain regions. In this study, we determined large-scale patterns of species richness in larch forests and identified the factors that drive these patterns. We found that larch forest species richness was high in southern China and low in northern China, and that patterns of species richness along an elevational gradient depend on larch forest type. In addition, we found that patterns of species richness in larch forests are best explained by contemporary climatic factors. Specifically, mean annual temperature and annual potential evapotranspiration were the most important factors for species richness of tree and shrub layers, while mean temperature of the coldest quarter and anomaly of annual precipitation from the Last Glacial Maximum to the present were the most important for that of herb layer and the whole community. Community structural factors, especially stand density, are also associated with the species richness of larch forests. Our findings that species richness in China''s larch forests is mainly affected by energy availability and cold conditions support the ambient energy hypothesis and the freezing tolerance hypothesis.  相似文献   

7.
Abstract. Species richness was studied in the understorey of natural Pinus sylvestris forest in the eastern Pyrenees. Understorey plant species were grouped in three structural groups as woody species, herbs and mosses. The response curves of total species richness and species richness of each structural group were fitted against environmental and stand-structural parameters, using Generalized Linear Models. The results suggested that, to predict species richness, environmental parameters were more important than tree-canopy structural parameters, in particular incoming radiation and soil nutrient concentration. The species richness response curve was often humped in relation to soil nutrient concentration. Different patterns of species richness were found for each structural group.  相似文献   

8.
1. We studied the patterns of litter decomposition in lake littoral habitats and investigated whether decay rates, as an integrating proxy for environmental conditions in the sediment, would co‐vary with net carbon dioxide (CO2) exchange and methane (CH4) efflux. These gas fluxes are known to be sensitive to environmental conditions. Losses in the mass of cellulose, root, rhizome and moss litter were measured during 2 years in boreal littoral wetlands in Finland and compared with published data on concurrently measured gas fluxes. Four study sites covered a range of sediment types and hydrological conditions. 2. Decomposition was not linearly related to the duration of flooding but depended on sediment type. Readily decomposable litter fractions, such as cellulose and rhizome litter, lost mass at a faster rate in marshes with a longer period of flooding but wide water level fluctuations that hinder establishment of a Sphagnum cover, than in peat‐forming fens. In marshes, the mean first‐year mass losses were 83–99% and 19–62% for cellulose and rhizomes, respectively. In fens, the respective losses were 40–53% and 33%. In the first year, the loss in the mass of the more recalcitrant root litter did not differ between sites (mean 19–30%) and moss litter lost no mass. 3. The estimated first‐year carbon loss from belowground litter was about 0.1–0.3 times ecosystem respiration and roughly similar to net carbon gas (CO2, CH4) efflux, suggesting that vascular plants and recent plant residues contribute substantially to ecosystem release of carbon gases. On the other hand, at least 40% of the mass of the belowground litter remained on a littoral site after the first 2 years of decomposition. Slow decomposition may indicate the accumulation of organic‐rich sediments. The accumulated carbon could explain the excess CO2 release found in most littoral sites. In continuously inundated sites decomposition rates were similar to those in periodically flooded sites, but ecosystem‐atmosphere CO2 exchange fell to close to zero. This discrepancy implies that the released CO2 is dissolved in water and may be exported into the pelagic zone of the lake.  相似文献   

9.
Aim Species richness of insect herbivores feeding on exotic plants increases with abundance as well as range size of the host in the area of introduction. The formation of these herbivore assemblages requires a certain amount of time, and the richness of insect faunas should also increase with the length of time an exotic plant has been present in the introduced range. Location Central Europe. Methods We analysed the variation in species richness of leaf‐chewing Lepidoptera larvae and sap‐sucking Auchenorrhyncha (Hemiptera) associated with 103 exotic woody plant species in Germany in relation to time since introduction, range size, growth form (trees versus shrubs), biogeographical origin (distance from Central Europe) and taxonomic isolation of the host plant (presence or absence of a native congener in the introduced area). Results Using simple correlation analyses we found for Lepidoptera and Auchenorrhyncha that species richness increased with time since introduction of the host plant. For the Lepidoptera the increase of species richness with time since introduction remained significant even after removing the effects of all other independent variables. Main conclusions Our results provide some evidence that assemblages of insects on exotic plants do not reach saturation within a time scale of few hundred years. This contrasts with previous findings for crop plants.  相似文献   

10.
11.
Species richness and abundance are central in biodiversity inventories and in measuring the structure of communities. Neglecting the assessment of sampling efficiency may lead to spurious estimates of species richness and conservation value. Our aim was to examine species richness, sampling effectiveness, species-abundance distribution (SAD) and rarity of a boreal, mire-dwelling crane fly (Diptera, Tipuloidea) assemblage in western Finland. 12 Malaise traps dispersed in 4 subplots and standardized sweep net samples were used to collect adult flies from the mire. A total of 23 species and 1,569 specimens were identified. In general all species richness estimators were highly correlated and indicated rather good sampling effort. Sample completeness, expressed as percentage of observed richness divided by estimated richness, was higher for mire-dwellers (mean 75 %) than for all species (mean 63 %). Crane fly assemblages of subplots and combined data fitted best with log-series SAD. Species spatial distribution was positively correlated with average abundance. In other words, the most abundant species occurred in the most of Malaise traps. Seven mire-dwelling species greatly outnumbered (94 % of the collected specimens) all other members in the assemblage, and only one observed species was rare by several definitions (local abundance, extent of occurrence in Finland and area of occupancy). Although the studied assemblage was characterized by commonness, five of the species have threatened status in Europe south of Finland. Separate species richness estimation of all species (vagrants and occasional species included) and focal species (here mire-dwellers) is supported if ecological information is available on the taxonomic group being studied.  相似文献   

12.
Although the relevance of particle size reduction in herbivore digestion is widely appreciated, few studies have investigated digesta particle size across species in relation to body mass or digestive strategy. We investigated faecal particle size, which reflects the size of ingesta particles after both mastication and specialized processes such as rumination. Particle size was measured by wet sieving samples from more than 700 captive individuals representing 193 mammalian species. Using phylogenetic generalized least squares, faecal particle size scaled to body mass with an exponent of 0.22 (95% confidence interval: 0.16–0.28). In comparisons among different digestive strategies, we found that (1) equids had smaller faecal particles than other hindgut fermenters, (2) non-ruminant foregut fermenters and hindgut fermenters had similar-sized faecal particles (not significantly different), and (3) ruminants had finer faecal particles than non-ruminants. These results confirm that the relationship between chewing efficiency and body mass is modified by morphological adaptations in dental design and physiological adaptations to chewing, such as rumination. This allometric relationship should be considered when investigating the effect of body size on digestive physiology, and digestion studies should include a measure of faecal particle size.  相似文献   

13.
蔷薇科(Rosaceae)是在中国广泛分布并具有重要经济价值的植物类群, 但蔷薇科资源植物的物种多样性格局及其保护状况尚缺乏较系统的评估。该文旨在: 1)整理中国蔷薇科资源植物名录, 显示其物种多样性格局及热点地区, 并探究这一格局的形成机制。2)评估中国蔷薇科资源植物的保护状况, 为其保护规划提供基础数据。通过广泛收集整理《中国植物志》、省级植物志等资料中关于蔷薇科的记录, 建立了中国蔷薇科物种名录(共914种), 确定了物种的主要经济用途(包括食用植物、园林绿化植物、药用植物和水果种质资源), 并建立了每种植物的高精度分布图。在此基础上, 估算了蔷薇科全部物种及主要资源植物类别的物种多样性格局, 并利用广义线性模型和冗余分析探讨了蔷薇科物种多样性格局与环境的关系。最后将物种分布与中国国家级和省级自然保护区进行叠加分析, 评估了蔷薇科植物的保护现状。结果显示: 1)四川盆地北部、东部和西部山区以及横断山区是中国蔷薇科植物的热点地区。2)蔷薇科植物多样性主要受水分因子影响。3)横断山区、云南东南部和西藏东南部等地是保护薄弱物种集中的区域, 而悬钩子属(Rubus)等类群的保护不足。  相似文献   

14.
通过对库姆塔格沙漠南缘植被进行实地调查,对该地区植物物种丰富度及其群落组成进行研究,并选取11个影响物种丰富度的气候因子和地形因子,利用PCA分析、方差分解等方法探讨气候、地形因子对物种丰富度的影响。结果显示:该区共有植物15科32属38种,植物群落种类匮乏,物种组成单一,植物生活型主要以灌木、多年生草本为主,占所有物种的80%以上;植物物种丰富度与植物群落组成明显受到水热条件的制约。回归分析结果表明,该区物种丰富度与能量因子呈显著负相关(P<0.05),而与水分因子呈显著正相关(P<0.05)。方差分解结果表明,水分、能量共同制约了该地区的物种丰富度,二者的共同解释率为44.3%。此外,地形因子对研究区物种丰富度也存在一定影响,能进一步提高环境因子对物种丰富度的解释率。总之,库姆塔格南缘物种组成单一、物种丰富度格局受到水热条件的共同制约,同时地形的变化也有重要影响。  相似文献   

15.
Using a large body of observational data on the occurrence ofSorex shrews in boreal forests, we test two models that predict the structure of small mammal communities along a gradient of increasing habitat productivity. Tilman’s (1982) model predicts a humped curve of species richness along productivity gradients. In contrast, we found a linear increase in species richness with increasing logarithm of the pooled density of shrews, which we use as a measure of habitat productivity for shrews. The model of Hanski and Kaikusalo (1989) assumes a trade-off between exploitative and interference competitive abilities, and it predicts that the size structure of small mammal communities should shift from the dominance of small species (superior in exploitative competition) in unproductive habitats to the dominance of large species (superior in interference competition) in productive habitats. Shrew assemblages show such a shift. Though it is not possible to draw definite conclusions about the role of interspecific competition from our observational data, the changing size structure of local shrew assemblages with increasing habitat productivity is a predictable feature of their community structure.  相似文献   

16.
Supplement: coprophagy in leporids and other mammalian herbivores   总被引:1,自引:0,他引:1  
  相似文献   

17.
We used data from a light-trapping study at 28 sites on floodplain forest moths in eastern Austria to assess the performance of a variety of species richness and species diversity measures. At each site the data (32,181 individuals from 448 species) contain a large fraction of species represented only as singletons. Sampling effort was evenly spread across sites, but sampling success varied greatly. Influx of moths from the landscape matrix surrounding floodplain forest patches lead to substantial proportions of stray individuals from the regional species pool. Under these conditions, observed species numbers as well as eight extrapolation estimators of species totals failed to reflect differences between three study regions or between flooded and non-flooded forest habitats. Rarefied species numbers and Fisher’s α of the log-series distribution captured differences in moth diversity between regions, but failed to mirror flooding impact. Only Shannon’s diversity captured all expected diversity differences, at high significance levels. Application of Chao and Shen’s bias correction increased figures of Shannon’s diversity, but did not affect the outcome of statistical comparisons. We conclude that for species-rich incompletely sampled communities of highly mobile insects the evaluation of the complete species-abundance information using Shannon’s diversity is the most promising mode to compare local species diversity with a high degree of ecological resolution. Species richness measures apart from those obtained through rarefaction cannot be recommended, as they are sensitive to sources of bias that pertain to many empirical sets of field data.  相似文献   

18.
Abstract. Although the latitudinal gradient of species richness for mammals in North America is well documented, few investigators have quantified the relationship in South America. We examined the pattern in North and South America, at two spatial scales (2.5° and 5°) for each of two sampling methods (quadrats and latitudinal bands). A scale effect was evident for quadrats but not for bands. Significant linear relationships between species richness and latitude were found for three faunal groups: all mammals, nonvolant species, and bats. Effects of area confound the latitudinal relationship. By statistically removing such effects, we found that the latitudinal gradient is not an artifact of the species-area relationship, and that the latitudinal gradients for North and South America were statistically indistinguishable. Our data suggest that both faunal subgroups, nonvolant species and bats, contributed substantially to the overall mammalian pattern. Further, multiple regression analyses showed that only latitude is a necessary variable to explain bat richness; for nonvolant species, in addition to latitude, area and longitude may be important.  相似文献   

19.
Dlott  Franklin  Turkington  Roy 《Plant Ecology》2000,151(2):239-251
To understand inter-trophic linkages between components of the boreal forest understory vegetation, three hypotheses were tested: survival, growth and abundance of grasses and legumes were controlled by (i) resource availability alone, (ii) by herbivores alone, and (iii) by both resource availability and herbivores. The hypotheses were tested using three experimental treatments – fertilization, herbivore exclusion, and fertilization plus herbivore exclusion – in three areas having different densities of resident herbivores, mostly snowshoe hares and ground squirrels. The highest density of snowshoe hares is comparable to natural levels during peaks in the snowshoe hare cycle. As the density of herbivores increased so too did the level of response by the measured variables – survival, growth of transplants and leaf area index of established vegetation. In general, fertilization resulted in a decrease in survival and growth of transplants, and fences increased survival and growth; both responses were more noticeable at higher herbivore densities. Fertilizer and herbivore exclosure fences had only negligible effects on established grass and legume abundance at all hare densities. We have shown that some hypotheses of vegetation regulation are over-simplified because different species groups (i.e., grasses and legumes) are regulated by different factors, at different life history stages, and sometimes these factors act in opposing directions. We argue that during the increase phase and peak of the snowshoe hare cycle (high herbivore density), growth and survival of establishing plants is regulated by herbivores. During the decline and low phases of the snowshoe hare cycle herbivores will have little impact on early life stages, whereas the established, mature, vegetation will be resource-regulated. Because of the variability in responses to the same manipulations we may begin to understand which plant life history stages are most vulnerable to consumer and resource regulation, the magnitudes of these sources of regulation at each of these stages, and how these vary among species groups and types of environments.  相似文献   

20.
Coprophagy in leporids and other mammalian herbivores   总被引:6,自引:0,他引:6  
Leporids have long been known to reingest soft faeces. However, it was recently found that they regularly reingest hard faeces, too. During the daytime, both soft and hard faeces are defecated and all of the faeces are reingested. Excreted at night are the hard faeces, which are normally discarded but reingested in starvation. The separation mechanism in the proximal colon, which diverts fine particles into the caecum and thus only passes large food particles, produces hard faeces. When the mechanism ceases acting, fermented caecal materials are excreted as soft faeces. The reingestion of soft faeces, rich in vitamins and microbial proteins, is physiologically imperative. Hard faeces are basically a refuse, but their thorough mastication at reingestion reduces poorly digestible large particles to fine ones good for fermentation. The regular reingestion of daytime hard faeces thus promotes food digestibility. The temporary use of night‐time hard faeces allows leporids to do without food for some time. It thus gives leporids behavioural flexibility and thereby an ecological advantage. Reingestion is also known in other small‐ to medium‐sized herbivores, which are all caecal fermenters. Morphological differentiation between faeces is reported only in larger species, but all ingested faeces are found to be richer in nutrients than discarded ones. Thus a separation mechanism is probably present in all reingesting species. Reingestion activity is deeply related to other behavioural and physiological traits of small mammalian herbivores, hence its study is important to understanding of their ecology and biology. Leporids are the largest of the reingesting species except for the semi‐aquatic Coypu, and reingestion by leporids is certainly the most sophisticated. This development of a reingestion‐involved digestive system has probably brought them to their present niche, as terrestrial medium‐sized generalist mammalian herbivores, and consequently made their characteristic hide‐and‐run lifeforms by exposing them to a strong predation pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号