首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Assembly properties of the human immunodeficiency virus type 1 CA protein   总被引:3,自引:0,他引:3  
During retroviral maturation, the CA protein oligomerizes to form a closed capsid that surrounds the viral genome. We have previously identified a series of deleterious surface mutations within human immunodeficiency virus type 1 (HIV-1) CA that alter infectivity, replication, and assembly in vivo. For this study, 27 recombinant CA proteins harboring 34 different mutations were tested for the ability to assemble into helical cylinders in vitro. These cylinders are composed of CA hexamers and are structural models for the mature viral capsid. Mutations that diminished CA assembly clustered within helices 1 and 2 in the N-terminal domain of CA and within the crystallographically defined dimer interface in the CA C-terminal domain. These mutations demonstrate the importance of these regions for CA cylinder production and, by analogy, mature capsid assembly. One CA mutant (R18A) assembled into cylinders, cones, and spheres. We suggest that these capsid shapes occur because the R18A mutation alters the frequency at which pentamers are incorporated into the hexagonal lattice. The fact that a single CA protein can simultaneously form all three known retroviral capsid morphologies supports the idea that these structures are organized on similar lattices and differ only in the distribution of 12 pentamers that allow them to close. In further support of this model, we demonstrate that the considerable morphological variation seen for conical HIV-1 capsids can be recapitulated in idealized capsid models by altering the distribution of pentamers.  相似文献   

2.
Mason-Pfizer monkey virus (M-PMV) belongs to the family of betaretroviruses characterized by the assembly of immature particles within cytoplasm of infected cells in contrast to other retroviruses (e.g. HIV, RSV) that assemble their immature particles at a plasma membrane. Simultaneously with or shortly after budding a virus-encoded protease is activated and the Gag polyprotein is cleaved into three major structural proteins: matrix (MA), capsid (CA), and nucleocapsid (NC) protein. Mature retroviral CA proteins consist of two independently folded structural domains: N-terminal domain (NTD) and C-terminal dimerization domain (CTD), separated by a flexible linker. As a first step toward the solution structure elucidation, we present nearly complete backbone and side-chain 1H, 15N and 13C resonance assignment of the M-PMV NTD CA.  相似文献   

3.
In maturing retroviral virions, CA protein assembles to form a capsid shell that is essential for infectivity. The structure of the two folded domains [N-terminal domain (NTD) and C-terminal domain (CTD)] of CA is highly conserved among various retroviruses, and the capsid assembly pathway, although poorly understood, is thought to be conserved as well. In vitro assembly reactions with purified CA proteins of the Rous sarcoma virus (RSV) were used to define factors that influence the kinetics of capsid assembly and provide insights into underlying mechanisms. CA multimerization was triggered by multivalent anions providing evidence that in vitro assembly is an electrostatically controlled process. In the case of RSV, in vitro assembly was a well-behaved nucleation-driven process that led to the formation of structures with morphologies similar to those found in virions. Isolated RSV dimers, when mixed with monomeric protein, acted as efficient seeds for assembly, eliminating the lag phase characteristic of a monomer-only reaction. This demonstrates for the first time the purification of an intermediate on the assembly pathway. Differences in the intrinsic tryptophan fluorescence of monomeric protein and the assembly-competent dimer fraction suggest the involvement of the NTD in the formation of the functional dimer. Furthermore, in vitro analysis of well-characterized CTD mutants provides evidence for assembly dependence on the second domain and suggests that the establishment of an NTD-CTD interface is a critical step in capsid assembly initiation. Overall, the data provide clear support for a model whereby capsid assembly within the maturing virion is dependent on the formation of a specific nucleating complex that involves a CA dimer and is directed by additional virion constituents.  相似文献   

4.
Although retroviruses from different genera form morphologically distinct capsids, we have proposed that all of these structures are composed of similar hexameric arrays of capsid (CA) protein subunits and that their distinct morphologies reflect different distributions of pentameric declinations that allow the structures to close. Consistent with this model, CA proteins from both HIV-1 and Rous sarcoma virus (RSV) form similar hexagonal lattices. However, recent structural studies have suggested that the Moloney murine leukemia virus (M-MuLV) CA protein may assemble differently. We now report an independent three-dimensional reconstruction of two-dimensional crystals of M-MuLV CA. This new reconstruction reveals a hexameric lattice that is similar to those formed by HIV-1 and RSV CA, supporting a generalized model for retroviral capsid assembly.  相似文献   

5.
The N-terminal domain of the retroviral capsid (CA) protein is one of the least conserved regions encoded in the genome. Surprisingly, the three-dimensional structures of the CA from different genera exhibit alpha-helical structural features that are highly conserved. The N-terminal residues of the human immunodeficiency virus type 1 (HIV-1) and Rous sarcoma virus (RSV) capsid proteins form a beta-hairpin. To determine if this feature is conserved in the retroviral family, we cloned, expressed, purified, and solved the structure of a N-terminal 134 amino acid fragment (CA(134)) from the human T-cell leukemia virus type 1 (HTLV-I) using high resolution nuclear magnetic resonance (NMR) spectroscopy. The CA(134) fragment contains an N-terminal beta-hairpin and a central coiled-coil-like structure composed of six alpha-helices. The N-terminal Pro1 residue contacts Asp54 in the helical cluster through a salt bridge. Thus, the beta-hairpin is conserved and the helical cluster is structurally similar to other retroviral CA domains. However, although the same Asp residue defines the orientation of the hairpin in both the HTLV-1 and HIV-1 CA proteins, the HTLV-I hairpin is oriented away, rather than towards, the helical core. Significant differences were also detected in the spatial orientation and helical content of the long centrally located loop connecting the helices in the core. It has been proposed that the salt bridge allows the formation of a CA-CA interface that is important for the assembly of the conical cores that are characteristic of HIV-1. As HTLV-I forms spherical cores, the salt-bridge feature is apparently not conserved for this function although its role in determining the orientation of the beta-hairpin may be critical, along with the central loop. Comparison of three-dimensional structures is expected to elucidate the relationships between the retroviral capsid protein structure and its function.  相似文献   

6.
X Li  B Yuan    S P Goff 《Journal of virology》1997,71(7):5624-5630
The yeast two-hybrid system was used to characterize homomeric interactions between the Gag proteins of Rous sarcoma virus (RSV). The RSV Gag precursor was found to interact strongly with itself and not with various control proteins. The RSV Gag did not interact significantly with Gag proteins of a variety of other retroviruses, including murine leukemia viruses and primate lentiviruses. Deletion analysis suggested that two nonoverlapping regions are independently sufficient to mediate RSV Gag-Gag dimerization. One such region lies near the N terminus and contains p2, p10, and a large N-terminal part of the capsid (CA) domain; the other is localized in the C terminus and includes a small C-terminal portion of CA and the nucleocapsid protein. These interaction domains may play roles in viral assembly.  相似文献   

7.
Immature retroviral particles are assembled by self-association of the structural polyprotein precursor Gag. During maturation the Gag polyprotein is proteolytically cleaved, yielding mature structural proteins, matrix (MA), capsid (CA), and nucleocapsid (NC), that reassemble into a mature viral particle. Proteolytic cleavage causes the N terminus of CA to fold back to form a β-hairpin, anchored by an internal salt bridge between the N-terminal proline and the inner aspartate. Using an in vitro assembly system of capsid-nucleocapsid protein (CANC), we studied the formation of virus-like particles (VLP) of a gammaretrovirus, the xenotropic murine leukemia virus (MLV)-related virus (XMRV). We show here that, unlike other retroviruses, XMRV CA and CANC do not assemble tubular particles characteristic of mature assembly. The prevention of β-hairpin formation by the deletion of either the N-terminal proline or 10 initial amino acids enabled the assembly of ΔProCANC or Δ10CANC into immature-like spherical particles. Detailed three-dimensional (3D) structural analysis of these particles revealed that below a disordered N-terminal CA layer, the C terminus of CA assembles a typical immature lattice, which is linked by rod-like densities with the RNP.  相似文献   

8.
The human immunodeficiency virus type 1 initially assembles and buds as an immature particle that is organized by the viral Gag polyprotein. Gag is then proteolyzed to produce the smaller capsid protein CA, which forms the central conical capsid that surrounds the RNA genome in the mature, infectious virus. To define CA surfaces that function at different stages of the viral life cycle, a total of 48 different alanine-scanning surface mutations in CA were tested for their effects on Gag protein expression, processing, particle production and morphology, capsid assembly, and infectivity. The 27 detrimental mutations fall into three classes: 13 mutations significantly diminished or altered particle production, 9 mutations failed to assemble normal capsids, and 5 mutations supported normal viral assembly but were nevertheless reduced more than 20-fold in infectivity. The locations of the assembly-defective mutations implicate three different CA surfaces in immature particle assembly: one surface encompasses helices 4 to 6 in the CA N-terminal domain (NTD), a second surrounds the crystallographically defined CA dimer interface in the C-terminal domain (CTD), and a third surrounds the loop preceding helix 8 at the base of the CTD. Mature capsid formation required a distinct surface encompassing helices 1 to 3 in the NTD, in good agreement with a recent structural model for the viral capsid. Finally, the identification of replication-defective mutants with normal viral assembly phenotypes indicates that CA also performs important nonstructural functions at early stages of the viral life cycle.  相似文献   

9.
During retroviral maturation, the CA protein undergoes dramatic structural changes and establishes unique intermolecular interfaces in the mature capsid shell that are different from those that existed in the immature precursor. The most conserved region of CA, the major homology region (MHR), has been implicated in both immature and mature assembly, although the precise contribution of the MHR residues to each event has been largely undefined. To test the roles of specific MHR residues in mature capsid assembly, an in vitro system was developed that allowed for the first-time formation of Rous sarcoma virus CA into structures resembling authentic capsids. The ability of CA to assemble organized structures was destroyed by substitutions of two conserved hydrophobic MHR residues and restored by second-site suppressors, demonstrating that these MHR residues are required for the proper assembly of mature capsids in addition to any role that these amino acids may play in immature particle assembly. The defect caused by the MHR mutations was identified as an early step in the capsid assembly process. The results provide strong evidence for a model in which the hydrophobic residues of the MHR control a conformational reorganization of CA that is needed to initiate capsid assembly and suggest that the formation of an interdomain interaction occurs early during maturation.  相似文献   

10.
The genome of a retrovirus is surrounded by a convex protein shell, or capsid, that helps facilitate infection. The major part of the capsid surface is formed by interlocking capsid protein (CA) hexamers. We report electron and X-ray crystallographic analysis of a variety of specimens assembled in vitro from Rous sarcoma virus (RSV) CA. These specimens all contain CA hexamers arranged in planar layers, modeling the authentic capsid surface. The specimens differ only in the number of layers incorporated and in the disposition of each layer with respect to its neighbor. The body of each hexamer, formed by the N-terminal domain of CA, is connected to neighboring hexamers through C-terminal domain dimerization. The resulting layer structure is very malleable due to inter-domain flexibility. A helix-capping hydrogen bond between the two domains of RSV CA creates a pivot point, which is central to controlling their relative movement. A similar mechanism for the governance of inter-domain motion was recently described for the human immunodeficiency virus type 1 (HIV-1) capsid, although there is negligible sequence identity between RSV and HIV-1 CA in the region of contact, and the amino acids involved in creating the pivot are not conserved. Our observations allow development of a physically realistic model for the way neighboring hexamers can tilt out of plane, deforming the hexamer layer and generating the continuously curved surfaces that are a feature of all retroviral capsids.  相似文献   

11.
Assembly of the mature human immunodeficiency virus type 1 (HIV-1) capsid involves the oligomerization of the capsid protein, CA. During retroviral maturation, the CA protein undergoes structural changes and forms exclusive intermolecular interfaces in the mature capsid shell, different from those in the immature precursor. The most conserved region of CA, the major homology region (MHR), is located in the C-terminal domain of CA (CTD). The MHR is involved in both immature and mature virus assembly; however, its exact function during both assembly stages is unknown. To test its conformational preferences and to provide clues on its role during CA assembly, we have used a minimalist approach by designing a peptide comprising the whole MHR (MHRpep, residues Asp152 to Ala174). Isolated MHRpep is mainly unfolded in aqueous solution, with residual structure at its C terminus. MHRpep binds to monomeric CTD with an affinity of ~30μM (as shown by fluorescence and ITC); the CTD binding region comprises residues belonging to α-helices 10 and 11. In the immature virus capsid, the MHR and α-helix 11 regions of two CTD dimers also interact [Briggs JAG, Riches JD, Glass B, Baratonova V, Zanetti G and Kr?usslich H-G (2009) Proc. Natl. Acad. Sci. USA 106, 11090-11095]. These results can be considered a proof-of-concept that the conformational preferences and binding features of isolated peptides derived from virus proteins could be used to mimic early stages of virus assembly.  相似文献   

12.
The structure of the N-terminal domain (NTD) of Rous sarcoma virus (RSV) capsid protein (CA), with an upstream 25 amino acid residue extension corresponding to the C-terminal portion of the Gag p10 protein, has been determined by X-ray crystallography. Purified Gag proteins of retroviruses can assemble in vitro into virus-like particles closely resembling in vivo-assembled immature virus particles, but without a membrane. When the 25 amino acid residues upstream of CA are deleted, Gag assembles into tubular particles. The same phenotype is observed in vivo. Thus, these residues act as a “shape determinant” promoting spherical assembly, when they are present, or tubular assembly, when they are absent. We show that, unlike the NTD on its own, the extended NTD protein has no β-hairpin loop at the N terminus of CA and that the molecule forms a dimer in which the amino-terminal extension forms the interface between monomers. Since dimerization of Gag has been inferred to be a critical step in assembly of spherical, immature Gag particles, the dimer interface may represent a structural feature that is essential in retrovirus assembly.  相似文献   

13.
The Gag proteins of retroviruses play an essential role in virus particle assembly by forming a protein shell or capsid and thus generating the virion compartment. A variety of human proteins have now been identified with structural similarity to one or more of the major Gag domains. These human proteins are thought to have been evolved or “domesticated” from ancient integrations due to retroviral infections or retrotransposons. Here, we report that X-ray crystal structures of stably folded domains of MOAP1 (modulator of apoptosis 1) and PEG10 (paternally expressed gene 10) are highly similar to the C-terminal capsid (CA) domains of cognate Gag proteins. The structures confirm classification of MOAP1 and PEG10 as domesticated Gags, and suggest that these proteins may have preserved some of the key interactions that facilitated assembly of their ancestral Gags into capsids.  相似文献   

14.
The high-resolution structure of the N-terminal domain (NTD) of the retroviral capsid protein (CA) of Mason-Pfizer monkey virus (M-PMV), a member of the betaretrovirus family, has been determined by NMR. The M-PMV NTD CA structure is similar to the other retroviral capsid structures and is characterized by a six α-helix bundle and an N-terminal β-hairpin, stabilized by an interaction of highly conserved residues, Pro1 and Asp57. Since the role of the β-hairpin has been shown to be critical for formation of infectious viral core, we also investigated the functional role of M-PMV β-hairpin in two mutants (i.e., ΔP1NTDCA and D57ANTDCA) where the salt bridge stabilizing the wild-type structure was disrupted. NMR data obtained for these mutants were compared with those obtained for the wild type. The main structural changes were observed within the β-hairpin structure; within helices 2, 3, and 5; and in the loop connecting helices 2 and 3. This observation is supported by biochemical data showing different cleavage patterns of the wild-type and the mutated capsid-nucleocapsid fusion protein (CANC) by M-PMV protease. Despite these structural changes, the mutants with disrupted salt bridge are still able to assemble into immature, spherical particles. This confirms that the mutual interaction and topology within the β-hairpin and helix 3 might correlate with the changes in interaction between immature and mature lattices.  相似文献   

15.
Structure of full-length HIV-1 CA: a model for the mature capsid lattice   总被引:3,自引:0,他引:3  
The capsids of mature retroviruses perform the essential function of organizing the viral genome for efficient replication. These capsids are modeled as fullerene structures composed of closed hexameric arrays of the viral CA protein, but a high-resolution structure of the lattice has remained elusive. A three-dimensional map of two-dimensional crystals of the R18L mutant of HIV-1 CA was derived by electron cryocrystallography. The docking of high-resolution domain structures into the map yielded the first unambiguous model for full-length HIV-1 CA. Three important protein-protein assembly interfaces are required for capsid formation. Each CA hexamer is composed of an inner ring of six N-terminal domains and an outer ring of C-terminal domains that form dimeric linkers connecting neighboring hexamers. Interactions between the two domains of CA further stabilize the hexamer and provide a structural explanation for the mechanism of action of known HIV-1 assembly inhibitors.  相似文献   

16.
The protein CA forms the mature capsid of human immunodeficiency virus. Hexamerization of the N-terminal domain and dimerization of the C-terminal domain, CAC, occur during capsid assembly, and both domains constitute potential targets for anti-HIV inhibitors. CAC homodimerization occurs mainly through its second helix, and is abolished when its sole tryptophan is mutated to alanine. Previous thermodynamic data obtained with the dimeric and monomeric forms of CAC indicate that the structure of the mutant resembles that of a monomeric intermediate found in the folding and association reactions of CAC. We have solved the three-dimensional structure in aqueous solution of the monomeric mutant. The structure is similar to that of the subunits in the dimeric, nonmutated CAC, except the segment corresponding to the second helix, which is highly dynamic. At the end of this region, the polypeptide chain is bent to bury several hydrophobic residues and, as a consequence, the last two helices are rotated 90 degrees when compared to their position in dimeric CAC. The previously obtained thermodynamic data are consistent with the determined structure of the monomeric mutant. This extraordinary ability of CAC to change its structure may contribute to the different modes of association of CA during HIV assembly, and should be taken into account in the design of new drugs against this virus.  相似文献   

17.
Expression of retroviral Gag polyproteins is sufficient for morphogenesis of virus-like particles with a spherical immature protein shell. Proteolytic cleavage of Gag into the matrix (MA), capsid (CA), nucleocapsid (NC), and p6 domains (in the case of human immunodeficiency virus [HIV]) leads to condensation to the mature cone-shaped core. We have analyzed the formation of spherical or cylindrical particles on in vitro assembly of purified HIV proteins or inside Escherichia coli cells. CA protein alone yielded cylindrical particles, while all N-terminal extensions of CA abolished cylinder formation. Spherical particles with heterogeneous diameters or amorphous protein aggregates were observed instead. Extending CA by 5 amino acids was sufficient to convert the assembly phenotype to spherical particles. Sequences C-terminal of CA were not required for sphere formation. Proteolytic cleavage of N-terminally extended CA proteins prior to in vitro assembly led to the formation of cylindrical particles, while proteolysis of in vitro assembly products caused disruption of spheres but not formation of cylinders. In vitro assembly of CA and extended CA proteins in the presence of cyclophilin A (CypA) at a CA-to-CypA molar ratio of 10:1 yielded significantly longer cylinders and heterogeneous spheres, while higher concentrations of CypA completely disrupted particle formation. We conclude that the spherical shape of immature HIV particles is determined by the presence of an N-terminal extension on the CA domain and that core condensation during virion maturation requires the liberation of the N terminus of CA.  相似文献   

18.
The mature fullerene cone-shaped capsid of the human immunodeficiency virus 1 is composed of about 1,500 copies of the capsid protein (CA). The CA is 231 residues long, and consists of two distinct structural domains, the N-terminal domain and the C-terminal domain (CTD), joined by a flexible linker. The wild type CA exhibits monomer-dimer equilibrium in solution through the CTD-CTD dimerization. This CTD-CTD interaction, together with other intermolecular interdomain interactions, plays significant roles during the assembly of the mature capsid. In addition, CA-CA interactions also play a role in the assembly of the immature virion. The CA also interacts with some host cell proteins within the viral replication cycle. Thus, the capsid protein has been of significant interest as a target for designing inhibitors of assembly of immature virions and mature capsids and inhibitors of its interactions with host cell proteins. However, the equilibrium exhibited by the wild-type CA protein between the monomeric and dimeric states, along with the inherent flexibility from the interdomain linker, have hindered attempts at structural determination by solution NMR and X-ray crystallography methods. In this study, we have utilized a CA protein with W184A and M185A mutations that abolish the dimerization of CA protein as well as its infectivity, but preserve most of the remaining properties of the wild type CA. We have determined the detailed solution structure of the monomeric W184A/M185A-CA protein using 3D-NMR spectroscopy. Here, we present the detailed sequence-specific NMR assignments for this protein.  相似文献   

19.
The solution structure of the capsid protein (CA) from the human T-cell leukemia virus type one (HTLV-I), a retrovirus that causes T-cell leukemia and HTLV-I-associated myelopathy in humans, has been determined by NMR methods. The protein consists of independent N and C-terminal domains connected by a flexible linker. The domains are structurally similar to the N-terminal "core" and C-terminal "dimerization" domains, respectively, of the human immunodeficiency virus type one (HIV-1) and equine infectious anemia virus (EIAV) capsid proteins, although several important differences exist. In particular, hydrophobic residues near the major homology region are partially buried in HTLV-I CA, which is monomeric in solution, whereas analogous residues in HIV-1 and EIAV CA project from the C-terminal domain and promote dimerization. These differences in the structure and oligomerization state of the proteins appear to be related to, and possibly controlled by, the oxidation state of conserved cysteine residues, which are reduced in HTLV-I CA but form a disulfide bond in the HIV-1 and EIAV CA crystal structures. The results are consistent with an oxidative capsid assembly mechanism, in which CA oligomerization or maturation is triggered by disulfide bo nd formation as the budding virus enters the oxidizing environment of the bloodstream.  相似文献   

20.
During assembly and morphogenesis of Rous sarcoma virus (RSV), proteolytic processing of the structural precursor (Pr76Gag) protein generates three capsid (CA) protein variants, CA476, CA479, and CA488. The proteins share identical N-terminal domains (NTDs), but are truncated at residues corresponding to gag codons 476, 479, and 488 in their CA C-terminal domains (CTDs). To characterize oligomeric forms of the RSV CA variants, we examined 2D crystals of the capsid proteins, assembled on lipid monolayers. Using electron microscopy and image analysis approaches, the CA proteins were observed to organize in hexagonal (p6) arrangements, where rings of membrane-proximal NTD hexamers were spaced at 95 A intervals. Differences between the oligomeric structures of the CA variants were most evident in membrane-distal regions, where apparent CTDs interconnect hexamer rings. In this region, CA488 connections were observed readily, while CA476 and CA479 contacts were resolved poorly, suggesting that in vivo processing of CA488 to the shorter forms may permit virions to adopt a dissembly-competent conformation. In addition to crystalline arrays, the CA479 and CA488 proteins formed small spherical particles with diameters of 165-175 A. The spheres appear to be arranged from hexamer or hexamer plus pentamer ring subunits that are related to the 2D crystal forms. Our results implicate RSV CA hexamer rings as basic elements in the assembly of RSV virus cores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号