首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Two types of sialic acid-containing component are released from articular cartilage proteoglycan monomer (D1) treated with 0.05 M NaOH containing 1 M NaBH4. The smaller component, which has not been described before, contains galactosamine, glucosamine, galactose and sialic acid (Molar ratio 1:1:1:2). It is eluted from ECTEOLA-cellulose with low molarity (0.4 M) sodium formate and has Kav of 0.70 on Bio-gel P30. Its presence on the proteoglycan monomer was demonstrated at all stages of foetal and adult life.  相似文献   

3.
4.
Proteoglycans were extracted from the articular cartilage of foetal, calf and adult bovine metacarpal–phalangeal joints with 4m-guanidinium chloride. After extraction, the high-density proteoglycans (PG-I fractions) were prepared by sedimentation in two sequential CsCl-density-gradient procedures [Swann, Powell & Sotman (1979) J. Biol. Chem. 254, 945–954]. The PG-I fractions from foetal, calf and adult tissues accounted for 75%, 52% and 46% respectively of the extracted components. The glucosamine, galactose, N-acetylneuraminic acid and protein contents increased with age. The overall amino acid compositions of PG-I fractions were similar. Fractionation of PG-I-fraction samples on a Bio-Gel A-50m column indicated that the molecular weight decreased with age. The PG-I fractions were specifically 3H-labelled by treatment with galactose oxidase followed by reduction with NaB3H4. The 3H radioactivity was incorporated into both galactose and galactosamine residues of different carbohydrate side chains. The elution profiles of alkaline borohydride-treated foetal, calf and adult PG-I-fraction samples on a Sepharose 6B column showed that the molecular weights of chondroitin sulphate chains were 13500, 12000 and 10500 in foetal, calf and adult tissues respectively. Fractionation of the alkaline borohydride-treated foetal, calf and adult PG-I-fraction samples and 3H-labelled calf and adult PG-I-fraction samples on a Bio-Gel P-10 column showed that there was an inverse relationship between the low-molecular-weight O-linked oligosaccharides and the higher-molecular-weight sialic acid-containing constituents at different ages. The oligosaccharide components of foetal, calf and adult PG-I-fraction samples represented 79%, 69% and 36% respectively of the total sialic acid content of the proteoglycans. Similarly in the 3H-labelled calf and adult samples 75% and 30% of the total radioactivity were present in the oligosaccharide components respectively. Digestion with chondroitinase AC-II and infrared analyses showed that the PG-I-fraction F and C samples contained primarily chondroitin 4-sulphate chains whereas PG-I-fraction sample A was 6-sulphated. These studies show that the major proteoglycans (PG-I fractions) in the articular cartilage of foetal, calf and adult animals differ in the content, types and structure of the chondroitin sulphate, keratan sulphate and oligosaccharide constituents. These changes in proteoglycan structure reflect the gross age-related changes in the chemical composition of the tissue.  相似文献   

5.
Cartilage proteoglycan aggregates are separated from collagen and other non-proteoglycan protein by preparative rate zonal sedimentation under associative conditions. Dissociative rate zonal sedimentation produces sedimented proteoglycan of lower protein content with a corresponding increase in the amount of less sedimentable protein-rich proteoglycan. An extensive number of sequential rate zonal sedimentations discloses that the proceess of disaggregation involves the separation of proteoglycans varying continuously in composition with no apparent discontinuities in distribution to indicate the presence of distinctively different macromolecules. The variations encompass proteoglycans of low protein content containing less than 2% keratan sulfate and proteoglycans with keratan sulfate as the predominant polysaccharide (present in concentrations greater than 2-fold that of the chondroitin sulfate) and more than a 10-fold increase in protein content.  相似文献   

6.
1. Proteoglycans were extracted from bovine nasal cartilage with 2.0M-CaC2 or with 0.15M-KCl followed by 2.0M-CaC2.. Proteoglycan fractions were prepared from the extracts by density-gradient centrifugation in CsCl under 'associative' and 'dissociative' conditions. 2. The heterogeneity of the proteoglycan fractions was investigated by large-pore-gel electrophoresis. It was concluded that extracts made with 2.0M-CaCl2 or sequential 2.0M-CaCl2 contain two major species of proteoglycan 'subunit' of different hydrodynamic size, together with proteoglycan aggregates. Both 'subunits' have mobilities that are greater than those of proteoglycans obtained from pig articular cartilage McDevitt & Muir (1971) Anal. Biochem. 44, 612-622] and are therefore probably smaller in size than the latter. 3. Proteoglycan fractions isolated from cartilage extracted lith 0.15M-KCl separated into two main components on large-pore-gel electrophoresis with mobilities greater than those of proteoglycans extracted with 2.0M-CaCl2. Proteoglycans extracted at low ionic strength from bovine nasal cartilage are of similar hydrodynamic size to those extracted from pig articular cartilage under the same conditions [McDevitt & Muir (1971) Anal. Biochem. 44, 612-622]. 4. The role of endogenous proteolytic enzymes in producing proteoglycan heterogeneity, particularly in low-ionic-strength cartilage extracts is discussed. 5. Hyaluronic acid and 'link proteins' were present in the proteoglycan fraction separated from KCl extracts as well as in the fraction separated from CaCl2 extracts. Hyaluronic acid can only be identified in proteoglycan fractions by large-pore-gel electrophoresis after proteolysis and further purification of the fraction. 6. Collagen was extracted by both salt solutions and was tentatively identified as type II. Small amounts of collagen appear to be associated with the proteoglycan-aggregate fraction from the high-ionic-strength extract but not with the corresponding fraction from the KCl extract.  相似文献   

7.
Two types of sialic acid-containing component are released from articular cartilage proteoglycan monomer (D1) treated with 0.05 M NaOH containing 1 M NaBH4. The smaller component, which has not been described before, contains galactosamine, glucosamine, galactose and sialic acid (Molar ratio 1:1:1:2). It is eluted from ECTEOLA-cellulose with low molarity (0.4 M) sodium formate and has a Kav of 0.70 on Bio-gel P30. Its presence on the proteoglycan monomer was demonstrated at all stages of foetal and adult life.  相似文献   

8.
A range of structurally related zwitterionic detergents, Zwittergents 3-06, 3-08, 3-10, and 3-12, and a derivative of cholic acid (Chaps) were examined for their ability to enhance the extraction of newly synthesized, intracellular proteoglycans and for their effect on the functional properties of cartilage proteoglycan. Although none of the detergents could extract greater than 4% of the intracellular proteoglycans when used alone, Zwittergents 3-10, 3-12, and Chaps proved equally as effective when used in combination with 4 M guanidine HCl extracting greater than 90% of newly synthesized proteoglycans. Rate zonal centrifugation of aggregates containing either 3H-link protein or 3H-monomer, which had been incubated with 2% (w/v) detergent indicated that none of the test detergents caused a disassembly of intact aggregates. However, both Zwittergents 3-10 and 3-12 prevented the reaggregation of components dissociated with 4 M guanidine HCl. Similar to the finding with aggregate, none of the detergents caused a disassembly of monomer-link protein complexes prepared from purified 3H-link protein and proteoglycan monomer, while Zwittergents 3-10 and 3-12 prevented their assembly from free link protein and monomer. However, monomer-link protein complexes once formed were able to associate with hyaluronic acid to form link-stable ternary complexes in the presence of all detergents tested including Zwittergents 3-10 and 3-12.  相似文献   

9.
10.
11.
Dermatan sulphate proteoglycans were purified from juvenile human articular cartilage, with a yield of about 2 mg/g wet wt. of cartilage. Both dermatan sulphate proteoglycan I (DS-PGI) and dermatan sulphate proteoglycan II (DS-PGII) were identified and the former was present in greater abundance. The two proteoglycans could not be resolved by agarose/polyacrylamide-gel electrophoresis, but could be resolved by SDS/polyacrylamide-gel electrophoresis, which indicated average Mr values of 200,000 and 98,000 for DS-PGI and DS-PGII respectively. After digestion with chondroitin ABC lyase the Mr values of the core proteins were 44,000 for DS-PGI and 43,000 and 47,000 for DS-PGII, with the smaller core protein being predominant in DS-PGII. Sequence analysis of the N-terminal 20 amino acid residues reveals the presence of a single site for the potential substitution of dermatan sulphate at residue 4 of DS-PGII and two such sites at residues 5 and 10 for DS-PGI.  相似文献   

12.
Four bovine articular cartilages have been compared with regard to the chemical composition of the whole cartilages, the amount of proteoglycan selectively extracted with 3 M MGCl2 or with 3 M guanidine-HCl, and the compositions and physical properties of the isolated proteoglycans. The whole cartilages differ but slightly in composition. Occipital condylar cartilage, a thin cartilage from the smallest joint, contains 4% more collagen and proportionately less proteoglycan than proximal humeral, the thickest cartilage from the largest joint. Each cartilage contains a pool of proteoglycan that resists extraction with 3 M MgCl2 but is extracted with 3 M guanidine-HCl. The proteoglycan extracted from each cartilage with 3 M guanidine-HCl contains a high molecular weight proteoglycan-collagen complex demonstrated by analytical ultracentrifugation and by the turbidity of its visible and ultra-violet spectra. The four cartilages appear to differ most remarkably in the fraction of total proteoglycan extracted from each as proteoglycan-collagen complex.  相似文献   

13.
Proteoglycans were extracted from normal human articular cartilage of various ages with 4M-guanidinium chloride and were purified and characterized by using preformed linear CsCl density gradients. With advancing age, there was a decrease in high-density proteoglycans of low protein/uronic acid weight ratio and an increase in the proportion of lower-density proteoglycans, richer in keratan sulphate and protein. Proteoglycans of each age were also shown to disaggregate in 4M-guanidinium chloride and at low pH and to reaggregate in the presence of hyaluronic acid and/or low-density fractions. Osteoarthrotic-cartilage extracts had an increased content of higher-density proteoglycans compared with normal cartilage of the same age, and results also suggested that these were not mechanical or enzymic degradation products, but were possibly proteoglycans of an immature nature.  相似文献   

14.
After chondroitinase digestion of bovine nasal and tracheal cartilage proteoglycans, subsequent treatment with trypsin or trypsin followed by chymotrypsin yielded two major types of polypeptide-glycosaminoglycan fragments which could be separated by Sepharose 6B chromatography. One fragment, located close to the hyaluronic acid-binding region of the protein core, had a high relative keratan sulfate content. This fragment contained about 60% of the total keratan sulfate, but less than 10% of the total chondroitin sulfate present in the original proteoglycan preparation. The weight average molecular weight of the keratan sulfate-enriched fragment was 122,000, as determined by sedimentation equilibrium centrifugation. The chemical and physical data indicate that this fragment contains an average of 10 to 15 keratan sulfate chains, if the average molecular weight of individual chains is assumed to be about 8,000, and about 5 chondroitin sulfate chains attached to a peptide of about 20,000 daltons. The other population of fragments was derived from the other end of the proteoglycan molecule, the chondroitin sulfate-enriched region, and contained mainly chondroitin sulfate chains. About 90% of the total chondroitin sulfate, but only 20 to 30% of the total keratan sulfate was recovered in these fragments. On the average, approximately 5 chondroitin sulfate chains and 1 keratan sulfate chain could be linked to the same peptide. Another 10 to 20% of the total keratan sulfate, originally found in or near the hyaluronic acid-binding region, was not separated from the chondroitin sulfate-enriched fragments. Hydroxylamine could be used to liberate a large molecular size, chondroitin sulfate-enriched fragment (Kav 0.54 on Sepharose 2B) from the proteoglycan aggregates. The remainder of the protein core, containing the keratan sulfate-enriched region, was bound to hyaluronic acid with the link proteins and recovered in the void volume on the Sepharose 2B column.  相似文献   

15.
Antibodies to proteoglycan (PG) and glycoprotein of bovine nasal cartilage were conjugated with fluorescein isothiocyanate and with horseradish peroxidase. Hyaluronidase digestion of cartilage tissue-specimens increased the intensity of immune reactions; pronase digestion or extraction with 4 M guanidinium chloride abolished the staining. In the intercellular matrix fine filaments beaded with small granules were seen forming an irregular network. The interstices of the network are filled with collagen fibers linked together by the filaments and granules. In view of the linear conformation of core proteins of PGs and the globular conformation of glycoproteins (link proteins), it may be supposed that the granules and filaments represent these two protein components of PG-aggregates. In chondrocytes a homogeneous staining was recorded in the endoplasmic reticulum, in the juxtanuclear areas and in several smooth-walled vesicles and elongated areas situating subjacent to the cell membrane. In contrast to the extracellular immune reactions, this homogeneous intracellular staining was never enhanced by hyaluronidase digestion. This is interpreted in the sense that conformation changes of molecules secreted, and the aggregation of PGs, occur extracellularly.  相似文献   

16.
Histochemical properties of cartilage proteoglycans   总被引:1,自引:0,他引:1  
Proteoglycan interaction with alcian blue at different concentrations of magnesium chloride was studied both in vitro and in histological sections of paraffin-embedded tissues. Our experiments indicate that a) proteoglycans with different contents of chondroitin sulfate and keratan sulfate, prepared under nondegradative conditions, are not distinguishable on the basis of the critical electrolyte concentrations at which staining is abolished; b) the state of aggregation of proteoglycans only very slightly affects the alcian blue affinity of the macromolecules at different concentrations of magnesium chloride; c) the interaction of proteoglycans with other components of the connective tissue matrix is an important factor in determining the strength of binding of alcian blue to the polyanionic macromolecules in histological sections. These factors should be considered in interpreting histochemical data obtained by staining tissue sections with alcian blue at different concentrations of magnesium chloride. Proteoglycans, like glycosaminoglycans, are only weakly periodic acid-Schiff-positive.  相似文献   

17.
Synopsis The proteoglycans of cartilage are complex molecules in which chondroitin sulphate and keratan sulphate chains are covalently linked to a protein core, forming a polydisperse population of proteoglycan monomers. By interaction with hyaluronic acid and link proteins, the monomers form large macromolecular complexes.In vivo the proteoglycans mainly occur in such aggregates. In the electron microscope, the cartilaginous matrix can be seen to be made up of thin collagen fibrils and polygonal granules about 10–50 nm in diameter. Addition of the polyvalent cationic dye Ruthenium Red to glutaraldehyde and osmium tetroxide fixatives yields a dense selective staining of the matrix granules. Following a short digestion of cartilage slices with either of the chondroitin sulphate-degrading enzymes hyaluronidase and chondroitinase or with the proteolytic enzyme papain, the matrix granules were few in number or completely absent and the proteoglycan content, measured as hexosamine, decreased by up to 90%. Similarly, extraction of the cartilage with 4 M guanidine-HCl removed all matrix granules and most of the proteoglycans. From these findings, it can be concluded that the matrix granules represent proteoglycans, most probably in aggregate form, and that Ruthenium Red staining may be used to study the distribution of these macromolecules in thin sections. As a complement to chemical studies on proteoglycan structure, it is also possible to observe and measure individual molecules in the electron microscope after spreading them into a monomolecular layer with cytochromec. This technique has been applied in investigations on proteogly cans isolated from bovine nasal cartilage and other hyaline cartilages. The molecules in the monomer fractions appeared as an extended central core filament to which about 25–30 side-chain filaments were attached at various intervals. The core filament, averaging about 300 nm in length, was interpreted as representing the polysaccharide-binding part of the protein core and the side-chain filaments, averaging about 45 nm in length, as representing the clusters of chondroitin sulphate chains. Statistical treatment of the collected data indicated that no distinct subpopulations existed within the monomer fractions. The electron microscopic results correlated well with chemical data for the corresponding fractions and together with recent observations on various aggregate fractions strongly support present concepts of proteoglycan structure.Paper presented at a symposium The Changing directions of carbohydrate histochemistry at the Fifth International Congress of Cytochemistry and Histochemistry in Bucharest, Romania on September 1976.  相似文献   

18.
Physical properties of cartilage proteoglycans   总被引:1,自引:0,他引:1  
  相似文献   

19.
Newly synthesized rat glomerular [35S]proteoglycans were labelled in vivo after injecting Na2[35S]SO4 intraperitoneally. At the end of the labelling period (7 h) the kidneys were perfused in situ with 0.01% (w/v) cetylpyridinium chloride. This fixed proteoglycans in the tissue and increased their recovery 2-3-fold during subsequent isolation of glomeruli from the renal cortex. The glomeruli were fractionated by a modified osmotic lysis and detergent extraction procedure [Meezan, Brendel, Hjelle & Carlson (1978) in The Biology and Chemistry of Basement Membranes (Kefalides, N.A., ed.), Academic Press, New York; Kanwar & Farquhar (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 4493-4497] to obtain a basement membrane preparation. The proteoglycans released at each stage of the procedure were characterized using DEAE-Sephacel ion-exchange chromatography, chondroitinase ABC and HNO2 digestion and Sepharose CL-4B gel-permeation chromatography. About 85% of the [35S]proteoglycans synthesized were of the heparan sulphate variety, the remainder being chondroitin sulphate proteoglycans. Three sizes of heparan sulphate proteoglycans were identified. The largest (HS1, Kav. 0.47) accounts for 44% of the total extractable heparan sulphates. About one third of HS1 were extracted from the glomerular basement-membrane fraction with 8 M-urea and 4 M-guanidine hydrochloride but the remainder were released from the glomerulus during preparation of the fraction. The two smaller molecules (HS2, Kav. 0.56 and HS3, Kav. 0.68) accounted for 27% and 28% of the extractable heparan sulphate respectively and were not associated with the basement membrane fraction. HS1, HS2 and HS3 were also isolated from non-fixed glomeruli labelled in vivo but with much lower recovery. In glomeruli labelled in vitro, heparan sulphate accounted for only 35% of the proteoglycans, the remainder being of the chondroitin sulphate type. Proteoglycans similar to HS1, HS2 and HS3 were present in glomeruli labelled in vitro but, in addition, a large, highly charged heparan sulphate (HS1a) was extracted from the glomerular basement-membrane fraction of these glomeruli. It accounted for 6% of the total heparan sulphate.  相似文献   

20.
Certain similarities between lysozyme and testicular hyaluronidase suggested that the putative action of the former in disaggregation of cartilage proteoglycans might be explained by a selective effect of the enzyme on the hyaluronic acid portion of the aggregate. Human lysozyme did not reduce the viscosity of either hyaluronate or of aggregated proteoglycans, it did not reduce the sedimentation velocity of hyaluronate, and it did not alter the chromatographic profile of the aggregate in a system sensitive to the difference between aggregate and its subunit. The role of human cartilage lysozyme in disaggregation of cartilage proteoglycans remains uncertain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号