首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1994,125(5):1047-1056
Yolk platelets constitute an embryonic endocytic compartment that stores maternally synthesized nutrients. The pH of Xenopus yolk platelets, measured by photometry on whole oocytes which had endocytosed FITC-vitellogenin, was found to be acidic (around pH 5.6). Experiments on digitonin-permeabilized oocytes showed that acidification was due to the activity of an NEM- and bafilomycin A1- sensitive vacuolar proton-ATPase. Proton pumping required chloride, but was not influenced by potassium or sodium. Passive proton leakage was slow, probably due to the buffer capacity of the yolk, and was dependent on the presence of cytoplasmic monovalent cations. In particular, sodium could drive proton efflux through an amiloride- sensitive Na+/H+ exchanger. 8-Bromo-cyclic-AMP was found to increase acidification, suggesting that pH can be regulated by intracellular second messengers. The moderately acidic pH does not promote degradation of the yolk platelets, which in oocytes are stable for weeks, but it is likely to be required to maintain the integrity of these organelles. Furthermore, the pH gradient created by the proton pump, when coupled with the Na+/H+ exchanger, is probably responsible for the accumulation and storage of sodium into the yolk platelets during oogenesis.  相似文献   

2.
The intracellular pH distribution in protoplasts of Penicillium cyclopium has been studied using the recently developed fluorescent probe microscopic technique. The technique gives detailed pH maps of the interior of the protoplasts with the exception of vacuoles (no fluorescence signal from vacuoles was observed). In the cytoplasm two separate layers were distinguished: a thinner outer layer with acidic pH (around 5) and the larger core region with near neutral pH. The pH of the core region is decreased by the addition of uncouplers, inhibitors of respiration and during the uptake of L-phenylalanine. These compounds do not change the pH of the surface layer, which is, however, acidified by addition of vanadate, an inhibitor of the proton pump of the plasmalemma. We suggest that the pH of the surface layer is maintained by the combined effects of a Donnan distribution of protons (bound to postulated anion binding proteins) and the proton extrusion via the plasmalemma proton pump. This mechanism explains the protection of the cytoplasmic core of acidophilic eukaryotes from the influence of the usually acidic environment.  相似文献   

3.
The hamster sperm acrosome exhibits a transmembrane proton concentration gradient (inside acidic). The gradient was dissipated by valinomycin and the proton ionophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) together, but not by either alone. Several anion transport inhibitors, when utilized in the presence of FCCP, also eliminated the proton gradient. These experiments demonstrate that a modified Donan-type equilibrium dependent upon selective permeability of membranes to protons has no role in maintenance of the acidic pH of the acrosome. N,N'-Dicyclohexylcarbodiimide and 4-chloro-7-nitrobenzofuran, inhibitors of the mitochondrial proton-translocating ATPase, dissipated the proton concentration gradient when FCCP was present. Oligomycin and ouabain had no effect, either in the presence or absence of FCCP. Our experimental evidence suggests that an ATP-dependent proton pump is functioning in the maintenance of the acidic pH of the hamster sperm acrosome.  相似文献   

4.
W Laubinger  P Dimroth 《Biochemistry》1989,28(18):7194-7198
The purified ATPase (F1F0) of Propionigenium modestum has its pH optimum at pH 7.0 or at pH 6.0 in the presence or absence of 5 mM NaCl, respectively. The activation by 5 mM NaCl was 12-fold at pH 7.0, 3.5-fold at pH 6.0, and 1.5-fold at pH 5.0. In addition to its function as a primary Na+ pump, the ATPase was capable of pumping protons. This activity was demonstrated with reconstituted proteoliposomes by the ATP-dependent quenching of the fluorescence of 9-amino-6-chloro-2-methoxyacridine. No delta pH was formed in the presence of the uncoupler carbonyl cyanide m-chlorophenylhydrazone or by blocking the ATPase with dicyclohexylcarbodiimide. In the presence of valinomycin and K+, the delta pH increased, in accord with the operation of an electrogenic proton pump. The proton pump was only operative at low Na+ concentrations (less than 1 mM), and its activity increased as the Na+ concentration decreased. Parallel to the decrease of H+ pumping, the velocity of the Na+ transport increased about 6-fold from 0.1 to 4 mM NaCl, indicating a switch from H+ to Na+ pumping, as the Na+ concentration increases. Due to proton leaks in the proteoliposomal membranes, fluorescence quenching was released after blocking the ATPase with dicyclohexylcarbodiimide, by trapping residual ATP with glucose and hexokinase, or by the Na+-induced conversion of the proton pump onto a Na+ pump. Amiloride, an inhibitor of various Na+-coupled transport systems, was without effect on the kinetics of Na+ transport by the P. modestum ATPase.  相似文献   

5.
Linolenic acid (C18:3) is the main endogenous unsaturated fatty acid of thylakoid membrane lipids, and seems in its free form to exert significant effects on the structure and function of photosynthetic membranes. In this investigation the effect of linolenic acid was studied at various pH values on the electron flow rate in isolated spinach chloroplasts and related to deltapH, the proton pump and the pH of the inner thylakoid space (pHi). The deltapH and pHi were estimated from the extent of the fluorescence quenching of 9-aminoacridine. Linolenic acid caused a shift (approximately one unit) of the pH optimum for electron flow toward acidity in the following systems: (a) photosystems II + I (from H2O to NADP+ or to 2,6-dichlorophenolindophenol) coupled or non-coupled; (b) photosystem II (from H2O to 2,6-dichlorophenolindophenol in the presence of dibromothymoquinone). In photosystem I conditions (phenazine methosulphate), the deltapH of the control increased as a function of external pHo with a maximum around pH 8.8. When linolenic acid was added, the deltapH dropped, but its optimum was shifted toward more acidic pHo. The same phenomena were also observed in photosytems II + I (from H2O to ferricyanide) and in photosystem II conditions (from H2O to ferricyanide in the presence of dibromothymoquinone). However, the deltapH was smaller and the sensitivity of the proton gradient toward linolenic acid was eventually higher than for photosystem I electron flow activity. The proton pump which might be considered as a measure of the internal buffering capacity of thylakoids was optimum at pHo, 6.7 in the controls. An addition of linolenic acid diminished the proton pump and shifted its optimum toward higher pHo. As a consequence, pHi increased when pHo was raised. At the optimal pHo 8.6 to 9, pHi were 5 to 5.5. Additions of increasing concentrations of linolenic acid displaced the curves toward higher pHi. A decrease of pHo was therefore required to maintain the pHi in the range of 5-5.5 for maximum electron flow. In conclusion, the electron flow activity seems to be delicately controlled by the proton pump (buffer capacity), deltapH, pHi and pHo. Fatty acids damage the membrane integrity in such a way that the subtile equilibrium between the factors is disturbed.  相似文献   

6.
The intracellular pH distribution in protoplasts of Penicillium cyclopium has been studied using the recently developed fluorescent probe microscopic technique. The technique gives detailed pH maps of the interior of the protoplasts with the exception of vacuoles (no fluorescence signal from vacuoles was observed). In the cytoplasm two separate layers were distinguished: a thinner outer layer with acidic pH (around 5) and the larger core region with near neutral pH. The pH of the core region is decreased by the addition of uncouplers, inhibitors of respiration and during the uptake of l-phenylalanine. These compounds do not change the pH of the surface layer, which is, however, acidified by addition of vanadate, an inhibitor of the proton pump of the plasmalemma. We suggest that the pH of the surface layer is maintained by the combined effects of a Donnan distribution of protons (bound to postulated anion binding proteins) and the proton extrusion via the plasmalemma proton pump. This mechanism explains the protection of the cytoplasmic core of acidophilic eukaryotes from the influence of the usually acidic environment.  相似文献   

7.
Malignant tumors show intense glycolysis and, as a consequence, high lactate production and proton efflux activity. We investigated proton dynamics in osteosarcoma, rhabdomyosarcoma, and chondrosarcoma, and evaluated the effects of esomeprazole as a therapeutic agent interfering with tumor acidic microenvironment. All sarcomas were able to survive in an acidic microenvironment (up to 5.9–6.0 pH) and abundant acidic lysosomes were found in all sarcoma subtypes. V-ATPase, a proton pump that acidifies intracellular compartments and transports protons across the plasma membrane, was detected in all cell types with a histotype-specific expression pattern.  相似文献   

8.
According to the acid growth theory of auxin action, it has been proposed that auxin decreases root growth by inhibiting the proton pump, thus causing an alkalinization of the apoplast. This paper critically tests this hypothesis with corn (Zea mays L.) roots. It was found that: i) the pH-growth curve for roots exhibits a broad optimum ranging from pH 4.5 to 9. ii) Any acid-induced growth is of very short duration, iii) The low sensitivity of root growth to external pH is independent of both the pump activity and the buffer capacity of the bathing solution, iv) Neither incubation in acidic buffer nor stimulation of the proton pump reverts the auxin-induced root growth inhibition. It is concluded that the auxin-induced root growth inhibition is not mediated by cell wall alkalinization.  相似文献   

9.
Trans membrane potential or ionic current changes may play a role in signal transduction and differentiation in the cellular slime mold dictyostelium discoideum. Therefore, the contribution of electrogenic ion pumps to the membrane potential of D. discoideum cells was investigated. the (negative) peak-value of the rapid potential transient, seen upon microelectrode impalement, was used to detect membrane potential changes upon changes in the external pH in the range of 5.5 to 8.0. The membrane potential was close to the Nernstian potential for protons over the pH range 5.5 to 7.5. The acid-induced changes in membrane potential were consistent with outward-proton pumping. The maximal membrane potential was at pH 7.5. Furthermore, the proton pump inhibitors diethylstilbestrol, miconazole and zearalenone directly depolarize the membrane. Cyanide and temperature decrease cause membrane depolarization as well. During recovery from cyanide poisoning a H+ efflux is present. From these measurements we conclude that the membrane potential of d. discoideum cells is mainly generated by an electrogenic proton pump. Measurements in cells with different extracellular potassium and H+ concentrations suggest a role for potassium in the function of the electrogenic proton pump. These results provide a framework for future research towards a possible role for the proton pump in signal transduction and differentiation.  相似文献   

10.
The endolymph in the endolymphatic sac (ES) is acidic (pH 6.6-7). Maintaining this acidic lumen is believed to be important for the normal function of the ES. The acid-base regulation mechanisms of the ES are unknown. Here we investigated the expression patterns of acid-base regulators, including vacuolar (v)H+-ATPase (proton pump), carbonic anhydrase (CA) II, and pendrin in the murine ES epithelium by immunohistochemistry (IHC) and compared their expression patterns by double immunostaining. We found that pendrin and vH+-ATPase were co-localized in the apical membrane of a specific type of ES epithelial cell. Pendrin- and vH+-ATPase-positive cells also expressed cytoplasmic CA II. Co-expression of pendrin, vH+-ATPase, and CA II in the same subgroup of ES cells suggests that this specific type of ES cell is responsible for the acid-base balance processes in the ES and pendrin, vH+-ATPase, and CA II are involved in these processes.  相似文献   

11.
Rat liver Golgi vesicles were isolated by differential and density gradient centrifugation. A fraction enriched in galactosyl transferase and depleted in plasma membrane, mitochondrial, endoplasmic reticulum, and lysosomal markers was found to contain an ATP-dependent H+ pump. This proton pump was not inhibited by oligomycin but was sensitive to N-ethyl maleimide, which distinguishes it from the F0-F1 ATPase of mitochondria. GTP did not induce transport, unlike the lysosomal H+ pump. The pump was not dependent on the presence of potassium nor was it inhibited by vanadate, two of the characteristics of the gastric H+ ATPase. Addition of ATP generated a membrane potential that drove chloride uptake into the vesicles, suggesting that Golgi membranes contain a chloride conductance in parallel to an electrogenic proton pump. These results demonstrate that Golgi vesicles can form a pH difference and a membrane potential through the action of an electrogenic proton translocating ATPase.  相似文献   

12.
Calcium uptake by microsomal membranes from the cellular slime mould Dictyostelium discoideum was measured using Calcium Green-2 as a fluorescent probe of external free Ca2+ concentration. High-affinity Ca2+ uptake was found to be completely inhibited by low concentrations of vanadate, but not by thapsigargin, suggesting that the activity is mediated by a Ca2+-ATPase distinct from sarco(endo)plasmic reticulum type of higher animal cells. On sucrose density gradients, Ca2+ uptake distributes with vacuolar proton pump activity and part of the observed Ca2+ uptake is dependent on the pH gradient generated by the vacuolar-type H+-ATPase, indicating that the Ca2+ pump is located on both acidic and non-acidic vesicles, possibly derived from the H+-ATPase-rich contractile vacuole complex.  相似文献   

13.
M Mueller  A Azzi 《Biochimie》1986,68(3):401-406
Cytochrome-c oxidase of bovine heart mitochondria was depleted of copper A by dialysis against 1 M KCN in the presence of dodecylmaltoside. There was no difference of the pH-dependence of the midpoint potential between the intact and the copper-depleted enzyme. Oxidation of reduced cytochrome a2+a3(3+).CN complex released about 1 proton/electron in the medium at pH 7.6. This release was inhibited by N,N'-dicyclohexylcarbodiimide. Again there was no difference between the intact and Cu-depleted enzyme. This limits the role of copper A in the mechanism of the proton pump. On the other hand, these experiments showed that cytochrome a could be a component of the proton pump.  相似文献   

14.
A monoclonal antibody (OSW2) was prepared by using human osteosarcoma cells. OSW2 was found to be directed toward the 116 (also called 100)- kD protein that uniquely associates to the vacuolar-type proton pump. The antibody specifically localized acidic membrane compartments that could be visualized with acridine orange in many types of human cells. It also reacted with the surface and was internalized along the endosomal pathway. Monitoring the endosome pH by using FITC-dextran and acridine orange suggested that the antibody interfered with low pH. Cell-free experiments indicated that the ATP-dependent acidification was inhibited in endosomes associated with OSW2. In contrast, the antibody gave little effect on the ATPase activity of the solubilized H+ pump. The internalization of OSW2 reduced infectivity of certain enveloped viruses (influenza, SFV, VSV) by 50 to 80%. Inhibition of viral fusion was directly demonstrated by monitoring the fate of octadecylrhodamine-labeled influenza virus fluorescence. These results indicate that the 116 (100)-kD protein is necessary for the control of pH. The antibody represents a novel probe for understanding the role of the endosomal compartments in cellular physiology.  相似文献   

15.
Proton circulation in Vibrio costicola.   总被引:3,自引:2,他引:1       下载免费PDF全文
The importance of proton movements was assessed in the moderate halophile Vibrio costicola. When anaerobic cells in acidic buffer (pH 6.5) were given an O2 pulse, protons were extruded regardless of the presence of Na+. At pH 8.5, however, V. costicola produced an acidic response to an O2 pulse in the absence of Na+ and an alkaline response when Na+ was present. An Na+/H+ antiport activity was confirmed at pH 8.5. All of these effects were prevented by protonophores or butanol treatment. Growth in complex medium at pH 8.5 was prevented by a high concentration (50 microM) of carbonyl cyanide m-chlorophenyl-hydrazone (CCCP) or a low concentration (5 microM) of another protonophore, 3,3',4',5-tetrachlorosalicylanilide (TCS). The relative ineffectiveness of the former protonophore was caused by the proteose peptone and tryptone ingredients of the complex medium, since 5 microM completely prevented growth in their absence. The results are explained by a primary respiratory-linked proton efflux coupled to a secondary Na+/H+ antiport operating at alkaline pH. Evidence was seen for a role of Na+ in stimulating proton influx at alkaline pH, presumably via the pH homeostasis mechanism.  相似文献   

16.
Na+ was found to be essential for the accumulation of sucrose by Vibrio alginolyticus. Sucrose uptake was completely inhibited by the addition of proton conductor at neutral pH, but not at alkaline pH, where the primary electrogenic Na+ pump generates the Na+ electrochemical gradient. We therefore conclude that sucrose transport is driven by the electrochemical potential of Na+ in this organism.  相似文献   

17.
Roles of the respiratory Na+ pump in bioenergetics of Vibrio alginolyticus   总被引:3,自引:0,他引:3  
Bioenergetic characteristics of Na+ pump-defective mutants of a marine bacterium Vibrio alginolyticus were compared with those of the wild type and revertant. Generation of membrane potential and motility at pH 8.5 in the mutants were completely inhibited by a proton conductor, carbonylcyanide m-chlorophenylhydrazone, whereas those in the wild type or revertant were resistant to the inhibitor. Motility and amino acid transport were driven by the electrochemical potential of Na+ not only in the wild type or revertant but also in the mutants. In the absence of the proton conductor, motility and amino acid transport of the mutants did not significantly differ from those of the wild type or revertant even at pH 8.5, where the Na+ pump has maximum activity. Therefore, the electrochemical potential of Na+ in the mutants seemed to be maintained at a normal level by a respiration-dependent H+ pump and Na+/H+ antiporter. On the other hand, growth of the mutants became defective as the medium pH increased, especially on minimal medium. These results indicate that the Na+ pump is an important energy-generating mechanism when nutrients are limited at alkaline pH.  相似文献   

18.
Toxic effects of acidic root medium and aluminium were evaluated in two forage cultivars of Lotus corniculatus differing in their tolerance to Al stress. The structural response of most of the root cells exposed to low pH without Al3+ differed markedly from that induced by the combined stress. Conspicuous alteration of the nucleus was present only at low pH 4.0 and disintegration of the cytoplasmic components was more drastic than in the roots exposed to acidic solution containing Al3+. Cells exposed to low pH without Al, did not produce wall thickenings. Severely damaged cytoplasm and localized death in some cortical cells or groups of cells contrasting with almost intact cells exposed to Al3+ stress were found. In this respect, a strong correlation between the occurrence of cell wall thickenings and a better preserved structure of the cytoplasm was observed. The frequency of cell damage in the more tolerant cultivar UFRGS was generally lower, significantly more cortical cells capable of maintaining their resting membrane potential were present than in the sensitive INIA Draco. The difference in their tolerance is related rather to the exudation of citrate and oxalate that was higher in UFRGS than to the accumulation of tannins, which increased after Al treatment in both cultivars.  相似文献   

19.
Recessed-tip microelectrodes were used to measure internal pH (pHi) in the fungus Neurospora, and to examine the response of pHi to several kinds of stress: changes of extracellular pH (pHo), inhibition of the principal proton pump in the plasma membrane, and inhibition of respiration. Under control conditions, at pHo = 5.8, pHi in Neurospora is 7.19 +/- 0.04. Changes of pHo between 3.9 and 9.3 affect pHi linearly but with a slope of only approximately 0.1 unit pHi per unit pHo, stable pHi being reached within 3 min of changed pHo. Despite a postulated high passive permeability of the Neurospora membrane to protons (Slayman, 1970), neither active nor passive H+ transport appears critical to pHi because (alpha) specific inhibition of the proton pump by orthovanadate has little effect on pHi, and (b) cytoplasmic acidification produced by respiratory blockade is unaffected by the size or direction of proton gradient. To convert measured changes in pHi into net proton fluxes, intracellular buffering capacity (beta i) was measured by the weak acid/weak base technique. At pHi = 7.2, beta i was (-) 35 mmol H+ (liter cell water)-1 (pH unit)-1, but beta i increased substantially in both the acid and alkaline directions, which suggests that amino acid side chains are the principal source of buffer.  相似文献   

20.
Acidification and ion permeabilities of highly purified rat liver endosomes   总被引:7,自引:0,他引:7  
While it is well established that acidic pH in endosomes plays a critical role in mediating the orderly traffic of receptors and ligands during endocytosis, little is known about the bioenergetics or regulation of endosome acidification. Using highly enriched fractions of rat liver endosomes prepared by free flow electrophoresis and sucrose density gradient centrifugation, we have analyzed the mechanism of ATP-dependent acidification and ion permeability properties of the endosomal membrane. This procedure permitted the isolation of endosome fractions which were up to 200-fold enriched as indicated by the increased specific activity of ATP-dependent proton transport. Acidification was monitored using hepatocyte and total liver endosomes selectively labeled with pH-sensitive markers of receptor-mediated endocytosis (fluorescein isothiocyanate asialoorosomucoid) or fluid-phase endocytosis (fluorescein isothiocyanate-dextran). In addition, changes in membrane potential accompanying ATP-dependent acidification were directly measured using the voltage-sensitive fluorescent dye Di-S-C3(5). Our results indicate that ATP-dependent acidification of liver endosomes is electrogenic, with proton transport being accompanied by the generation of an interior-positive membrane potential opposing further acidification. The membrane potential can be dissipated by the influx of permeant external anions or efflux of internal alkali cations. Replacement externally of permeable anions with less permeable anions (e.g. replacing Cl- with gluconate) diminished acidification, as did replacement internally of a more permeant cation K+ with less permeant species (such as Na+ or tetramethylammonium). ATP-dependent H+ transport was not coupled to any specific anion or cation, however. The endosomal membrane was found to be extremely permeable to protons, with protons able to leak out almost as fast as they are pumped in. Thus, the internal pH of endosomes is likely to reflect a dynamic equilibrium of protons regulated by the intrinsic ion permeabilities of the endosomal membrane, in addition to the activity of an ATP-driven proton pump.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号