首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new and technically simple Romanowsky-Giemsa (RG) stain is proposed as a standardized technique for use in histology. An RG stock solution (pure azure B 7.5 g/l, eosin Y as eosinic acid 1.2 g/l in dimethylsulfoxide) is diluted to form the working solution with HBPES-buffer, pH 6. Staining time is 30-90 min after formolcalcium solution (or 2-4 hr after formaldehyde-organic acid mixtures). The resulting overstained sections are to be differentiated. A tannic acid-acetic acid combination in an isopropanol-water mixture was found to give optimum results within 100 sec. Subsequent dehydration is in isopropanol only. The staining pattern obtained is polychrome. The distribution of colors in detail is influenced by the modes of pre- and posttreatment. Of practical interest is the development of green and greenish blue colors on collagen fibrils which contrast strongly against the pink of sarcoplasm. For this and other reasons, this RG stain version seems suitable to replace the trichrome Gomori-type trichrome stains under appropriate processing conditions.  相似文献   

2.
A new and technically simple Romanowsky-Giemsa (RG) stain is proposed as a standardized technique for use in histology. An RG stock solution (pure azure B 7.5 g/l, eosin Y as eosinic acid 1.2 g/l in dimethylsulfoxide) is diluted to form the working solution with HBPES-buffer, pH 6. Staining time is 30-90 min after formolcalcium solution (or 2-4 hr after formaldehyde-organic acid mixtures). The resulting overstained sections are to be differentiated. A tannic acid-acetic acid combination in an isopropanol-water mixture was found to give optimum results within 100 sec. Subsequent dehydration is in isopropanol only. The staining pattern obtained is polychrome. The distribution of colors in detail is influenced by the modes of pre- and posttreatment. Of practical interest is the development of green and greenish blue colors on collagen fibrils which contrast strongly against the pink of sarcoplasm. For this and other reasons, this RG stain version seems suitable to replace the trichrome Gomori-type trichrome stains under appropriate processing conditions.  相似文献   

3.
Staining plastic sections with the Romanowsky-Giemsa method is both time-consuming and difficult. This paper reports how the staining time can be reduced to 25 min using microwave irradiation of the staining solution. It is shown that staining results depend on the fixative used, staining temperature, dye concentration and pH of the staining solution as well as on several parameters of the microwave irradiation technique. The staining patterns are improved when compared with those obtained by conventional staining of plastic sections. The colors are more brilliant and greater contrasts are observed. Basophilia, polychromasia, and orthochromasia accompanying red cell maturation are more pronounced. For white cell maturation the initial appearance of specific granules (neutrophil, basophil, and eosinophil) is more evident. Thus, cell classification is easily accomplished using the described technique. It is suggested that microwave-stimulated staining be considered for routine use.  相似文献   

4.
Standardized specimens with reproducible staining properties were fabricated from extracts of biological objects (bovine liver, nucleoprotamine and defatted muscle). The standard specimens were stained with two formulations of the Romanowsky-Giemsa stain (RG), using the same azure B and eosin Y. One formulation used methanol and Sorensen's buffer and the other DMSO and Hepes buffer as solvents. The standard specimens were stained either in the composite stain or in the individual dyes dissolved in the same solvents and at the same concentration as the composite stain. Solution spectroscopy demonstrated different spectra for the two formulations with some wavelength regions varying by more than an order of magnitude. The RG spectra were also very different from those of the individual dyes dissolved at the RG concentration in the respective solvents. The stained standard specimens were analyzed by microspectrophotometry and were found to have spectra similar to those of cell smears. Furthermore, the standard specimens were shown to be a repeatable substrate for stain uptake. The transmitted light intensity from random fields of the same standardized specimen varied +/- 5%. When specimens were stained at the same time, the specimen-to-specimen variation depended on preparation conditions and the measurement wavelength, but was as good as +/- 5% for some conditions. The quantitative stain performance of both formulations was studied and compared. The standardized specimens provide a tool for the quantitative study of staining processes and specimen preparation procedures and for stain calibration.  相似文献   

5.
6.
This paper describes a new series of staining methods which can discrimina-tively demonstrate every structure of the nervous system, including axons and capillaries, in animal and human materials. Methods described in this paper consist of one primary stain, luxol fast blue-periodic acid Schiff-hematoxylin (LPH) and six different subsidiary staining methods. The LPH triple stain can precisely differentiate the following structures: neurons (Nissl bodies, cytoplasm, nuclear membrane and nucleolus), various kinds of nuclei (glia, ependyma, endothelium, leucocyte, connective tissue, etc.), myelin sheaths, neuronal processes (axons and dendrites), reacted glial cell bodies (protoplasmic astrocytes, foamy cells, etc), blood vessels (arteries, veins and capillaries), meninges, intervening connective tissue, erythrocytes, lipofuscin granules, amyloid bodies, and others. Subsidiary staining methods are also described briefly. Applications are discussed in the context of staining technology and neuromorphological research.  相似文献   

7.
In 1980, eosin Y was the certified dye with which technologists encountered most problems. The specific problem most frequently brought to the attention of the Biological Stain Commission was that solutions of eosin Y formed a precipitate and failed to stain cytoplasm red when used as a counterstain to hematoxylin.  相似文献   

8.
9.
10.
11.
This trichrome staining procedure differentially stains elastic fibers, collagen fibers and mucin. Gomori's aldehyde-fuchsin is used for elastic fibers; fast yellow TN is the component used for collagen and cytoplasm; pontacyl blue black SX is the nuclear stain. Procedure: Paraffin sections to water; aldehyde-fuchsin, 30 min; 70% ethanol; distilled water; 0.75% pontacyl blue black SX in 1.5% K.2Cr2O7, 15 min; tap water; 70% ethanol to wash off all free dye; 2% fast yellow TN in 95% ethanol, 5 min; dehydrate, clear and cover.  相似文献   

12.
This sequence for staining cutaneous nerves and nerve endings uses 1% formic acid as a fixative for 1 hr, followed by two treatments of 5 min each in 6% H2SO4. The tissue is then submerged in fresh 5% phenylhydrazine hydrochloride for 30 min, washed in running tap water for 10 min, and given a 5 min soak in distilled water. The specimen is placed in Lillie's “cold Schiff” reagent for 4 hr; transferred to 6% H2SO4, 4 changes of 5 min each; washed in distilled water, 3 changes of 5 min each; dehydrated in acetone, 4 changes of 10 min each; and cleared in 2 changes of methyl benzoate, the 1st for 1 hr and the 2nd until the tissue clears. Nerve fibers stain pinkish-purple; muscles also take up the stain, yet the nerves are discernible from the muscles. All other tissue remain unstained.  相似文献   

13.
Assessment of chemicals for their potential to cause developmental toxicity must include evaluation of the development of the fetal skeleton. The method described here is an improved and fully automated double staining method using alizarin red S to stain bone and alcian blue to stain cartilage. The method was developed on the enclosed Shandon PathcentreTM, and the quality of specimens reported here will be reproduced only if carried out on a similar processor under the same environmental conditions. The staining, maceration and clearing process takes approximately 6 days. The personnel time, however, is minimal since solutions are changed automatically and the fetuses are not examined or removed from the processor until the procedure is completed. Upon completion of processing, the bone and cartilage assessment of the specimens can be carried out immediately if required. Full evaluation of skeletal development in both the rat and the rabbit is necessary to meet the requirements of safety assessment studies. This method allows this to be accomplished on a large scale with consistently clear specimens and in a realistic time.  相似文献   

14.
A selective stain useful for the study of connective tissues is described. The stain demonstrates elastic and oxytalan fibers as well as fibrils in mucous connective tissues previously undescribed. Reticular fibers are not stained. The stain may be used on sections that have been fresh frozen or fixed in formalin or ethanol. Sections are deparaffinized, washed in absolute ethanol, oxidized in peracetic acid 30 min, washed in running water, stained in Taenzer-Unna orcein 15 min, 37°C, differentiated in 70% ethanol, washed in running water, stained in Lillie-Mayer alum hematoxylin 4 min, blued in running water, and counterstained 20 sec in a modified Halmi mixture of 100 ml distilled water, 0.2 gm light green SF, 1.0 gm orange G, 0.5 gm phosphotungstic acid and 1.0 ml glacial acetic acid. Sections are rinsed briefly in 0.2% acetic acid in 95% ethanol, dehydrated and mounted.  相似文献   

15.
Routine paraffin sections from tissues fixed either in aqueous formalin, 80% alcohol (with or without 1% trichloracetic acid added), Carnoy's alcohol-chloroform-acetic (6:3:1) and Bouin's fixative were stained as follows: Harris' hematoxylin, 6 min; running water, 2-3 min; ascending grades of alcohol to 95%; orange G, 0.5% and phosphotungstic acid, 0.015% in 95% alcohol, 5 min; 95% alcohol, 2 changes; Papanicolaou's EA36, 2.5 min; dehydration, clearing, and covering in Permount. The results show morphology better than hematoxylin and eosin and the technic is recommended particularly for keratin, which always stains bright orange.  相似文献   

16.
We describe a method in which microwave irradiation is used to reduce substantially the incubation time for immunoperoxidase staining of antigens in cryostat sections of pso-riatic skin. An incubation time of 5-9 min irradiation at 80 W generated similar or better staining intensity for all antibodies used compared to the standard methods using 30-60 min incubation at room temperature. Although we found that microwave irradiation could be used with all antibodies tested, independent of whether they recognized extracellular, membrane or cytoplasmic antigens in skin, the conditions needed to be optimized for each antibody.  相似文献   

17.
There appeared recently in the University of Oklahoma Bulletin an article by Jos. M. Thuringer1 describing a new differential staining method for connective tissue. Dr. W. J. Baumgartner suggested to the writer that she undertake to stain a series of sections using the method described by Mr. Thuringer. We wished especially to test this method in order to determine if it could be introduced into the course in technic as one of the routine stains for connective tissue.  相似文献   

18.
Acid fuchsin and phloxine B are commonly used to stain plant-parasitic nematodes in roots and egg masses on root surfaces, respectively. Both stains can be harmful to both the user and the environment and require costly waste disposal procedures. We developed safer methods to replace both stains using McCormick Schilling red food color. Eggs, juveniles, and adults of Meloidogyne incognita stained in roots with red food color were equally as visible as those stained with acid fuchsin. Egg masses stained with red food color appeared as bright-red spheres on the root surfaces and were highly visible even without magnification. Replacement of acid fuchsin and phloxine B with red food color for staining nematodes is safer for the user and the environment, and eliminates costly waste disposal of used stain solutions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号