首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Sialic acids participate in many important biological recognition events, yet eukaryotic sialic acid biosynthetic genes are not well characterized. In this study, we have identified a novel human gene based on homology to the Escherichia coli sialic acid synthase gene (neuB). The human gene is ubiquitously expressed and encodes a 40-kDa enzyme. The gene partially restores sialic acid synthase activity in a neuB-negative mutant of E. coli and results in N-acetylneuraminic acid (Neu5Ac) and 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (KDN) production in insect cells upon recombinant baculovirus infection. In vitro the human enzyme uses N-acetylmannosamine 6-phosphate and mannose 6-phosphate as substrates to generate phosphorylated forms of Neu5Ac and KDN, respectively, but exhibits much higher activity toward the Neu5Ac phosphate product.  相似文献   

2.
《MABS-AUSTIN》2013,5(8):1381-1390
ABSTRACT

Human IgG antibodies containing terminal alpha 2,6-linked sialic acid on their Fc N-glycans have been shown to reduce antibody-dependent cell-mediated cytotoxicity and possess anti-inflammatory properties. Although terminal sialylation on complex N-glycans can happen via either an alpha 2,3-linkage or an alpha 2,6-linkage, sialic acids on human serum IgG Fc are almost exclusively alpha 2,6-linked. Recombinant IgGs expressed in Chinese hamster ovary (CHO) cells, however, have sialic acids through alpha 2,3-linkages because of the lack of the alpha 2,6-sialyltransferase gene. The impact of different sialylation linkages to the structure of IgG has not been determined. In this work, we investigated the impact of different types of sialylation to the conformational stability of IgG through hydrogen/deuterium exchange (HDX) and limited proteolysis experiments. When human-derived and CHO-expressed IgG1 were analyzed by HDX, sialic acid-containing glycans were found to destabilize the CH2 domain in CHO-expressed IgG, but not human-derived IgG. When structural isomers of sialylated glycans were chromatographically resolved and identified in the limited proteolysis experiment, we found that only alpha 2,3-linked sialic acid on the 6-arm (the major sialylated glycans in CHO-expressed IgG1) destabilizes the CH2 domain, presumably because of the steric effect that decreases the glycan-CH2 domain interaction. The alpha 2,6-linked sialic acid on the 3-arm (the major sialylated glycan in human-derived IgG), and the alpha 2,3-linked sialic acid on the 3-arm, do not have this destabilizing effect.  相似文献   

3.
The baculovirus/insect cell system is widely used for recombinant protein production, but it is suboptimal for recombinant glycoprotein production because it does not provide sialylation, which is an essential feature of many glycoprotein biologics. This problem has been addressed by metabolic engineering, which has extended endogenous insect cell N-glycosylation pathways and enabled glycoprotein sialylation by baculovirus/insect cell systems. However, further improvement is needed because even the most extensively engineered baculovirus/insect cell systems require media supplementation with N-acetylmannosamine, an expensive sialic acid precursor, for efficient recombinant glycoprotein sialylation. Our solution to this problem focused on E. coli N-acetylglucosamine-6-phosphate 2′-epimerase (GNPE), which normally functions in bacterial sialic acid degradation. Considering that insect cells have the product, but not the substrate for this enzyme, we hypothesized that GNPE might drive the reverse reaction in these cells, thereby initiating sialic acid biosynthesis in the absence of media supplementation. We tested this hypothesis by isolating transgenic insect cells expressing E. coli GNPE together with a suite of mammalian genes needed for N-glycoprotein sialylation. Various assays showed that these cells efficiently produced sialic acid, CMP-sialic acid, and sialylated recombinant N-glycoproteins even in growth media without N-acetylmannosamine. Thus, this study demonstrated that a eukaryotic recombinant protein production platform can be glycoengineered with a bacterial gene, that a bacterial enzyme which normally functions in sialic acid degradation can be used to initiate sialic acid biosynthesis, and that insect cells expressing this enzyme can produce sialylated N-glycoproteins without N-acetylmannosamine supplementation, which will reduce production costs in glycoengineered baculovirus/insect cell systems.  相似文献   

4.
The sialic acids are a family of nine carbon alpha-keto acids that play a wide variety of biological roles in nature. In mammals, they are found at the distal ends of cell surface glycoconjugates, and thus are major determinants of cellular recognition and adhesion events. In certain strains of pathogenic bacteria, they are found in capsular polysaccharides that mask the organism from the immune system by mimicking the exterior of a mammalian cell. This review outlines recent developments in the understanding of the two main enzymes responsible for the biosynthesis of the sialic acid, N-acetylneuraminic acid. The first, a hydrolyzing UDP-N-acetylglucosamine 2-epimerase, generates N-acetylmannosamine and UDP from UDP-N-acetylglucosamine. The second, sialic acid synthase, generates either N-acetylneuraminic acid (bacteria) or N-acetylneuraminic acid 9-phosphate (mammals) in a condensation reaction with phosphoenolpyruvate. An emphasis is placed on an understanding of the mechanistic and structural features of these enzymes.  相似文献   

5.
We have previously engineered transgenic insect cell lines to express mammalian glycosyltransferases and showed that these cells can sialylate N-glycoproteins, despite the fact that they have little intracellular sialic acid and no detectable CMP-sialic acid. In the accompanying study, we presented evidence that these cell lines can salvage sialic acids for de novo glycoprotein sialylation from extracellular sialoglycoproteins, such as fetuin, found in fetal bovine serum. This finding led us to create a new transgenic insect cell line designed to synthesize its own sialic acid and CMP-sialic acid. SfSWT-1 cells, which encode five mammalian glycosyltransferases, were transformed with two additional mammalian genes that encode sialic acid synthase and CMP-sialic acid synthetase. The resulting cell line expressed all seven mammalian genes, produced CMP-sialic acid, and sialylated a recombinant glycoprotein when cultured in a serum-free growth medium supplemented with N-acetylmannosamine. Thus the addition of mammalian genes encoding two enzymes involved in CMP-sialic acid biosynthesis yielded a new transgenic insect cell line, SfSWT-3, that can sialylate recombinant glycoproteins in the absence of fetal bovine serum. This new cell line will be widely useful as an improved host for baculovirus-mediated recombinant glycoprotein production.  相似文献   

6.
Sialylation of glycans is ubiquitous in vertebrates, but was believed to be absent in plants, arthropods, and fungi. However, recently evidence has been provided for the presence of sialic acid in these evolutionary clades. In addition, homologs of mammalian genes involved in sialylation can be found in the genomes of these taxa and for some Drosophila enzymes, involvement in sialic acid metabolism has been documented. In plant genomes, homologs of sialyltransferase genes have been identified, but there activity could not be confirmed. Several mammalian cell lines exist with defects in the sialylation pathway. One of these is the Chinese hamster ovary cell line Lec2, deficient in CMP-sialic acid transport to the Golgi lumen. These mutants provide the possibility to clone genes by functional complementation. Using expression cloning, we have identified an Arabidopsis thaliana nucleotide sugar transporter that is able to complement the CMP-sialic acid transport deficiency of Lec2 cells. The isolated gene (At5g41760) is a member of the triose-phosphate/nucleotide sugar transporter gene family. Recombinant expression of the gene in yeast and testing in vitro confirmed its ability to transport CMP-sialic acid.  相似文献   

7.
8.
We previously described a transgenic insect cell line, Sfbeta4GalT/ST6, that expresses mammalian beta-1,4-galactosyltransferase and alpha2,6-sialyltransferase genes and produces glycoproteins with terminally sialylated N-glycans. The ability of these cells to produce sialylated N-glycans was surprising because insect cells contain only small amounts of sialic acid and no detectable CMP-sialic acid. Thus, it was of interest to investigate potential sources of sialic acids for sialoglycoprotein synthesis by these cells. We found that Sfbeta4GalT/ST6 cells can produce sialylated N-glycans when cultured in the presence but not in the absence of fetal bovine serum. The serum component(s) supporting N-glycan sialylation by Sfbeta4GalT/ST6 cells is relatively large-it was not removed by dialysis in a 50,000-molecular-weight cutoff membrane. Serum-free media supplemented with purified fetuin but not asialofetuin supported N-glycan sialylation by Sfbeta4GalT/ST6 cells. The terminally sialylated N-glycans isolated from fetuin also supported glycoprotein sialylation by Sfbeta4GalT/ST6 cells. Finally, serum-free medium supplemented with N-acetylneuraminic acid or N-acetylmannosamine supported glycoprotein sialylation by Sfbeta4GalT/ST6 cells but to a much lower degree than serum or fetuin. These results provide the first evidence of a sialic acid salvaging pathway in insect cells, which begins to explain how Sfbeta4GalT/ST6 and other transgenic insect cell lines can sialylate recombinant glycoproteins in the absence of a more obvious source of CMP-sialic acid.  相似文献   

9.
The Siglecs are a subfamily of I-type lectins (immunoglobulin superfamily proteins that bind sugars) that specifically recognize sialic acids. We report the cloning and characterization of human Siglec-9. The cDNA encodes a type 1 transmembrane protein with three extracellular immunoglobulin-like domains and a cytosolic tail containing two tyrosines, one within a typical immunoreceptor tyrosine-based inhibitory motif (ITIM). The N-terminal V-set Ig domain has most amino acid residues typical of Siglecs. Siglec-9 is expressed on granulocytes and monocytes. Expression of the full-length cDNA in COS cells induces sialic-acid dependent erythrocyte binding. A recombinant soluble form of the extracellular domain binds to alpha2-3 and alpha2-6-linked sialic acids. Typical of Siglecs, the carboxyl group and side chain of sialic acid are essential for recognition, and mutation of a critical arginine residue in domain 1 abrogates binding. The underlying glycan structure also affects binding, with Galbeta1-4Glc[NAc] being preferred. Siglec-9 shows closest homology to Siglec-7 and both belong to a Siglec-3/CD33-related subset of Siglecs (with Siglecs-5, -6, and -8). The Siglec-9 gene is on chromosome 19q13.3-13.4, in a cluster with all Siglec-3/CD33-related Siglec genes, suggesting their origin by gene duplications. A homology search of the Drosophila melanogaster and Caenorhabditis elegans genomes suggests that Siglec expression may be limited to animals of deuterostome lineage, coincident with the appearance of the genes of the sialic acid biosynthetic pathway.  相似文献   

10.
Sialylation is an important carbohydrate modification of glycoconjugates in the deuterostome lineage of animals. By contrast, the evidence for sialylation in protostomes has been scarce and somewhat controversial. In the present study, we characterize a Drosophila sialyltransferase gene, thus providing experimental evidence for the presence of sialylation in protostomes. This gene encodes a functional alpha2-6-sialyltransferase (SiaT) that is closely related to the vertebrate ST6Gal sialyltransferase family, indicating an ancient evolutionary origin for this family. Characterization of recombinant, purified Drosophila SiaT revealed a novel acceptor specificity as it exhibits highest activity toward GalNAcbeta1-4GlcNAc carbohydrate structures at the non-reducing termini of oligosaccharides and glycoprotein glycans. Oligosaccharides are preferred over glycoproteins as acceptors, and no activity toward glycolipid acceptors was detected. Recombinant Drosophila SiaT expressed in cultured insect cells possesses in vivo and in vitro autosialylation activity toward beta-linked GalNAc termini of its own N-linked glycans, thus representing the first example of a sialylated insect glycoconjugate. In situ hybridization revealed that Drosophila SiaT is expressed during embryonic development in a tissue- and stage-specific fashion, with elevated expression in a subset of cells within the central nervous system. The identification of a SiaT in Drosophila provides a new evolutionary perspective for considering the diverse functions of sialylation and, through the powerful genetic tools available in this system, a means of elucidating functions for sialylation in protostomes.  相似文献   

11.
Previous studies have indicated negligible levels of both sialylation and the precursor N-acetylneuraminic acid (Neu5Ac) in a number of insect cell lines grown in serum-free medium. The overexpression of the human sialic acid 9-phosphate synthase (SAS) in combination with N-acetylmannosamine (ManNAc) feeding has been shown to overcome this limitation. In this study we evaluated the potential bottlenecks in the sialic acid synthesis pathway in a Spodoptera frugiperda (Sf9) insect cell line and devised strategies to overcome them by overexpression of the enzymatic pathway enzymes combined with appropriate substrate feeding. Coexpression of SAS and UDP-GlcNAc 2-epimerase/ManNAc kinase, the bifunctional enzyme initiating sialic acid biosynthesis in mammals, resulted in Neu5Ac synthesis without use of any external media supplementation to demonstrate that Neu5Ac could be generated intracellularly in Sf9 cells using natural metabolic precursors. N-Acetylglucosamine (GlcNAc) feeding in combination with this coexpression resulted in much higher levels of Neu5Ac compared to levels obtained with ManNAc feeding with SAS expression alone. The lower Neu5Ac levels obtained with ManNAc feeding suggested limitations in the transport and phosphorylation of ManNAc. The bottleneck in phosphorylation was likely due to utilization of GlcNAc kinase for phosphorylation of ManNAc in insect cells and was overcome by expression of ManNAc kinase. The transport limitation was addressed by the addition of tetra-O-acetylated ManNAc, which is easily taken up by the cells. An alternative sialic acid, 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (KDN), could also be generated in insect cells, suggesting the potential for controlling not only the production of sialic acids but also the type of sialic acid generated. The levels of KDN could be increased with virtually no Neu5Ac generation when Sf9 cells were fed excess GlcNAc. The results of these studies may be used to enhance the sialylation of target glycoproteins in insect and other eukaryotic expression systems.  相似文献   

12.
Many bacterial commensals and pathogens use the sialic acids as carbon and nitrogen sources. In Escherichia coli, the breakdown of these sugars is catalysed by gene products of the nan (Nacylneuraminate) operon; other microorganisms may use a similar catabolic strategy. Despite the known ligand and antirecognition functions of the sialic acids, the contribution of their catabolism to infection or host colonization has never been directly investigated. We addressed these questions with Haemophilus influenzae type b, which metabolizes relatively few carbohydrates, using the infant-rat infection model. The predicted H. influenzae homologue (HI0142) of the E. coli sialic acid aldolase structural gene, nanA, was subcloned and mutagenized by insertion of a kanamycin resistance cassette. Phenotypic investigation of the resulting H. influenzae aldolase mutants showed that: (i) HI0142 is essential for sialic acid degradation; (ii) the products of the open reading frames (ORFs) flanking HI0142 (HI0140, 41, 44 and 45) are likely to have the same functions as those of their counterparts in E. coli; (iii) sialylation of the lipooligosaccharide (LOS) epitope recognized by monoclonal antibody 3F11 is dependent on an environmental source of sialic acid; (iv) a nanA mutant hypersialylates its LOS sialyl acceptor, corresponding to an apparent increased fitness of the mutant in the infant-rat model; and (v) expression of the LOS sialyl acceptor is altered in cells grown without exogenous sialic acid, indicating the direct or indirect effect of sialic acid metabolism on LOS antigenicity. Taken together the data show the dual role of sialic acid catabolism in nutrition and cell surface modulation.  相似文献   

13.
The addition of sialic acid residues to glycoproteins can affect important protein properties including biological activity and in vivo circulatory half-life. For sialylation to occur, the donor sugar nucleotide cytidine monophospho-sialic acid (CMP-SA) must be generated and enzymatically transferred to an acceptor oligosaccharide. However, examination of insect cells grown in serum-free medium revealed negligible native levels of the most common sialic acid nucleotide, CMP-N-acetylneuraminic acid (CMP-Neu5Ac). To increase substrate levels, the enzymes of the metabolic pathway for CMP-SA synthesis have been engineered into insect cells using the baculovirus expression system. In this study, a human CMP-sialic acid synthase cDNA was identified and found to encode a protein with 94% identity to the murine homologue. The human CMP-sialic acid synthase (Cmp-Sas) is ubiquitously expressed in human cells from multiple tissues. When expressed in insect cells using the baculovirus vector, the encoded protein is functional and localizes to the nucleus as in mammalian cells. In addition, co-expression of Cmp-Sas with the recently cloned sialic acid phosphate synthase with N-acetylmannosamine feeding yields intracellular CMP-Neu5Ac levels 30 times higher than those observed in unsupplemented CHO cells. The absence of any one of these three components abolishes CMP-Neu5Ac production in vivo. However, when N-acetylmannosamine feeding is omitted, the sugar nucleotide form of deaminated Neu5Ac, CMP-2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (CMP-KDN), is produced instead, indicating that alternative sialic acid glycoforms may eventually be possible in insect cells. The human CMP-SAS enzyme is also capable of CMP-N-glycolylneuraminic acid (CMP-Neu5Gc) synthesis when provided with the proper substrate. Engineering the CMP-SA metabolic pathway may be beneficial in various cell lines in which CMP-Neu5Ac production limits sialylation of glycoproteins or other glycans.  相似文献   

14.
The most commonly occurring sialic acid Neu5Ac (N-acetylneuraminic acid) and its deaminated form, KDN (2-keto-3-deoxy-D-glycero-D-galacto-nonulosonic acid), participate in many biological functions. The human Neu5Ac-9-P (Neu5Ac 9-phosphate) synthase has the unique ability to catalyse the synthesis of not only Neu5Ac-9-P but also KDN-9-P (KDN 9-phosphate). Both reactions are catalysed by the mechanism of aldol condensation of PEP (phosphoenolpyruvate) with sugar substrates, ManNAc-6-P (N-acetylmannosamine 6-phosphate) or Man-6-P (mannose 6-phosphate). Mouse and putative rat Neu5Ac-9-P synthases, however, do not show KDN-9-P synthase activity, despite sharing high sequence identity (>95%) with the human enzyme. Here, we demonstrate that a single mutation, M42T, in human Neu5Ac-9-P synthase can abolish the KDN-9-P synthase activity completely without compromising the Neu5Ac-9-P synthase activity. Saturation mutagenesis of Met42 of the human Neu5Ac-9-P synthase showed that the substitution with all amino acids except leucine retains only the Neu5Ac-9-P synthase activity at levels comparable with the wild-type enzyme. The M42L mutant, like the wild-type enzyme, showed the additional KDN-9-P synthase activity. In the homology model of human Neu5Ac-9-P synthase, Met42 is located 22 A (1 A=0.1 nm) away from the substrate-binding site and the impact of this distant residue on the enzyme functions is discussed.  相似文献   

15.
Engineering the sialic acid in organs of mice using N-propanoylmannosamine   总被引:1,自引:0,他引:1  
Sialic acids play an important role during development, regeneration and pathogenesis. The precursor of most physiological sialic acids, such as N-acetylneuraminic acid is N-acetyl-D-mannosamine. Application of the novel N-propanoylmannosamine leads to the incorporation of the new sialic acid N-propanoylneuraminic acid into cell surface glycoconjugates. Here we analyzed the modified sialylation of several organs with N-propanoylneuraminic acid in mice. By using peracetylated N-propanoylmannosamine, we were able to replace in vivo between 1% (brain) and 68% (heart) of physiological sialic acids by N-propanoylneuraminic acid. The possibility to modify cell surfaces with engineered sialic acids in vivo offers the opportunity to target therapeutic agents to sites of high sialic acid concentration in a variety of tumors. Furthermore, we demonstrated that application of N-propanoylmannosamine leads to a decrease in the polysialylation of the neural cell adhesion molecule in vivo, which is a marker of poor prognosis for some tumors with high metastatic potential.  相似文献   

16.
BackgroundSialylation of glycoproteins and glycolipids is important for biological processes such as cellular communication, cell migration and protein function. Biosynthesis of CMP-sialic acid, the essential substrate, comprises five enzymatic steps, involving ManNAc and sialic acid and their phosphorylated forms as intermediates. Genetic diseases in this pathway result in different and tissue-restricted phenotypes, which is poorly understood.Methods and resultsWe aimed to study the mechanisms of sialic acid metabolism in knockouts (KO) of the sialic acid pathway in two independent cell lines. Sialylation of cell surface glycans was reduced by KO of GNE (UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase), NANS (sialic acid synthase) and CMAS (N-acylneuraminate cytidylyltransferase) genes, but was largely unaffected in NANP (N-acylneuraminate-9-phosphatase) KO, as studied by MAA and PNA lectin binding. NANP is the third enzyme in sialic acid biosynthesis and dephosphorylates sialic acid 9-phosphate to free sialic acid. LC-MS analysis of sialic acid metabolites showed that CMP-sialic acid was dramatically reduced in GNE and NANS KO cells and undetectable in CMAS KO. In agreement with normal cell surface sialylation, CMP-sialic acid levels in NANP KO were comparable to WT cells, even though sialic acid 9-phosphate, the substrate of NANP accumulated. Metabolic flux analysis with 13C6-labelled ManNAc showed a lower, but significant conversion of ManNAc into sialic acid.ConclusionsOur data provide evidence that NANP activity is not essential for de novo sialic acid production and point towards an alternative phosphatase activity, bypassing NANP.General significanceThis report contributes to a better understanding of sialic acid biosynthesis in humans.  相似文献   

17.
Sialic acids are critical components of many glycoconjugates involved in biologically important ligand-receptor interactions. Quantitative and structural variations of sialic acid residues can profoundly affect specific cell-cell, pathogen-cell, or drug-cell interactions, but manipulation of sialic acids in mammalian cells has been technically limited. We describe the finding of a previously unrecognized and efficient uptake and incorporation of sialic acid analogues in mammalian cells. We added 16 synthetic sialic acid analogues carrying distinct C-1, C-5, or C-9 substitutions individually to cell cultures of which 10 were readily taken up and incorporated. Uptake of C-5- and C-9-substituted sialic acids resulted in the structural modification of up to 95% of sialic acids on the cell surface. Functionally, binding of murine sialic acid-binding immunoglobulin-like lectin-2 (Siglec-2, CD22) to cells increased after N-glycolylneuraminic acid treatment, whereas 9-iodo-N-acetylneuraminic acid abolished binding. Furthermore, susceptibility to infection by the B-lymphotropic papovavirus via a sialylated receptor was markedly enhanced following pretreatment of host cells with selected sialic acid analogues including 9-iodo-N-acetylneuraminic acid. This novel experimental strategy allows for an efficient biosynthetic engineering of surface sialylation in living cells. It is versatile, extending the repertoire of modification sites at least to C-9 and enables detailed structure-function studies of sialic acid-dependent ligand-receptor interactions in their native context.  相似文献   

18.
Lim SF  Lee MM  Zhang P  Song Z 《Glycobiology》2008,18(11):851-860
A CHO mutant line, MAR-11, was isolated using a cytotoxic lectin, Maackia amurensis agglutinin (MAA). This mutant has decreased levels of cell surface sialic acid relative to both wild-type CHO-K1 and Lec2 mutant CHO cells. The CMP-sialic acid transporter (CMP-SAT) gene in the MAR-11 mutant cell has a C-T mutation that results in a premature stop codon. As a result, MAR-11 cells express a truncated version of CMP-SAT which contains only 100 amino acids rather than the normal CMP-SAT which contains 336 amino acids. Biochemical analyses indicate that recombinant interferon-gamma (IFN-gamma) produced by the mutant cells lack sialic acid. Using MAR-11 as host cells, an EPO/IEF assay for the structure-function study of CMP-SAT was developed. This assay seems more sensitive than previous assays that were used to analyze sialylation in Lec2 cells. Cotransfection of constructs that express CMP-SAT into MAR-11 cells completely converted the recombinant EPO to a sialylation pattern that is similar to the EPO produced by the wild-type CHO cells. Using this assay, we showed that CMP-SAT lacking C-terminal 18 amino acids from the cytosolic tail was able to allow high levels of EPO sialylation. Substitution of the Gly residues with Ile in three different transmembrane domains of CMP-SAT resulted in dramatic decreases in transporter's activity. The CMP-SAT only lost partial activity if the same Gly residues were substituted with Ala, suggesting that the lack of side chain in Gly residues in the transmembrane domains is essential for transport activity.  相似文献   

19.
A cDNA of the mouse homologue of Escherichia coli N-acetylneuraminic acid (Neu5Ac) synthase (neuB gene product) was cloned by the PCR-based method. The mouse homologue consists of 359 amino acids, and the cDNA sequence displays 33% identity to that of the E. coli Neu5Ac synthase. The recombinant mouse homologue which is transiently expressed in HeLa cells does not exhibit the Neu5Ac synthase activity, which catalyzes condensation of phosphoenolpyruvate (PEP) and N-acetylmannosamine (ManNAc) to synthesize Neu5Ac, but the Neu5Ac 9-phosphate (Neu5Ac-9-P) synthase activity, which catalyzes condensation of PEP and ManNAc 6-phosphate (ManNAc-6-P) to synthesize Neu5Ac-9-P. Thus, the mouse homologue of E. coli Neu5Ac synthase is the Neu5Ac-9-P synthase. The Neu5Ac-9-P synthase is a cytosolic enzyme and ubiquitously distributed in mouse various tissues. Notably, the Neu5Ac-9-P synthase can not catalyze the synthesis of deaminoneuraminic acid (KDN) or KDN-9-P from PEP and Man or ManNAc-6-P, thus suggesting that the enzyme is not involved in the synthesis of KDN. This is consistent with the previous observation that only a very low activity to synthesize KDN is found in mouse B16 cells [Angata, T., et al. (1999) Biochem. Biophys. Res. Commun. 261, 326-331].  相似文献   

20.
Sialic acids are widely expressed as terminal carbohydrates on glycoconjugates of eukaryotic cells. They are involved in a variety of cellular functions, such as cell adhesion or signal recognition. The key enzyme of sialic acid biosynthesis is the bifunctional UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE), which catalyzes the first two steps of sialic acid biosynthesis in the cytosol. Previously, we have shown that inactivation of the GNE by gene targeting causes early embryonic lethality in mice, whereas heterozygous GNE-deficient mice are vital. In this study we compared the amount of membrane-bound sialic acids of wildtype mice with those of heterozygous GNE-deficient mice. For that we quantified membrane-bound sialic acid concentration in various organs of wildtype- and heterozygous GNE-deficient mice. We found an organ-specific reduction of membrane-bound sialic acids in heterozygous GNE-deficient mice. The overall reduction was 25%. Additionally, we analyzed transferrin and polysialylated neural cell adhesion molecule (NCAM) by one- or two-dimensional gel electrophoresis. Transferrin-expression was unchanged in heterozygous GNE-deficient mice; however the isoelectric point of transferrin was shifted towards basic pH, indicating a reduced sialylation. Furthermore, the expression of polysialic acids on NCAM was reduced in GNE-deficient mice. Daniel Gagiannis and André Orthmann have contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号