首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the basis of earlier reports suggesting that annexin A1 from Arabidopsis thaliana (AnnAt1) participates in limiting the excessive levels of reactive oxygen species during oxidative burst in plants, we examined the sensitivity of recombinant AnnAt1 to hydrogen peroxide and its peroxidase activity. Purified recombinant protein remains mostly alpha-helical and binds to lipids in a calcium-dependent manner. Upon oxidation recombinant AnnAt1 exhibits a tendency to form dimers in vitro. AnnAt1 is also sensitive to the presence of reducing agents, suggesting that AnnAt1 is a redox sensor in plant cells. Moreover, using two independent methods we found that AnnAt1 displayed peroxidase activity which is probably related to the presence of a heme-binding domain within AnnAt1, as present in other peroxidases. Indeed, site-directed mutagenesis within this domain resulted in a complete abrogation of the activity of AnnAt1. Furthermore, this activity was found to be sensitive to the phosphorylation state of the protein.  相似文献   

2.
Background and Aims The arrangement of flowers in inflorescence shoots of Arabidopsis thaliana represents a regular spiral Fibonacci phyllotaxis. However, in the cuc2 cuc3 double mutant, flower pedicels are fused to the inflorescence stem, and phyllotaxis is aberrant in the mature shoot regions. This study examined the causes of this altered development, and in particular whether the mutant phenotype is a consequence of defects at the shoot apex, or whether post-meristematic events are involved.Methods The distribution of flower pedicels and vascular traces was examined in cross-sections of mature shoots; sequential replicas were used to investigate the phyllotaxis and geometry of shoot apices, and growth of the young stem surface. The expression pattern of CUC3 was analysed by examining its promoter activity.Key Results Phyllotaxis irregularity in the cuc2 cuc3 double mutant arises during the post-meristematic phase of shoot development. In particular, growth and cell divisions in nodes of the elongating stem are not restricted in the mutant, resulting in pedicel–stem fusion. On the other hand, phyllotaxis in the mutant shoot apex is nearly as regular as that of the wild type. Vascular phyllotaxis, generated almost simultaneously with the phyllotaxis at the apex, is also much more regular than pedicel phyllotaxis. The most apparent phenotype of the mutant apices is a higher number of contact parastichies. This phenotype is associated with increased meristem size, decreased angular width of primordia and a shorter plastochron. In addition, the appearance of a sharp and deep crease, a characteristic shape of the adaxial primordium boundary, is slightly delayed and reduced in the mutant shoot apices.Conclusions The cuc2 cuc3 double mutant displays irregular phyllotaxis in the mature shoot but not in the shoot apex, thus showing a post-meristematic effect of the mutations on phyllotaxis. The main cause of this effect is the formation of pedicel–stem fusions, leading to an alteration of the axial positioning of flowers. Phyllotaxis based on the position of vascular flower traces suggests an additional mechanism of post-meristematic phyllotaxis alteration. Higher density of flower primordia may be involved in the post-meristematic effect on phyllotaxis, whereas delayed crease formation may be involved in the fusion phenotype. Promoter activity of CUC3 is consistent with its post-meristematic role in phyllotaxis.  相似文献   

3.
Recombination during meiosis shapes the complement of alleles segregating in the progeny of hybrids, and has important consequences for phenotypic variation. We examined allele frequencies, as well as crossover (XO) locations and frequencies in over 7000 plants from 17 F(2) populations derived from crosses between 18 Arabidopsis thaliana accessions. We observed segregation distortion between parental alleles in over half of our populations. The potential causes of distortion include variation in seed dormancy and lethal epistatic interactions. Such a high occurrence of distortion was only detected here because of the large sample size of each population and the number of populations characterized. Most plants carry only one or two XOs per chromosome pair, and therefore inherit very large, non-recombined genomic fragments from each parent. Recombination frequencies vary between populations but consistently increase adjacent to the centromeres. Importantly, recombination rates do not correlate with whole-genome sequence differences between parental accessions, suggesting that sequence diversity within A. thaliana does not normally reach levels that are high enough to exert a major influence on the formation of XOs. A global knowledge of the patterns of recombination in F(2) populations is crucial to better understand the segregation of phenotypic traits in hybrids, in the laboratory or in the wild.  相似文献   

4.
5.

Background and Aims

The tam (tardy asynchronous meiosis) mutant of Arabidopsis thaliana, which exhibits a modified cytokinesis with a switch from simultaneous to successive cytokinesis, was used to perform a direct test of the implication of cytokinesis in aperture-pattern ontogeny of angiosperm pollen grains. The aperture pattern corresponds to the number and arrangement of apertures (areas of the pollen wall permitting pollen tube germination) on the surface of the pollen grain.

Methods

A comparative analysis of meiosis and aperture distribution was performed in two mutant strains of arabidopsis: quartet and quartet-tam.

Key Results

While the number of apertures is not affected in the quartet-tam mutant, the arrangement of the three apertures is modified compared with the quartet, resulting in a different aperture pattern.

Conclusions

These results directly demonstrate the relationship between the type of sporocytic cytokinesis and pollen aperture-pattern ontogeny.  相似文献   

6.
Different subtypes of Influenza A virus are associated with species specific, zoonotic or pandemic Influenza. The cause of its severity underlies in complicated evolution of its segmented RNA genome. Although genetic shift and genetic drift are well known in the evolution of this virus, we reported the significant role of unique RNA palindromes in its evolution. Our computational approach identified the existence of unique palindromes in each subtype of Influenza A virus with its absence in Influenza B relating the fact of virulence and vigorous genetic hitchhiking in Influenza A. The current study focused on the re-assortment event responsible for the emergence of pandemic-2009 H1N1 virus, which is associated with outgrow of new palindrome and in turn, changing its RNA structure. We hypothesize that the change in RNA structure due to the presence of palindrome facilitates the event of re-assortment in Influenza A. Thus the evolutionary process of Influenza A is much more complicated as previously known, and that has been demonstrated in this study.  相似文献   

7.
Isoprenoid lipids were found to be covalently linked to proteins of Arabidopsis thaliana. Their identity (polyprenols: Prenol-9-11 with Pren-10 dominating and dolichols: Dol-15-17 with Dol-16 dominating) was confirmed by means of HPLC/ESI-MS with application of the multiple reaction monitoring technique as well as metabolic labeling of Arabidopsis plants with [3H]mevalonate and other precursors. The occurrence of typical farnesol-, geranylgeraniol-, and phytol-modified proteins was also noted. Radioisotopic labeling allowed detection of several proteins that were covalently bound to mevalonate-derived isoprenoid alcohols. A significant portion of polyisoprenylated proteins was recovered in the cytosolic/light vesicular fraction of Arabidopsis cells upon subfractionation. Taken together our data prove that a subset of plant proteins is polyisoprenylated.  相似文献   

8.
The present study reports the recombinant expression, purification, and partial characterization of a typical aspartic proteinase from Arabidopsis thaliana (AtAP A1). The cDNA encoding the precursor of AtAP A1 was expressed as a functional protein using the yeast Pichia pastoris. The mature form of the rAtAP A1 was found to be a heterodimeric glycosylated protein with a molecular mass of 47 kDa consisting of heavy and light chain components, approx. 32 and 16 kDa, respectively, linked by disulfide bonds. Glycosylation occurred via the plant specific insert in the light chain. The catalytic properties of the rAtAP A1 were similar to other plant aspartic proteinases with activity in acid pH range, maximal activity at pH 4.0, Km of 44 μM, and kcat of 55 s−1 using a synthetic substrate. The enzyme was inhibited by pepstatin A.  相似文献   

9.
Telomeres are nucleoprotein structures ensuring the stability of eukaryotic chromosome ends. Two protein families, TRFL (TFL-Like) and SMH (Single-Myb-Histone), containing a specific telobox motif in their Myb domain, have been identified as potential candidates involved in a functional nucleoprotein structure analogous to human "shelterin" at plant telomeres. We analyze the DNA-protein interaction of the full-length and truncated variants of AtTRB1, a SMH-family member with a typical structure: N-terminal Myb domain, central H1/5 domain and C-terminal coiled-coil. We show that preferential interaction of AtTRB1 with double-stranded telomeric DNA is mediated by the Myb domain, while the H1/5 domain is involved in non-specific DNA-protein interaction and in the multimerization of AtTRB1.  相似文献   

10.
Evidence is presented for the presence of xylogalacturonan (XGA) in Arabidopsis thaliana. This evidence was obtained by extraction of pectin from the seeds, root, stem, young leaves and mature leaves of A. thaliana, followed by treatment of these pectin extracts with xylogalacturonan hydrolase (XGH). Upon enzymatic treatment, XGA oligosaccharides were primarily produced from pectin extracts obtained from the young and mature leaves and to a lesser extent from those originating from the stem of A. thaliana. The oligosaccharide GalA(3)Xyl was predominantly formed from these pectin extracts. No XGA oligosaccharides were detected in digests of pectin extracts from the seeds and roots. A low number of XGA oligosaccharides was obtained from pectins of A. thaliana. This indicates a uniform distribution of xylose in XGA from A. thaliana. The predominant production of GalA(3)Xyl, as well as the release of linear GalA oligosaccharides pointed to a lower degree of xylose substitution in XGA from A. thaliana than in XGA from apple and potato. The estimated amount of XGA accounted for approximately 2.5%, 7% and 6% (w/w) of the total carbohydrate in the pectin fraction of the stem, young leaves and mature leaves, respectively.  相似文献   

11.
Epithiospecifier protein (ESP) is a protein that catalyses formation of epithionitriles during glucosinolate hydrolysis. In vitro assays with a recombinant ESP showed that the formation of epithionitriles from alkenylglucosinolates is ESP and ferrous ion dependent. Nitrile formation in vitro however does not require ESP but only the presence of Fe(II) and myrosinase. Ectopic expression of ESP in Arabidopsis thaliana Col-5 under control of the strong viral CaMV 35S promoter altered the glucosinolate product profile from isothiocyanates towards the corresponding nitriles.  相似文献   

12.
Phytochelatin (PC), a class of heavy metal-binding peptides, is synthesized from the tripeptide glutathione (GSH) and/or previously synthesized PC in a reaction mediated by PC synthase (PCS). In the present study, the PC production rate catalyzed by recombinant Arabidopsis PCS1 (rAtPCS1) in the presence of a constant free Cd(II) level increased steadily and the kinetic parameters were approximated using a substituted-enzyme mechanism in which GSH and bis(glutathionato)cadmium acted as co-substrates. In contrast, the PC production rate as a function of GSH concentration at a constant total Cd(II) concentration reached a maximum, which shifted toward higher GSH concentrations as the concentration of Cd(II) was increased. These observations are consistent with the suggestion that rAtPCS1 possesses a Cd(II) binding site where Cd(II) binds to activate the enzyme. The affinity constant, optimized using a one-site mathematical model, successfully simulated the experimental data for the assay system using lower concentrations of Cd(II) (5 or 10 μM) but not for the assay using higher concentrations (50 or 500 μM), where a sigmoidal increase in PCS activity was evident. Furthermore, the PCS activity determined at a constant GSH concentration as a function of Cd(II) concentration also reached a maximum. These findings demonstrate that rAtPCS1 also possesses a second Cd(II) binding site where Cd(II) binds to induce an inhibitory effect. A two-site mathematical model was applied successfully to account for the observed phenomena, supporting the suggestion that rAtPCS1 possesses two Cd(II) binding sites.  相似文献   

13.
The proliferating cell nuclear antigen (PCNA) is a key component of the eukaryotic DNA replication machinery. It also plays an important role in DNA repair mechanisms. Despite the intense scientific research on yeast and human PCNA, information describing the function of this protein in plants is still very limited. In the previous study Arabidopsis PCNA2 but not PCNA1 was proposed to be functionally important in DNA polymerase η-dependent postreplication repair. In addition to the above study, PCNA2 but not PCNA1 was also shown to be necessary for Arabidopsis DNA polymerase λ-dependent oxidative DNA damage bypass. Taking into account the reported differences between PCNA1 and PCNA2, we tested the idea of a possible cooperation between PCNA1 and PCNA2 in the plant cell. In a bimolecular fluorescence complementation assay an interaction between PCNA1 and PCNA2 was observed in the nucleus, as well as in the cytoplasm. This finding, together with our previous results, indicates that PCNA1 and PCNA2 may cooperate in planta by forming homo- and heterotrimeric rings. The observed interaction might be relevant when distinct functions for PCNA1 and PCNA2 are considered.  相似文献   

14.
15.
High-salinity, drought, and low temperature are three common environmental stress factors that seriously influence plant growth and development worldwide. Recently, microRNAs (miRNAs) have emerged as a class of gene expression regulators that have also been linked to stress responses. However, the relationship between miRNA expression and stress responses is just beginning to be explored. Here, we identified 14 stress-inducible miRNAs using microarray data in which the effects of three abiotic stresses were surveyed in Arabidopsis thaliana. Among them, 10 high-salinity-, four drought-, and 10 cold-regulated miRNAs were detected, respectively. miR168, miR171, and miR396 responded to all of the stresses. Expression profiling by RT-PCR analysis showed great cross-talk among the high-salinity, drought, and cold stress signaling pathways. The existence of stress-related elements in miRNA promoter regions provided further evidence supporting our results. These findings extend the current view about miRNA as ubiquitous regulators under stress conditions.  相似文献   

16.
Cesium as an alkali element exhibits a chemical reactivity similar to that of potassium, an essential element for plants. It has been suggested that Cs phytotoxicity might be due either to its competition with potassium to enter the plant, resulting in K starvation, or to its intracellular competition with K binding sites in cells. Such elemental interactions can be evidenced by chemical imaging, which determines the elemental distributions. In this study, the model plant Arabidopsis thaliana was exposed to 1 mM cesium in the presence (20 mM) or not of potassium. The quantitative imaging of Cs and endogenous elements (P, S, Cl, K, Ca, Mn, Fe, and Zn) was carried out using ion beam micro-chemical imaging with 5 microm spatial resolution. Chemical imaging was also evidenced by microfocused synchrotron-based X-ray fluorescence (microXRF) which presents a better lateral resolution (<1 microm) but is not quantitative. Cesium distribution was similar to potassium which suggests that Cs can compete with K binding sites in cells. Cesium and potassium were mainly concentrated in the vascular system of stems and leaves. Cs was also found in lower concentration in leaves mesophyll/epidermis. This late representing the larger proportion in mass, mesophyll/epidermis can be considered as the major storage site for cesium in A. thaliana. Trichomes were not found to accumulate cesium. Interestingly, increased Mn, Fe, and Zn concentrations were observed in leaves at high chlorosis. Mn and Fe increased more in the mesophyll than in veins, whereas zinc increased more in veins than in the mesophyll suggesting a tissue specific interaction of Cs with these trace elements homeostasis. This study illustrates the sensitivity of ion beam microprobe and microfocused synchrotron-based X-ray fluorescence to investigate concentrations and distributions of major and trace elements in plants. It also shows the suitability of these analytical imaging techniques to complement biochemical investigations of metallic stress in plants.  相似文献   

17.
The biochemical pathways involved in the biosynthesis and accumulation of storage lipids in seeds have been extensively studied. However, the regulatory mechanisms of those pathways, their environmental interactions and the ecological implications of variation are poorly understood. We have initiated a new approach: the analysis of natural variation in Arabidopsis thaliana. Three hundred and sixty accessions were surveyed for content of oil, very long chain fatty acids (VLCFAs) and polyunsaturated fatty acids (PUFAs) in their seeds. The results revealed extensive natural variation. A core set of accessions, the seeds of which reproducibly contain extreme amounts of oil, VLCFAs and PUFAs have been identified. Reproducible oil content ranged from 34.6 to 46.0% of seed dry weight. VLCFA content ranged from 13.0 to 21.2% of total fatty acids. PUFA content, ranged from 53.3 to 66.1% of total fatty acids. Interactions were also identified for PUFA and VLCFA content of seeds with vernalisation of plants. Mapping of the regions of the genome involved in controlling the traits was conducted in an F(2) population and indicated that natural variation at the loci FAE1 and FAD3 might be involved in the regulation of VLCFA and PUFA content, respectively. A set of accessions, which capture a broad range of the natural variation for these traits available in A. thaliana, has been selected to form a core set which can be used to further dissect the genetics of the regulation of seed lipid traits and to identify the genes involved.  相似文献   

18.
Klasen JR  Piepho HP  Stich B 《Heredity》2012,108(6):626-632
A major goal of today's biology is to understand the genetic basis of quantitative traits. This can be achieved by statistical methods that evaluate the association between molecular marker variation and phenotypic variation in different types of mapping populations. The objective of this work was to evaluate the statistical power of quantitative trait loci (QTL) detection of various multi-parental mating designs, as well as to assess the reasons for the observed differences. Our study was based on an empirical data of 20 Arabidopsis thaliana accessions, which have been selected to capture the maximum genetic diversity. The examined mating designs differed strongly with respect to the statistical power to detect QTL. We observed the highest power to detect QTL for the diallel cross with random mating design. The results of our study suggested that performing sibling mating within subpopulations of joint-linkage mapping populations has the potential to considerably increase the power for QTL detection. Our results, however, revealed that using designs in which more than two parental alleles segregate in each subpopulation increases the power even more.  相似文献   

19.
Decreased stability of photosystem I in dgd1 mutant of Arabidopsis thaliana   总被引:1,自引:0,他引:1  
Guo J  Zhang Z  Bi Y  Yang W  Xu Y  Zhang L 《FEBS letters》2005,579(17):3619-3624
The dgd1 mutant of Arabidopsis thaliana provides us with a powerful tool for revealing the specific role of digalactosyldiacylglycerol (DGDG) in photosynthesis. Blue-native polyacrylamide gel electrophoresis analysis revealed that photosystem I (PSI) subunits are assembled into a PSI complex, and that a PSI subcomplex lacking stroma side subunits was also present. PSI subunits in the dgd1 mutant were decreased to a similar level compared with that in the wild type (WT) Arabidopsis. Further experiments showed that PSI subunits in the stroma side, PsaD and PsaE, in the dgd1 mutant were more susceptible to removal by chaotropic agents than those in the WT plant, indicating that the stability of PsaD and PsaE is impaired in the dgd1 mutant. These results provide evidence that DGDG is important for the stability of the PSI complex.  相似文献   

20.
Recombinant Arabidopsis thaliana (At) RGL-3, using two vectors pMAL-c2 and pET 21, was expressed as inclusion bodies in Escherichia coli under a range of temperature conditions. Only low levels (8-12% of total protein) of soluble protein were produced. The "soluble" fraction was shown by native PAGE to exist as soluble aggregates of RGL-3. A method was developed, consisting of induction of expression at various temperatures that yielded high levels of refoldable inclusion bodies using the pET vector. (At) RGL-3, as inclusion bodies, was solubilized in 8M urea and refolding was initiated by 20-fold direct dilution of denaturant. Under optimal conditions, 87% of the denatured protein of inclusion bodies was successfully re-natured. Refolding was monitored by "native" PAGE. Refolded RGL-3 was shown to be present as monomers and dimers. Attempts to further purify His-tagged RGL-3 using Ni/NTA chromatography resulted in the formation of higher polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号