首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amyloid deposits of human islet amyloid polypeptide (hIAPP) are found in type 2 diabetes patients. hIAPP monomer is intrinsically disordered in solution, whereas it can form amyloid fibrils both in vivo and in vitro. Extensive evidence suggests that hIAPP causes the disruption of cellular membrane, and further induces cytotoxicity and the death of islet β-cells in pancreas. The presence of membrane also accelerates the hIAPP fibril formation. hIAPP oligomers and protofibrils in the early stage of aggregation were reported to be the most cytotoxic, disrupting the membrane integrity and giving rise to the pathological process. The detailed molecular mechanisms of hIAPP-membrane interactions and membrane disruption are complex and remain mostly unknown. Here in this review, we focus on recent computational studies that investigated the interactions of full length and fragmentary hIAPP monomers, oligomers and protofibrils with anionic, zwitterionic and mixed anionic-zwitterionic lipid bilayers. We mainly discuss the binding orientation of monomers at membrane surface, the conformational ensemble and the oligomerization of hIAPP inside membranes, the effect of lipid composition on hIAPP oligomers/protofibrils-membrane interactions, and the hIAPP-induced membrane perturbation. This review provides mechanistic insights into the interactions between hIAPP and lipid bilayers with different lipid composition at an atomistic level, which is helpful to understand the hIAPP cytotoxicity mediated by membrane. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.  相似文献   

2.
Most of the disease causing proteins such as beta amyloid, amylin, and huntingtin protein, which are natively disordered, readily form fibrils consisting of beta-sheet polymers. Though all amyloid fibrils are made up of beta-sheet polymers, not all peptides with predominant beta-sheet content in the native state develop into amyloid fibrils. We hypothesize that stable amyloid like fibril formation may require mixture of different conformational states in the peptide. We have tested this hypothesis on amyloid forming peptide namely HCl(Ile)(5)NH(CH(2)CH(2)O)(3)CH(3) (I). We show peptide I, has propensity to form self-assembled structures of beta-sheets in aqueous solutions. When incubated over a period of time in aqueous buffer, I self assembled into beta sheet like structures with diameters ranging from 30 to 60 A that bind with amyloidophilic dyes like Congo red and Thioflavin T. Interestingly peptide I developed into unstable fibrils after prolonged aging at higher concentration in contrast with the general mature fibril-forming propensity of various amyloid petides known to date.  相似文献   

3.
Islet amyloid polypeptide (IAPP or amylin) is a 37-residue peptide secreted with insulin by beta-cells in the islets of Langerhans. The aggregation of the peptide into either amyloid fibers or small soluble oligomers has been implicated in the death of beta-cells during type 2 diabetes through disruption of the cellular membrane. The actual form of the peptide responsible for beta-cell death has been a subject of controversy. Previous research has indicated that the N-terminal region of the peptide (residues 1-19) is primarily responsible for the membrane-disrupting effect of the hIAPP peptide and induces membrane disruption to a similar extent as the full-length peptide without forming amyloid fibers when bound to the membrane. The rat version of the peptide, which is both noncytotoxic and nonamyloidogenic, differs from the human peptide by only one amino acid residue: Arg18 in the rat version while His18 in the human version. To elucidate the effect of this difference, we have measured in this study the effects of the rat and human versions of IAPP(1-19) on islet cells and model membranes. Fluorescence microscopy shows a rapid increase in intracellular calcium levels of islet cells after the addition of hIAPP(1-19), indicating disruption of the cellular membrane, while the rat version of the IAPP(1-19) peptide is significantly less effective. Circular dichroism experiments and dye leakage assays on model liposomes show that rIAPP(1-19) is deficient in binding to and disrupting lipid membranes at low but not at high peptide to lipid ratios, indicating that the ability of rIAPP(1-19) to form small aggregates necessary for membrane binding and disruption is significantly less than hIAPP(1-19). At pH 6.0, where H18 is likely to be protonated, hIAPP(1-19) resembles rIAPP(1-19) in its ability to cause membrane disruption. Differential scanning calorimetry suggests a different mode of binding to the membrane for rIAPP(1-19) compared to hIAPP(1-19). Human IAPP(1-19) has a minimal effect on the phase transition of lipid vesicles, suggesting a membrane orientation of the peptide in which the mobility of the acyl chains of the membrane is relatively unaffected. Rat IAPP(1-19), however, has a strong effect on the phase transition of lipid vesicles at low concentrations, suggesting that the peptide does not easily insert into the membrane after binding to the surface. Our results indicate that the modulation of the peptide orientation in the membrane by His18 plays a key role in the toxicity of nonamyloidogenic forms of hIAPP.  相似文献   

4.
The highly amyloidogenic peptide sequence of amylin(20-29) was transformed into its corresponding peptoid and retropeptoid sequences to design a novel class of beta-sheet breaker peptides as amyloid inhibitors. This report describes the synthesis of the chiral peptoid building block of L-isoleucine, the solid phase synthesis of the peptoid and retropeptoid sequences of amylin(20-29), and the structural analysis of these amylin derivatives in solution by infrared spectroscopy, circular dichroism, and transmission electron microscopy. It was found that the peptoid sequence did not form amyloid fibrils or any other secondary structures and was able to inhibit amyloid formation of native amylin(20-29). Although the retropeptoid did not form amyloid fibrils it had only modest amyloid inhibitor properties since supramolecular tapes were formed.  相似文献   

5.
Amyloid fibril formation has been implicated in a wide range of human diseases and the interactions of amyloidogenic proteins with cell membranes are considered to be important in the aetiology of these pathologies. In type 2 diabetes mellitus (T2DM), the human islet amyloid polypeptide (hIAPP) forms amyloid fibrils which impair the functionality and viability of pancreatic β cells. The mechanisms of hIAPP cytotoxicity are linked to the ability of the peptide to self-aggregate and to interact with membranes. Previous studies have shown that the N-terminal part of hIAPP from residues 1 to 19 is the membrane binding domain. The non-amyloidogenic and nontoxic mouse IAPP differs from hIAPP by six residues out of 37, among which a single one, residue 18, lies in the membrane binding region. To gain more insight into hIAPP-membrane interactions we herein performed comprehensive biophysical studies on four analogues (H18R-IAPP, H18K-IAPP, H18E-IAPP and H18A-IAPP). Our data reveal that all peptides are able to insert efficiently in the membrane, indicating that residue 18 is not essential for hIAPP membrane binding and insertion. However, only wild-type hIAPP and H18K-IAPP are able to form fibrils at the membrane. Importantly, all peptides induce membrane damage; wild-type hIAPP and H18K-IAPP presumably cause membrane disruption mainly by fibril growth at the membrane, while for H18R-IAPP, H18E-IAPP and H18A-IAPP, membrane leakage is most likely due to high molecular weight oligomeric species. These results highlight the importance of the residue at position 18 in IAPP for modulating fibril formation at the membrane and the mechanisms of membrane leakage.  相似文献   

6.
This report reviews our approach to the design, synthesis and structural/morphological analysis of backbone-modified amylin(20-29) derivatives. Depending on the position in the peptide backbone and the type of amide bond isostere/modification, the amylin(20-29) peptides behave either as inhibitors of amyloid fibril formation, which are able to retard amyloid formation of native amylin(20-29), or as templates for the formation of self-assembled supramolecular structures. Molecular fine-tuning of the hydrogen-bond accepting/donating properties allows the control over the morphology of the supramolecular aggregation motifs such as helical ribbons and tapes, ribbons progressing to closed peptide nanotubes, (twisted) lamellar sheets or amyloid fibrils.  相似文献   

7.
Hairpin peptides bearing cross-strand Trp-Trp and Tyr-Tyr pairs at non-H-bonded strand sites modulate the aggregation of two unrelated amyloidogenic systems, human pancreatic amylin (hAM) and α-synuclein (α-syn), associated with type II diabetes and Parkinson's disease, respectively. In the case of hAM, we have previously reported that inhibition of amyloidogenesis is observed as an increase in the lag time to amyloid formation and a diminished thioflavin (ThT) fluorescence response. In this study, a reduced level of hAM fibril formation is confirmed by transmission electron microscopy imaging. Several of the hairpins tested were significantly more effective inhibitors than rat amylin. Moreover, a marked inhibitory effect on hAM-associated cytotoxicity by the more potent hairpin peptide is demonstrated. In the case of α-syn, the dominant effect of active hairpins was, besides a weakened ThT fluorescence response, the earlier appearance of insoluble aggregates that do not display amyloid characteristics with the few fibrils observed having abnormal morphology. We attribute the alteration of the α-synuclein aggregation pathway observed to the capture of a preamyloid state and diversion to nonamyloidogenic aggregates. These β-hairpins represent a new class of amyloid inhibitors that bear no sequence similarity to the amyloid-producing polypeptides that are inhibited. A mechanistic rationale for these effects is proposed.  相似文献   

8.
Pancreatic amyloid is found in more than 95 % of type II diabetes patients. Pancreatic amyloid is formed by the aggregation of islet amyloid polypeptide (hIAPP or amylin), which is a 37-residue peptide. Because pancreatic amyloid is cytotoxic, it is believed that its formation is directly associated with the development of the disease. We recently showed that hIAPP amyloid formation follows the nucleation-dependent polymerization mechanism and proceeds via a conformational transition of soluble hIAPP into aggregated beta-sheets. Here, we report that the penta- and hexapeptide sequences, hIAPP(23-27) (FGAIL) and hIAPP(22-27) (NFGAIL) of hIAPP are sufficient for the formation of beta-sheet-containing amyloid fibrils. Although these two peptides differ by only one amino acid residue, they aggregate into completely different fibrillar assemblies. hIAPP(23-27) (FGAIL) fibrils self-assemble laterally into unusually broad ribbons, whereas hIAPP(22-27) (NFGAIL) fibrils coil around each other in a typical amyloid fibril morphology. hIAPP(20-27) (SNNFGAIL) also aggregates into beta-sheet-containing fibrils, whereas no amyloidogenicity is found for hIAPP(24-27) (GAIL), indicating that hIAPP(23-27) (FGAIL) is the shortest fibrillogenic sequence of hIAPP. Insoluble amyloid formation by the partial hIAPP sequences followed kinetics that were consistent with a nucleation-dependent polymerization mechanism. hIAPP(22-27) (NFGAIL), hIAPP(20-27) (SNNFGAIL), and also the known fibrillogenic sequence, hIAPP(20-29) (SNNFGAILSS) exhibited significantly lower kinetic and thermodynamic solubilities than the pentapeptide hIAPP(23-27) (FGAIL). Fibrils formed by all short peptide sequences and also by hIAPP(20-29) were cytotoxic towards the pancreatic cell line RIN5fm, whereas no cytotoxicity was observed for the soluble form of the peptides, a notion that is consistent with hIAPP cytotoxicity. Our results suggest that a penta- and hexapeptide sequence of an appropriate amino acid composition can be sufficient for beta-sheet and amyloid fibril formation and cytotoxicity and may assist in the rational design of inhibitors of pancreatic amyloid formation or other amyloidosis-related diseases.  相似文献   

9.
The formation of amyloid fibrils is considered to be an important step in the aetiology of Alzheimer's disease and other amyloidoses. Fibril formation in vitro has been shown to depend on many different factors including modifications to the amino acid profile of fibrillogenic peptides and interactions with both large and small molecules of physiological significance. How these factors might contribute to amyloid fibril formation in vivo is not clear as very little is known about the promotion of fibril formation in undersaturated solutions of amyloidogenic peptides. We have used thioflavin T fluorescence and reverse phase high performance liquid chromatography to show that ATP, and in particular AlATP, promoted the formation of thioflavin T-reactive fibrils of beta amyloid and, an unrelated amyloidogenic peptide, amylin. Evidence is presented that induction of fibril formation followed the complexation of AIATP by one or more monomers of the respective peptide. However, the complex formed could not be identified directly and it is suggested that AlATP might be acting as a chaperone in the assembly of amyloid fibrils. The effect of AlATP was not mimicked by either AlADP or AlAMP. However, it was blocked by suramin, a P2 ATP receptor antagonist, and this has prompted us to speculate that the precursor proteins to beta amyloid and amylin may be substrates or receptors for ATP in vivo.  相似文献   

10.
Knight JD  Hebda JA  Miranker AD 《Biochemistry》2006,45(31):9496-9508
The conversion of soluble protein into beta-sheet-rich amyloid fibers is the hallmark of a number of serious diseases. Precursors for many of these systems (e.g., Abeta from Alzheimer's disease) reside in close association with a biological membrane. Membrane bilayers are reported to accelerate the rate of amyloid assembly. Furthermore, membrane permeabilization by amyloidogenic peptides can lead to toxicity. Given the beta-sheet-rich nature of mature amyloid, it is seemingly paradoxical that many precursors are either intrinsically alpha-helical or transiently adopt an alpha-helical state upon association with membrane. In this work, we investigate these phenomena in islet amyloid polypeptide (IAPP). IAPP is a 37-residue peptide hormone which forms amyloid fibers in individuals with type II diabetes. Fiber formation by human IAPP (hIAPP) is markedly accelerated by lipid bilayers despite adopting an alpha-helical state on the membrane. We further show that IAPP partitions into monomeric and oligomeric helical assemblies. Importantly, it is this latter state which most strongly correlates to both membrane leakage and accelerated fiber formation. A sequence variant of IAPP from rodents (rIAPP) does not form fibers and is reputed not to permeabilize membranes. Here, we report that rIAPP is capable of permeabilizing membranes under conditions that permit rIAPP membrane binding. Sequence and spectroscopic comparisons of rIAPP and hIAPP enable us to propose a general mechanism for the helical acceleration of amyloid formation in vitro. As rIAPP cannot form amyloid fibers, our results show that fiber formation need not be directly coupled to toxicity.  相似文献   

11.
Lee CC  Sun Y  Huang HW 《Biophysical journal》2012,102(5):1059-1068
A leading hypothesis for the decimation of insulin-producing β-cells in type 2 diabetes attributes the cause to islet amyloid polypeptide (IAPP) for its deleterious effects on the cell membranes. This idea has produced extensive investigations on human IAPP (hIAPP) and its interactions with lipid bilayers. However, it is still difficult to correlate the peptide-lipid interactions with its effects on islet cells in culture. The hIAPP fibrils have been shown to interact with lipids and damage lipid bilayers, but appear to have no effect on islet cells in culture. Thus, a modified amyloid hypothesis assumes that the toxicity is caused by hIAPP oligomers, which are not preamyloid fibrils or protofibrils. However, so far such oligomers have not been isolated or identified. The hIAPP monomers also bind to lipid bilayers, but the mode of interaction is not clear. Here, we performed two types of experiments that, to our knowledge, have not been done before. We used x-ray diffraction, in conjunction with circular dichroism measurement, to reveal the location of the peptide bound to a lipid bilayer. We also investigated the effects of hIAPP on giant unilamellar vesicles at various peptide concentrations. We obtained the following qualitative results. Monomeric hIAPP binds within the headgroup region and expands the membrane area of a lipid bilayer. At low concentrations, such binding causes no leakage or damage to the lipid bilayer. At high concentrations, the bound peptides transform to β-aggregates. The aggregates exit the headgroup region and bind to the surface of lipid bilayers. The damage by the surface bound β-aggregates depends on the aggregation size. The initial aggregation extracts lipid molecules, which probably causes ion permeation, but no molecular leakage. However, the initial β-aggregates serve as the seed for larger fibrils, in the manner of the Jarrett-Lansbury seeded-polymerization model, that eventually disintegrate lipid bilayers by electrostatic and hydrophobic interactions.  相似文献   

12.
Phenol-soluble modulin α3 (PSMα3) is a functional amyloid secreted by the pathogenic bacterium Staphylococcus aureus. This 22-residue peptide serves as a key virulence determinant, toxic to human cells via the formation of unique cross-α amyloid-like fibrils. We demonstrate that bilayer vesicles accelerated PSMα3 fibril formation, and the fibrils, in turn, inserted deeply into bilayers mimicking mammalian cell membranes, accounting for PSMα3 cellular toxicity. Importantly, a mere amphipathic helical conformation was not a sufficient determinant for membrane-activity of PSMα3, pointing to the functional role of cross-α fibrils. In contrast to deep insertion of PSMα3 into mammalian membrane bilayers, the peptide only interacted with the surface of bilayers mimicking bacterial membranes, which might be related to its lack of antibacterial activity. Together, our data provide mechanistic insight into species-specific toxicity of a key bacterial amyloid virulence factor via reciprocal interactions with membranes, and open new perspectives into amyloid-related cytotoxicity mediated by helical fibril structures.  相似文献   

13.
Meng F  Abedini A  Song B  Raleigh DP 《Biochemistry》2007,46(43):12091-12099
Amyloid formation has been implicated in a wide range of human diseases including Alzheimer's disease, Parkinson's disease, and type 2 diabetes. In type 2 diabetes, islet amyloid polypeptide (IAPP, also known as amylin) forms cytotoxic amyloid deposits in the pancreas, and these are believed to contribute to the pathology of the disease. The mechanism of islet amyloid formation is not understood; however, recent proposals have invoked a role for incompletely processed proIAPP. In this model, incompletely processed proIAPP containing the N-terminal pro region is excreted and binds to heparan sulfate proteoglycans (HSPGs) of the basement membrane thereby establishing a high local concentration which can act as a seed for amyloid formation. Here we report biophysical proof-of-principle experiments designed to test the viability of this model. The model predicts that interactions with HSPGs should accelerate amyloid formation by the proIAPP processing intermediate, and this is indeed what is observed. Interaction with heparan sulfate leads to the rapid formation of an intermediate state with partial helical content which then converts, on a slower time scale, to amyloid fibrils. TEM shows that fibrils formed by the proIAPP processing intermediate in the presence and in the absence of heparan sulfate have the classic features of amyloid. Fibrils formed by the proIAPP processing intermediate are competent to seed amyloid formation by mature IAPP. The seeding experiments support a second major premise of the model, namely, that fibrils formed by the processing intermediate are capable of seeding amyloid formation by the mature peptide.  相似文献   

14.
Aβ (amyloid-β peptide) assembles to form amyloid fibres that accumulate in senile plaques associated with AD (Alzheimer's disease). The major constituent, a 42-residue Aβ, has the propensity to assemble and form soluble and potentially cytotoxic oligomers, as well as ordered stable amyloid fibres. It is widely believed that the cytotoxicity is a result of the formation of transient soluble oligomers. This observed toxicity may be associated with the ability of oligomers to associate with and cause permeation of lipid membranes. In the present study, we have investigated the ability of oligomeric and fibrillar Aβ42 to simultaneously associate with and affect the integrity of biomimetic membranes in vitro. Surface plasmon field-enhanced fluorescence spectroscopy reveals that the binding of the freshly dissolved oligomeric 42-residue peptide binds with a two-step association with the lipid bilayer, and causes disruption of the membrane resulting in leakage from vesicles. In contrast, fibrils bind with a 2-fold reduced avidity, and their addition results in approximately 2-fold less fluorophore leakage compared with oligomeric Aβ. Binding of the oligomers may be, in part, mediated by the GM1 ganglioside receptors as there is a 1.8-fold increase in oligomeric Aβ binding and a 2-fold increase in permeation compared with when GM1 is not present. Atomic force microscopy reveals the formation of defects and holes in response to oligomeric Aβ, but not preformed fibrillar Aβ. The results of the present study indicate that significant membrane disruption arises from association of low-molecular-mass Aβ and this may be mediated by mechanical damage to the membranes by Aβ aggregation. This membrane disruption may play a key role in the mechanism of Aβ-related cell toxicity in AD.  相似文献   

15.
《朊病毒》2013,7(4):339-345
Fibrillar aggregates of misfolded amyloid proteins are involved in a variety of diseases such as Alzheimer disease (AD), type 2 diabetes, Parkinson, Huntington and prion-related diseases. In the case of AD amyloid β (Aβ) peptides, the toxicity of amyloid oligomers and larger fibrillar aggregates is related to perturbing the biological function of the adjacent cellular membrane. We used atomistic molecular dynamics (MD) simulations of Aβ9–40 fibrillar oligomers modeled as protofilament segments, including lipid bilayers and explicit water molecules, to probe the first steps in the mechanism of Aβ-membrane interactions. Our study identified the electrostatic interaction between charged peptide residues and the lipid headgroups as the principal driving force that can modulate the further penetration of the C-termini of amyloid fibrils or fibrillar oligomers into the hydrophobic region of lipid membranes. These findings advance our understanding of the detailed molecular mechanisms and the effects related to Aβ-membrane interactions, and suggest a polymorphic structural character of amyloid ion channels embedded in lipid bilayers. While inter-peptide hydrogen bonds leading to the formation of β-strands may still play a stabilizing role in amyloid channel structures, these may also present a significant helical content in peptide regions (e.g., termini) that are subject to direct interactions with lipids rather than with neighboring Aβ peptides.  相似文献   

16.
Phospholipid catalysis of diabetic amyloid assembly   总被引:6,自引:0,他引:6  
Islet amyloid polypeptide (IAPP) is a 37-residue hormone that forms cytotoxic amyloid fibers in the endocrine pancreas of patients with type II diabetes (NIDDM). A potential origin for cytotoxicity is disruption of lipid membranes by IAPP as has been observed in vitro. The cause of amyloid formation during NIDDM is not known, nor is the mechanism by which membrane disruption occurs in vitro. Here, we use kinetic studies in conjunction with assessments of lipid binding and electron microscopy to investigate the interactions of IAPP with phospholipid bilayers and the morphological effects of membranes on IAPP fibers. Fibrillogenesis of IAPP is catalyzed by synthetic and human tissue-derived phospholipids, leading to >tenfold increases in the rate of fibrillogenesis. The molecular basis of this phenomenon includes a strong dependence on the concentration and charge density of the membrane. IAPP binds to lipid membranes of mixed anionic (DOPG) and zwitterionic (DOPC) content. The transition for binding occurs over a physiologically relevant range of anionic content. Membrane binding by IAPP occurs on timescales that are short compared to fibrillogenesis and results in assembly into preamyloid states via ordered interactions at the N but not C terminus of the protein. These assemblies lead both to gross morphological changes in liposomes and to alterations in the appearance of early fibers when compared to liposome-free fibril formation. Intact bilayer surfaces are regenerated upon dissociation of fibers from the membrane surface. These findings offer a structural mechanism of membrane destabilization and suggest that changes in lipid metabolism could induce IAPP fiber formation in NIDDM.  相似文献   

17.
Beta(2)-Microglobulin (beta(2)m) is one of over 20 proteins known to be involved in human amyloid disease. Peptides equivalent to each of the seven beta-strands of the native protein, together with an eighth peptide (corresponding to the most stable region in the amyloid precursor conformation formed at pH 3.6, that includes residues in the native strand E plus the eight succeeding residues (named peptide E')), were synthesised and their ability to form fibrils investigated. Surprisingly, only two sequences, both of which encompass the region that forms strand E in native beta(2)m, are capable of forming amyloid-like fibrils in vitro. These peptides correspond to residues 59-71 (peptide E) and 59-79 (peptide E') of intact beta(2)m. The peptides form fibrils under the acidic conditions shown previously to promote amyloid formation from the intact protein (pH <5 at low and high ionic strength), and also associate to form fibrils at neutral pH. Fibrils formed from these two peptides enhance fibrillogenesis of the intact protein. No correlation was found between secondary structure propensity, peptide length, pI or hydrophobicity and the ability of the peptides to associate into amyloid-like fibrils. However, the presence of a relatively high content of aromatic side-chains correlates with the ability of the peptides to form amyloid fibrils. On the basis of these results we propose that residues 59-71 may be important in the self-association of partially folded beta(2)m into amyloid fibrils and discuss the relevance of these results for the assembly mechanism of the intact protein in vitro.  相似文献   

18.
Activated microglia surrounding amyloid beta-containing senile plaques synthesize interleukin-1, an inflammatory cytokine that has been postulated to contribute to Alzheimer's disease pathology. Studies have demonstrated that amyloid beta treatment causes increased cytokine release in microglia and related cell cultures. The present work evaluates the specificity of this cellular response by comparing the effects of amyloid beta to that of amylin, another amyloidotic peptide. Both lipopolysaccharide-treated THP-1 monocytes and mouse microglia showed significant increases in mature interleukin-1beta release 48 h following amyloid beta or human amylin treatment, whereas nonfibrillar rat amylin had no effect on interleukin-1beta production by THP-1 cells. Lipopolysaccharide-stimulated THP-1 cells treated with amyloid beta or amylin also showed increased release of the proinflammatory cytokines tumor necrosis factor-alpha and interleukin-6, as well as the chemokines interleukin-8 and macrophage inflammatory protein-1alpha and -1beta. THP-1 cells incubated with fibrillar amyloid beta or amylin in the absence of lipopolysaccharide also showed significant increases of both interleukin-1beta and tumor necrosis factor-alpha mRNA. Furthermore, treatment of THP-1 cells with amyloid fibrils resulted in an elevated expression of the immediate-early genes c-fos and junB. These studies provide further evidence that fibrillar amyloid peptides can induce signal transduction pathways that initiate an inflammatory response that is likely to contribute to Alzheimer's disease pathology.  相似文献   

19.
Protein aggregation and amyloid formation are associated with both pathological conditions in humans such as Alzheimer's disease and native functions such as peptide hormone storage in the pituitary secretory granules in mammals. Here, we studied amyloid fibrils formation by three neuropeptides namely physalaemin, kassinin and substance P of tachykinin family using biophysical techniques including circular dichroism, thioflavin T, congo red binding and microscopy. All these neuropeptides under study have significant sequence similarity with Aβ(25-35) that is known to form neurotoxic amyloids. We found that all these peptides formed amyloid-like fibrils in vitro in the presence of heparin, and these amyloids were found to be nontoxic in neuronal cells. However, the extent of amyloid formation, structural transition, and morphology were different depending on the primary sequences of peptide. When Aβ(25-35) and Aβ40 were incubated with each of these neuropeptides in 1:1 ratio, a drastic increase in amyloid growths were observed compared to that of individual peptides suggesting that co-aggregation of Aβ and these neuropeptides. The electron micrographs of these co-aggregates were dissimilar when compared with individual peptide fibrils further supporting the possible incorporation of these neuropeptides in Aβ amyloid fibrils. Further, the fibrils of these neuropeptides can seed the fibrils formation of Aβ40 and reduced the toxicity of preformed Aβ fibrils. The present study of amyloid formation by tachykinin neuropeptides is not only providing an understanding of the mechanism of amyloid fibril formation in general, but also offering plausible explanation that why these neuropeptide might reduce the cytotoxicity associated with Alzheimer's disease related amyloids.  相似文献   

20.
Fibril formation of islet amyloid polypeptide (IAPP) is associated with cell death of the insulin-producing pancreatic beta-cells in patients with Type 2 Diabetes Mellitus. A likely cause for the cytotoxicity of human IAPP is that it destroys the barrier properties of the cell membrane. Here, we show by fluorescence confocal microscopy on lipid vesicles that the process of hIAPP amyloid formation is accompanied by a loss of barrier function, whereby lipids are extracted from the membrane and taken up in the forming amyloid deposits. No membrane interaction was observed when preformed fibrils were used. It is proposed that lipid uptake from the cell membrane is responsible for amyloid-induced membrane damage and that this represents a general mechanism underlying the cytotoxicity of amyloid forming proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号