首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Saccharomyces cerevisiae chromosome III encodes 11 autonomously replicating sequence (ARS) elements that function as chromosomal replicators. The essential 11-bp ARS consensus sequence (ACS) that binds the origin recognition complex (ORC) has been experimentally defined for most of these replicators but not for ARS318 (HMR-I), which is one of the HMR silencers. In this study, we performed a comprehensive linker scan analysis of ARS318. Unexpectedly, this replicator depends on a 9/11-bp match to the ACS that positions the ORC binding site only 6 bp away from an Abf1p binding site. Although a largely inactive replicator on the chromosome, ARS318 becomes active if the nearby HMR-E silencer is deleted. We also performed a multiple sequence alignment of confirmed replicators on chromosomes III, VI, and VII. This analysis revealed a highly conserved WTW motif 17 to 19 bp from the ACS that is functionally important and is apparent in the 228 phylogenetically conserved ARS elements among the six sensu stricto Saccharomyces species.  相似文献   

2.
R Y Huang  D Kowalski 《The EMBO journal》1993,12(12):4521-4531
We have defined a replication origin, ORI305, within chromosome III of Saccharomyces cerevisiae by means of mutational analysis. cis-acting elements required for origin activity in the chromosome, as assayed by two-dimensional gel electrophoresis of replication intermediates, are the same as those required for the function of an autonomously replicating sequence, ARS305, in a plasmid. Essential elements include (i) an 11 bp sequence that is a near match to the ARS consensus and (ii) a broad sequence directly 3' to the consensus near match. Origin function is inactivated by point mutations in the essential near match sequence, suggesting that the sequence contributes to specifying the origin in the chromosome. Other consensus near matches with different sequences are present but are not required. The essential 3'-flanking sequence exhibits DNA helical instability and is sensitive to deletion mutations that stabilize the DNA helix. The wild-type 3'-flanking sequence can be functionally substituted by dissimilar sequences that also exhibit helical instability. The requirement for DNA helical instability indicates that the essential 3'-flanking sequence serves as a DNA unwinding element in the chromosome.  相似文献   

3.
Replicator dominance in a eukaryotic chromosome.   总被引:20,自引:3,他引:17       下载免费PDF全文
Replicators are genetic elements that control initiation at an origin of DNA replication (ori). They were first identified in the yeast Saccharomyces cerevisiae as autonomously replicating sequences (ARSs) that confer on a plasmid the ability to replicate in the S phase of the cell cycle. The DNA sequences required for ARS function on a plasmid have been defined, but because many sequences that participate in ARS activity are not components of chromosomal replicators, a mutational analysis of the ARS1 replicator located on chromosome IV of S. cerevisiae was performed. The results of this analysis indicate that four DNA elements (A, B1, B2 and B3) are either essential or important for ori activation in the chromosome. In a yeast strain containing two closely spaced and identical copies of the ARS1 replicator in the chromosome, only one is active. The mechanism of replicator repression requires the essential A element of the active replicator. This element is the binding site for the origin recognition complex (ORC), a putative initiator protein. The process that determines which replicator is used, however, depends entirely upon flanking DNA sequences.  相似文献   

4.
Replicators that control the initiation of DNA replication in the chromosomes of Saccharomyces cerevisiae retain their function when cloned into plasmids, where they are commonly referred to as autonomously replicating sequences (ARSs). Previous studies of the structure of ARS1 in both plasmid and chromosome contexts have shown that it contains one essential DNA element, A, that includes a match to the ARS consensus sequence (ACS), and three additional elements, B1, B2, and B3, that are also important for ARS function. Elements A and B3 are bound by a candidate initiator protein called the origin recognition complex and ARS-binding factor 1, respectively. Although the A and B3 elements have been found in other ARSs, sequence comparisons among ARSs have failed to identify B1- and B2-like elements. To assess the generality of the modular nature of yeast replicators, linker substitution mutagenesis of another yeast chromosomal replicator, ARS307, was performed. Three DNA sequence elements were identified in ARS307, and they were demonstrated to be functionally equivalent to the A, B1, and B2 elements present in ARS1. Despite the lack of DNA sequence similarity, the B1 and B2 elements at each ARS were functionally conserved. Single-base substitutions in the core of the ARS1 B1 and B2 elements identified critical nucleotides required for the function of the B1 element. In contrast, no single-point mutations were found to affect B2 function. The results suggest that multiple DNA sequence elements might be a general and conserved feature of replicator sequences in S. cerevisiae.  相似文献   

5.
Replication origins in Saccharomyces cerevisiae are spaced at intervals of approximately 40 kb. However, both measurements of replication fork rate and studies of hypomorphic alleles of genes encoding replication initiation proteins suggest the question of whether replication origins are more closely spaced than should be required. We approached this question by systematically deleting replicators from chromosome III. The first significant increase in loss rate detected for the 315-kb full-length chromosome occurred only after all five efficient chromosomal replicators in the left two-thirds of the chromosome (ARS305, ARS306, ARS307, ARS309, and ARS310) had been deleted. The removal of the inefficient replicator ARS308 from this originless region caused little or no additional increase in loss rate. Chromosome fragmentations that removed the normally inactive replicators on the left end of the chromosome or the replicators distal to ARS310 on the right arm showed that both groups of replicators contribute significantly to the maintenance of the originless chromosome. Surprisingly, a 142-kb derivative of chromosome III, lacking all sequences that function as autonomously replicating sequence elements in plasmids, replicated and segregated properly 97% of the time. Both the replication initiation protein ORC and telomeres or a linear topology were required for the maintenance of chromosome fragments lacking replicators.  相似文献   

6.
ARS307 is highly active as a replication origin in its native location on chromosome III of Saccharomyces cerevisiae. Its ability to confer autonomous replication activity on plasmids requires the presence of an 11-bp autonomously replicating sequence (ARS) consensus sequence (ACS), which is also required for chromosomal origin function, as well as approximately 100 bp of sequence flanking the ACS called domain B. To further define the sequences required for ARS function, a linker substitution mutagenesis of domain B was carried out. The mutations defined two sequences, B1 and B2, that contribute to ARS activity. Therefore, like ARS1, domain B of ARS307 is composed of functional subdomains. Constructs carrying mutations in the B1 element were used to replace the chromosomal copy of ARS307. These mutations caused a reduction in chromosomal origin activity, demonstrating that the B1 element is required for efficient chromosomal origin function.  相似文献   

7.
8.
9.
The Tetrahymena thermophila origin recognition complex (ORC) contains an integral RNA subunit, 26T RNA, which confers specificity to the amplified ribosomal DNA (rDNA) origin by base pairing with an essential cis‐acting replication determinant—the type I element. Using a plasmid maintenance assay, we identified a 6.7 kb non‐rDNA fragment containing two closely associated replicators, ARS1‐A (0.8 kb) and ARS1‐B (1.2 kb). Both replicators lack type I elements and hence complementarity to 26T RNA, suggesting that ORC is recruited to these sites by an RNA‐independent mechanism. Consistent with this prediction, although ORC associated exclusively with origin sequences in the 21 kb rDNA minichromosome, the interaction between ORC and the non‐rDNA ARS1 chromosome changed across the cell cycle. In G2 phase, ORC bound to all tested sequences in a 60 kb interval spanning ARS1‐A/B. Remarkably, ORC and Mcm6 associated with just the ARS1‐A replicator in G1 phase when pre‐replicative complexes assemble. We propose that ORC is stochastically deposited onto newly replicated non‐rDNA chromosomes and subsequently targeted to preferred initiation sites prior to the next S phase.  相似文献   

10.
The DNA replication origins of the yeast Saccharomyces cerevisiae require several short functional elements, most of which are not conserved in sequence. To better characterize ARS305, a replicator from a chromosomal origin, we swapped functional DNA elements of ARS305 with defined elements of ARS1. ARS305 contains elements that are functionally exchangeable with ARS1 A and B1 elements, which are known to bind the origin recognition complex; however, the ARS1 A element differs in that it does not require a 3' box adjacent to the essential autonomously replicating sequence consensus. At the position corresponding to ARS1 B3, ARS305 has a novel element, B4, that can functionally substitute for every type of short element (B1, B2, and B3) in the B domain. Unexpectedly, the replacement of element B4 by ARS1 B3, which binds ABF1p and is known as a replication enhancer, inhibited ARS305 function. ARS305 has no short functional element at or near positions corresponding to the B2 elements in ARS1 and ARS307 but contains an easily unwound region whose functional importance was supported by a broad G+C-rich substitution mutation. Surprisingly, the easily unwound region can functionally substitute for the ARS1 B2 element, even though ARS1 B2 was found to possess a distinct DNA sequence requirement. The functionally conserved B2 element in ARS307 contains a known sequence requirement, and helical stability analysis of linker and minilinker mutations suggested that B2 also contains a DNA unwinding element (DUE). Our findings suggest that yeast replication origins employ a B2 element or a DUE to mediate a common function, DNA unwinding during initiation, although not necessarily through a common mechanism.  相似文献   

11.
Autonomously replicating sequence (ARS) elements are identified by their ability to promote high-frequency transformation and extrachromosomal replication of plasmids in the yeast Saccharomyces cerevisiae. Six of the 14 ARS elements present in a 200-kb region of Saccharomyces cerevisiae chromosome III are mitotic chromosomal replication origins. The unexpected observation that eight ARS elements do not function at detectable levels as chromosomal replication origins during mitotic growth suggested that these ARS elements may function as chromosomal origins during premeiotic S phase. Two-dimensional agarose gel electrophoresis was used to map premeiotic replication origins in a 100-kb segment of chromosome III between HML and CEN3. The pattern of origin usage in premeiotic S phase was identical to that in mitotic S phase, with the possible exception of ARS308, which is an inefficient mitotic origin associated with CEN3. CEN3 was found to replicate during premeiotic S phase, demonstrating that the failure of sister chromatids to disjoin during the meiosis I division is not due to unreplicated centromeres. No origins were found in the DNA fragments without ARS function. Thus, in both mitosis and meiosis, chromosomal replication origins are coincident with ARS elements but not all ARS elements have chromosomal origin function. The efficiency of origin use and the patterns of replication termination are similar in meiosis and in mitosis. DNA replication termination occurs over a broad distance between active origins.  相似文献   

12.
In budding yeast, the eukaryotic initiator protein ORC (origin recognition complex) binds to a bipartite sequence consisting of an 11 bp ACS element and an adjacent B1 element. However, the genome contains many more matches to this consensus than actually bind ORC or function as origins in vivo. Although ORC-dependent loading of the replicative MCM helicase at origins is enhanced by a distal B2 element, less is known about this element. Here, we analyzed four highly active origins (ARS309, ARS319, ARS606 and ARS607) by linker scanning mutagenesis and found that sequences adjacent to the ACS contributed substantially to origin activity and ORC binding. Using the sequences of four additional B2 elements we generated a B2 multiple sequence alignment and identified a shared, degenerate 8 bp sequence that was enriched within 228 known origins. In addition, our high-resolution analysis revealed that not all origins exist within nucleosome free regions: a class of Sir2-regulated origins has a stably positioned nucleosome overlapping or near B2. This study illustrates the conserved yet flexible nature of yeast origin architecture to promote ORC binding and origin activity, and helps explain why a strong match to the ORC binding site is insufficient to identify origins within the genome.  相似文献   

13.
J F Theis  C Yang  C B Schaefer  C S Newlon 《Genetics》1999,152(3):943-952
ARS elements of Saccharomyces cerevisiae are the cis-acting sequences required for the initiation of chromosomal DNA replication. Comparisons of the DNA sequences of unrelated ARS elements from different regions of the genome have revealed no significant DNA sequence conservation. We have compared the sequences of seven pairs of homologous ARS elements from two Saccharomyces species, S. cerevisiae and S. carlsbergensis. In all but one case, the ARS308-ARS308(carl) pair, significant blocks of homology were detected. In the cases of ARS305, ARS307, and ARS309, previously identified functional elements were found to be conserved in their S. carlsbergensis homologs. Mutation of the conserved sequences in the S. carlsbergensis ARS elements revealed that the homologous sequences are required for function. These observations suggested that the sequences important for ARS function would be conserved in other ARS elements. Sequence comparisons aided in the identification of the essential matches to the ARS consensus sequence (ACS) of ARS304, ARS306, and ARS310(carl), though not of ARS310.  相似文献   

14.
Eukaryotic origin recognition complexes (ORCs) play pivotal roles in the initiation of chromosomal DNA replication. ORC from the yeast, Saccharomyces cerevisiae, recognizes and binds replication origins in the late G1 phase and the binding has profound implications in the progression of the cell cycle to the S-phase. Therefore, we have quantitatively analyzed the mechanism of recognition and interaction of the yeast ORC with various elements of a yeast origin of DNA replication, the autonomously replicating sequence 1 (ARS1). ORC bound all four individual A and B elements of ARS1 with reasonably high affinities. However, the highest affinity binding was observed with a DNA sequence containing both the A and B1 elements. In addition, ATP and ADP significantly modulated the binding of ORC to the combined elements as well as modulating the binding of ORC to the element A alone or in combination with the B1 element. However, binding of ORC to individual B1, B2, and B3 elements was not responsive to nucleotides. Thus, the consensus ARS sequence in element A appeared to play a pivotal role in the ATP-dependent binding of ORC to ARS1 and likely in other ARSs or origins of DNA replication.  相似文献   

15.
Nuclear matrix attachment regions (MARs) play a crucial role in chromatin architecture, gene expression, and DNA replication. Although it is well known that yeast autonomously replicating sequences (ARSs) bind nuclear matrix and MARs also function as ARS elements in yeast, whether a heterologous MAR or ARS element acts as a replication origin in the chromosome has not been elucidated. We previously identified a MAR (rMAR) located in the nontranscribed spacer (NTS) of silkworm Attacus ricini rDNA. We report here that this rMAR contains 10 copies of ARS consensus sequence (ACS) and several DNA unwinding regions. The rMAR employs ARS activity in yeast and a rARS element locates in the 3(') region of the rMAR. Furthermore, we have also revealed that either the rMAR or the rARS element functions as a replication origin in the chromosome. Our results provide the first direct evidence to demonstrate that heterologous rMAR and rARS display chromosomal origin activity, suggesting that the chromosome structure and replication origin of rDNA reserve some common features during evolution.  相似文献   

16.
17.
18.
The function of the relatively well-studied DNA replication origins in the yeast Saccharomyces cerevisiae is dependent upon interactions between origin replication complex (ORC) proteins and several defined origin sequence elements, including the 11 bp ARS consensus sequence (ACS). Although the ORC proteins, as well as numerous other protein components required for DNA replication initiation, are largely conserved between yeast and mammals, DNA sequences within mammalian replication origins are highly variable and sequences homologous to the yeast ACS elements are generally not present. We have previously identified several replication initiation sites within the nontranscribed spacer region of the human ribosomal RNA gene, and found that two highly utilized sites each contain a homologue of the yeast ACS embedded within a DNA unwinding element and a matrix attachment region. Here we examine protein binding within these initiation sites, and demonstrate that these ACS homologues specifically bind the alternate splicing factor SF2/ASF as well as GAPDH in vitro, and present evidence that the SF2/ASF interaction also occurs within the nuclei of intact cells. As the moderate upregulation of SF2/ASF has been linked to oncogenesis through the promotion of alternatively spliced forms of several regulatory proteins, our results suggest an additional mechanism by which SF2/ASF may influence the transformed cell phenotype.  相似文献   

19.
The role of the natural HMR-E silencer in modulating replication initiation and silencing by the origin recognition complex (ORC) was examined. When natural HMR-E was the only silencer controlling HMR, the silencer's ORC-binding site (ACS) was dispensable for replication initiation but essential for silencing, indicating that a non-silencer chromosomal replicator(s) existed in close proximity to the silencer. Further analysis revealed that regions flanking both sides of HMR-E contained replicators. In contrast to replication initiation by the intact silencer, initiation by the non-silencer replicator(s) was abolished in an orc2-1 mutant, indicating that these replicators were extremely sensitive to defects in ORC. Remarkably, the activity of one of the non-silencer replicators correlated with reduced silencing; inactivation of these replicators caused by either the orc2-1 mutation or the deletion of flanking sequences enhanced silencing. These data were consistent with a role for the ORC bound to the HMR-E silencer ACS in suppressing the function of neighboring ORC molecules capable of inhibiting silencing, and indicated that differences in ORC-binding sites within HMR itself had profound effects on ORC function. Moreover, replication initiation by natural HMR-E was inefficient, suggesting that closely spaced replicators within HMR contributed to an inhibition of replication initiation.  相似文献   

20.
Origin recognition complex binding to a metazoan replication origin   总被引:8,自引:0,他引:8  
The initiation of DNA replication in eukaryotic cells at the onset of S phase requires the origin recognition complex (ORC) [1]. This six-subunit complex, first isolated in Saccharomyces cerevisiae [2], is evolutionarily conserved [1]. ORC participates in the formation of the prereplicative complex [3], which is necessary to establish replication competence. The ORC-DNA interaction is well established for autonomously replicating sequence (ARS) elements in yeast in which the ARS consensus sequence [4] (ACS) constitutes part of the ORC binding site [2, 5]. Little is known about the ORC-DNA interaction in metazoa. For the Drosophila chorion locus, it has been suggested that ORC binding is dispersed [6]. We have analyzed the amplification origin (ori) II/9A of the fly, Sciara coprophila. We identified a distinct 80-base pair (bp) ORC binding site and mapped the replication start site located adjacent to it. The binding of ORC to this 80-bp core region is ATP dependent and is necessary to establish further interaction with an additional 65-bp of DNA. This is the first time that both the ORC binding site and the replication start site have been identified in a metazoan amplification origin. Thus, our findings extend the paradigm from yeast ARS1 to multicellular eukaryotes, implicating ORC as a determinant of the position of replication initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号