首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liquid drainage through the peritoneal diaphragmatic surface   总被引:3,自引:0,他引:3  
In 14 spontaneously breathing anesthetized rabbits, we used cyanoacrylate to glue a hollow capsule, at end expiration or at end inspiration, to the peritoneal surface of the tendinous portion of the diaphragm. The capsule was connected to a pressure transducer and a pipette calibrated in microliters. We filled the system with fluid and measured flow into the diaphragmatic surface facing the capsule (Fcap, microliter/cm2), from liquid displacement in the pipette at different hydraulic pressures in the system (Pcap). Pleural liquid pressure was simultaneously measured in the supraphrenic region (Psup). Fcap was positively correlated to transdiaphragmatic pressure gradient (Psup-Pcap) and breathing frequency but was unaffected by protein concentration of capsular fluid. For a breathing frequency of 30 cycles/min and a Psup - Pcap = -2 cmH2O, Fcap was 0.54 microliter.min-1.cm-2 for capsules applied at end expiration and 10-fold greater for capsules applied at end inspiration. Data indicate that the diaphragmatic tendinous portion in rabbits is a draining site for peritoneal fluid and that the conductance of the draining pathways (lymphatic stomata) is related to diaphragmatic tension. In the intact rabbit the average peritoneal fluid drainage through the tendinous portion of the diaphragm (approximately 16 cm2) was estimated at 43 microliters/min.  相似文献   

2.
To examine the mechanical effects of the abdominal and triangularis sterni expiratory recruitment that occurs when anesthetized dogs are tilted head up, we measured both before and after cervical vagotomy the end-expiratory length of the costal and crural diaphragmatic segments and the end-expiratory lung volume (FRC) in eight spontaneously breathing animals during postural changes from supine (0 degree) to 80 degrees head up. Tilting the animals from 0 degree to 80 degrees head up in both conditions was associated with a gradual decrease in end-expiratory costal and crural diaphragmatic length and with a progressive increase in FRC. All these changes, however, were considerably larger (P less than 0.005 or less) postvagotomy when the expiratory muscles were no longer recruited with tilting. Alterations in the elastic properties of the lung could not account for the effects of vagotomy on the postural changes. We conclude therefore that 1) by contracting during expiration, the canine expiratory muscles minimize the shortening of the diaphragm and the increase in FRC that the action of gravity would otherwise introduce, and 2) the end-expiratory diaphragmatic length and FRC in upright dogs are thus actively determined. The present data also indicate that by relaxing at end expiration, the expiratory muscles make a substantial contribution to tidal volume in upright dogs; in the 80 degrees head-up posture, this contribution would amount to approximately 60% of tidal volume.  相似文献   

3.
The use of sonomicrometry to study the mechanical properties of the diaphragm in vivo is presented. This method consists of the implantation of piezoelectric transducers between muscle fibers to measure the fibers' changes in length. Ultrasonic bursts are produced by one transducer upon electrical excitation and sensed by a second transducer placed 1-2 cm away. The time elapsed between the generation of the ultrasound burst and its detection is used to calculate the intertransducer distance. Excitation and sampling are done at 1.5 kHz and the output is a DC signal proportional to the length change between the transducers. Neither irreversible injury to the diaphragm nor regional differences within an anatomical part or segment were noted. Measurements were stable within the physiological range of temperature. We measured costal and crural length and velocity of contraction in anesthetized dogs during spontaneous breathing, occluded inspirations, passive lung inflation, and supramaximal phrenic nerve stimulation. We found that shortening during spontaneous breathing was 11 and 6% for crural and costal, respectively. The crural leads the costal in velocity of shortening. Supramaximal stimulation results in a velocity of shortening of 5 resting lengths X s-1. During an occluded inspiration crural shortens as much as in the nonoccluded breath, whereas costal shortens less. During passive lung inflation there is a nearly linear relationship between lung volume and diaphragm length; however, the relationships of chest wall dimensions with diaphragm length are nonlinear and cannot be described by any simple function. Some of the implications of these data on the present understanding of diaphragmatic mechanics are discussed.  相似文献   

4.
Changes in lung volume can be partitioned into volume displacements of the rib cage and abdomen. Abdominal displacements are often used as estimates of diaphragmatic displacements and changes in lengthening of diaphragmatic muscle. We used X-rays, ultrasound, and linear measurements of thoracic and abdominal diameters to estimate relationships among lung volume, thoracoabdominal configuration and diaphragmatic length, and we found that diaphragmatic length was strongly dependent on rib cage as well as abdominal displacement. In three subjects, the diaphragm shortened 57-85% as much during a breath made without abdominal displacement as during a normal breath in which the abdominal wall moved outward with the rib cage. We conclude that changes in diaphragmatic length can be estimated from surface measurements without radiation and that the length of the diaphragm cannot be estimated from displacements of the abdominal wall alone.  相似文献   

5.
During semistatic inspiratory and expiratory vital capacity (VC) maneuvers, axial motion of the diaphragm was measured by lateral fluoroscopy and was compared with diaphragmatic volume displacement. Axial motion was measured at the anterior, middle, and posterior parts of the diaphragm, and the mean of these measurements was used. The volume displacement was calculated in two ways: first, from respiratory inductive plethysmograph-(Respitrace) derived cross-sectional area changes of rib cage and abdomen (Vdi,RIP) by means of a theoretical analysis described by Mead and Loring (J. Appl. Physiol. 53: 750-755, 1982) and, second, from fluoroscopically measured changes in position and anteroposterior surface of the diaphragm (Vdi,F). A very good linear relationship was found between Vdi,RIP and Vdi,F during inspiration as well as expiration (r greater than 0.95), indicating that the analysis of Mead and Loring was valid in the conditions of the present study. The diaphragmatic volume displacement (active or passive) accounted for 50-60% of VC. A very good linear relationship was also found between mean axial motion and volume displacement of the diaphragm measured with both methods during inspiration and expiration (r greater than 0.98). Our data suggest that, over the VC range, diaphragmatic displacement functionally can be represented by a pistonlike model, although topographically and anatomically it does not behave as a piston.  相似文献   

6.
Cohn, David, Joshua O. Benditt, Scott Eveloff, and F. DennisMcCool. Diaphragm thickening during inspiration.J. Appl. Physiol. 83(1): 291-296, 1997.Ultrasound has been used to measure diaphragm thickness(Tdi) in thearea where the diaphragm abuts the rib cage (zone of apposition).However, the degree of diaphragm thickening during inspiration reportedas obtained by one-dimensional M-mode ultrasound was greater than thatpredicted by using other radiographic techniques. Becausetwo-dimensional (2-D) ultrasound provides greater anatomic definitionof the diaphragm and neighboring structures, we used this technique toreevaluate the relationship between lung volume andTdi. We firstestablished the accuracy and reproducibility of 2-D ultrasound bymeasuring Tdiwith a 7.5-MHz transducer in 26 cadavers. We found thatTdi measured byultrasound correlated significantly with that measured by ruler (R2 = 0.89), withthe slope of this relationship approximating a line of identity(y = 0.89x + 0.04 mm). The relationship between lung volume andTdi was thenstudied in nine subjects by obtaining diaphragm images at the fivetarget lung volumes [25% increments from residual volume (RV) tototal lung capacity (TLC)]. Plots ofTdi vs. lungvolume demonstrated that the diaphragm thickened as lung volumeincreased, with a more rapid rate of thickening at the higher lungvolumes[Tdi = 1.74 vital capacity (VC)2 + 0.26 VC + 2.7 mm] (R2 = 0.99; P < 0.001) where lung volumeis expressed as a fraction of VC. The mean increase inTdi between RVand TLC for the group was 54% (range 42-78%). We conclude that2-D ultrasound can accurately measureTdi and that theaverage thickening of the diaphragm when a subject is inhaling from RVto TLC using this technique is in the range of what would be predictedfrom a 35% shortening of the diaphragm.

  相似文献   

7.
To determine the role of postinspiratory inspiratory activity of the diaphragm in the biphasic ventilatory response to hypoxia in unanesthetized rats, we examined diaphragmatic activity at its peak (DI), at the end of expiration (DE), and ventilation in adult unanesthetized rats during poikilocapnic hypoxia (10 % O2) sustained for 20 min. Hypoxia induced an initial increase in ventilation followed by a consistent decline. Tidal volume (VT), frequency of breathing (fR), DI and DE at first increased, then VT and DE decreased, while fR and DI remained enhanced. Phasic activation of the diaphragm (DI-DE) increased significantly at 10, 15 and 20 min of hypoxia. These results indicate that 1) the ventilatory response of unanesthetized rats to sustained hypoxia has a typical biphasic character and 2) the increased end-expiratory activity of the diaphragm limits its phasic inspiratory activation, but this increase cannot explain the secondary decline in tidal volume and ventilation.  相似文献   

8.
Ventilation and electromyographic (EMG) activity of the diaphragm were recorded in unanesthetized kittens 2 and 10 wk of age during normoxia, hypercapnia (2 and 4% CO2), and hypoxia (12 and 10% O2). We measured integrated diaphragmatic EMG activity at end inspiration (DIAI) and end expiration (DIAE); the difference (DIAI-E), which represents the phasic change of the diaphragmatic activity, was considered responsible for a given tidal volume (VT). During hypercapnia, the 2-wk-old kittens increased minute ventilation (V) by increases in both VT and respiratory frequency (f), whereas the 10-wk-old kittens increased V primarily by an increase in VT. At both ages, DIAI and DIAI-E increased during hypercapnia, whereas DIAE did not change significantly. During hypoxia, in the young kittens, V and VT decreased while f increased markedly; in the older kittens, V, VT, and f did not change significantly. In kittens of both ages, DIAI increased during hypoxia; because diaphragmatic activity persisted into expiration, DIAE also increased. DIAI-E, as well as VT, was decreased in the young kittens, whereas in the older ones DIAI-E was slightly increased despite an unchanged VT. Finally, the ventilatory and diaphragmatic response to hypoxia changes with maturation in contrast to the response to hypercapnia. It is concluded that 1) the hypoxia-induced reduction of VT may result from prolongation of diaphragmatic activity into expiration, inasmuch as it induces a reduction of the phasic change of the diaphragmatic activity, and 2) because DIAI-E indirectly reflects central inspiratory output, a central mechanism should be involved in the reduced VT and V in response to hypoxia in newborns.  相似文献   

9.
Volume quantification of chest wall motion in dogs   总被引:3,自引:0,他引:3  
We employed high-speed multisliced X-ray-computed tomography to determine the relative volume contributions of rib cage (delta Vrc) and diaphragmatic motion (delta Vdi) to tidal volume (VT) during spontaneous breathing in 6 anesthetized dogs lying supine. Mean values were 40 +/- 6% (SE) for delta Vrc and 62 +/- 8% of VT for delta Vdi. The difference between VT and changes in thoracic cavity volume was taken to represent a change in thoracic blood volume (2 +/- 3% of VT). To estimate how much of delta Vrc was caused by diaphragmatic contraction and how much of delta Vdi was caused by rib cage motion, delta Vrc and delta Vdi were determined during bilateral stimulation of the C5-C6 phrenic nerve roots in the apneic dog and again during spontaneous breathing after phrenicotomy. Thoracic cavity volume (Vth) measured during hypocapnic apnea was consistently larger than Vth at end expiration, suggesting that relaxation of expiratory muscles contributed significantly to both delta Vrc and delta Vdi during spontaneous inspiration. Phrenic nerve stimulation did not contribute to delta Vrc, suggesting that diaphragmatic contraction had no net expanding action on the rib cage above the zone of apposition. Spontaneous breathing after phrenicotomy resulted in small and inconsistent diaphragmatic displacement (8 +/- 4% of VT). We conclude that the diaphragm does not drive the rib cage to inflate the lungs and that rib cage motion does not significantly affect diaphragmatic position during spontaneous breathing in anesthetized dogs lying supine.  相似文献   

10.
Regulation of end-expiratory lung volume during exercise   总被引:7,自引:0,他引:7  
We determined the effects of exercise on active expiration and end-expiratory lung volume (EELV) during steady-state exercise in 13 healthy subjects. We also addressed the questions of what affects active expiration during exercise. Exercise effects on EELV were determined by a He-dilution technique and verified by changes in end-expiratory esophageal pressure. We also used abdominal pressure-volume loops to determine active expiration. EELV was reduced with increasing exercise intensity. EELV was reduced significantly during even mild steady-state exercise and during heavy exercise decreased an average of 0.71 +/- 0.3 liter. Dynamic lung compliance was reduced 30-50%; EELV remained greater than closing volume. Changing the resistance to airflow (via SF6-O2 or He-O2 breathing) during steady-state exercise changed the peak gastric and esophageal pressure generation during expiration but did not alter EELV; breathing through the mouthpiece produced similar effects during exercise. EELV was significantly reduced in the supine position. With supine exercise active expiration was not elicited, and EELV remained the same as in supine rest. With CO2-driven hyperpnea (7-70 l/min), EELV remained unchanged from resting levels, whereas during exercise, at similar minute ventilation (VE) values EELV was consistently decreased. At the same VE, treadmill running caused an increase in tonic gastric pressure and greater reductions in EELV than either walking or cycling. We conclude that both the exercise stimulus and the resultant hyperpnea stimulate active expiration and a reduced FRC. This new EELV is preserved in the face of moderate changes in mechanical time constants of the lung. This reduced EELV during exercise aids inspiration by optimizing diaphragmatic length and permitting elastic recoil of the chest wall.  相似文献   

11.
Bonora, M., and M. Vizek. Role of vagalfibers in the hypoxia-induced increases in end-expiratory lung volumeand diaphragmatic activity. J. Appl.Physiol. 83(3): 700-706, 1997.The possible role of pulmonary C fibers in thehypoxia-induced concomitant increases in end-expiratory lung volume(EELV) and in the activity of the diaphragm at the end of expiration(DE) were evaluated bymeasuring the effects of hypoxia (10%O2) on ventilation, EELV, andDE in eight chloralose-urethananesthetized rats. Recordings were made before and after blocking vagalC fibers and after bilateral vagotomy. C-fiber conduction was blockedby applying capsaicin perineurally to the cervical vagi. The efficiencyof C-fiber blockade was tested with intravenous capsaicin and itsselectivity by the Hering-Breuer reflex. Perineural capsaicin abolishedthe reflex apnea induced by intravenous capsaicin and transientlyreduced Hering-Breuer reflex. Perineural capsaicin affected neitherventilation, DE, and EELV in airnor the hypoxia-induced increases in these parameters. Vagotomy causedthe typical changes of breathing pattern in air, but the ventilatoryresponse to hypoxia was unchanged. Vagotomy performed during hypoxiaresulted in large decreases inDE and EELV. Hypoxia increasedDE and EELV in vagotomized rats but less than in intact rats. We conclude that the hypoxia-induced increases in EELV and diaphragmatic activity are probably not mediatedby vagal C fibers and that vagal afferents are involved but not fullyresponsible for this phenomenon.

  相似文献   

12.
Present methods of assessing the work of breathing in human infants do not account for the added load when intercostal muscle activity is lost and rib cage distortion occurs. We have developed a technique for assessing diaphragmatic work in this circumstance utilizing measurements of transdiaphragmatic pressure and abdominal volume displacement. Eleven preterm infants without evidence of lung disease were studied. During periods of minimal rib cage distortion, inspiratory diaphragmatic work averaged 5.9 g X cm X ml-1, increasing to an average of 12.4 g X cm X ml-1 with periods of paradoxical rib cage motion (P less than 0.01). Inspiratory work was strongly correlated with the electrical activity of the diaphragm as measured from its moving time average (P less than 0.05). Assuming a mechanical efficiency of 4% in these infants, the caloric cost of diaphragmatic work may reach 10% of their basal metabolic rate in periods with rib cage distortion. When lung disease is superimposed, the increased metabolic demands of the diaphragm may predispose preterm infants to fatigue and may contribute to a failure to grow.  相似文献   

13.
Inspiratory resistive loaded (IRL) breathing results in hypoventilation and diaphragmatic fatigue in the piglet. We studied the effects of 6 h of IRL on ten 1-mo-old piglets. The load was adjusted to increase spontaneously generated transdiaphragmatic pressure five to six times baseline. Six 1-mo-old piglets acted as controls and were identically instrumented but were not subjected to IRL. Measurements of ventilation, blood gases and pH, diaphragmatic electromyogram, force-frequency curve, blood flow, and end-expiratory lung volume were obtained hourly. Diaphragmatic muscle samples were obtained after 6 h for determination of ATP, phosphocreatine, lactate, and glycogen levels. No changes occurred in the control animals. IRL resulted in a significant decrease in ventilation, an increase in diaphragmatic EMG, onset of abdominal expiratory muscle activity, and a fall in end-expiratory lung volume by 1 h. The force-frequency curve adjusted for lung volume change fell by 20% at all frequencies of stimulation at 1 h and by 40% at 6 h. Blood flow to the costal and crural diaphragm increased by 51 and 141%, respectively. No differences were noted in ATP, phosphocreatine, lactate, or glycogen between control and IRL animals. It is concluded that submaximal spontaneous contractions of the piglet diaphragm over a 6-h period cause a substantial decrease in its maximal force-generating capacity that is not related to substrate depletion.  相似文献   

14.
We examined the effects of reversible vagal cooling on respiratory muscle activities in awake chronically instrumented tracheotomized dogs. We specifically analyzed electromyographic (EMG) activity and its ventilatory correlates, end-expiratory lung volume (EELV) and diaphragmatic resting length via sonomicrometry. Elimination of phasic and tonic mechanoreceptor activity by vagal cooling doubled the EMG activity of the costal, crural, and parasternal muscles, with activation occurring sooner relative to the onset of inspiratory flow. Diaphragmatic postinspiration inspiratory activity in the intact dog coincided with a brief mechanical shortening of the diaphragm during early expiration; vagal blockade removed both the electrical activity and the mechanical shortening. Vagal blockade also doubled the EMG activity of a rib cage expiratory muscle, the triangularis sterni, but reduced that of an abdominal expiratory muscle, the transversus abdominis. Within-breath electrical activity of both muscles occurred sooner relative to the onset of expiratory flow during vagal blockade. Vagal cooling was also associated with a 12% increase in EELV and a 5% decrease in end-expiratory resting length of the diaphragm. We conclude that vagal input significantly modulates inspiratory and expiratory muscle activities, which help regulate EELV efficiently and optimize diaphragmatic length during eupneic breathing in the awake dog.  相似文献   

15.
In eight healthy volunteers we simultaneously measured the axial diaphragmatic motion by fluoroscopy and the cross-sectional area changes of the rib cage (RC) and abdomen (ABD) by Respitrace (RIP) during semistatic vital capacities (VC). We found that, if the fluoroscopic axial displacement of the posterior part of the diaphragm between residual volume (RV) and total lung capacity (TLC) is considered equal to 100%, the movement of the middle part is 90%, whereas that of the anterior part is only approximately 60%; the ratio of the axial displacements to mouth volume, furthermore, decreases at high lung volumes, especially for the anterior part. The RIP signal is nearly linearly related to mouth volume, but the contribution of the RC (delta RC) progressively increases (and is approximately 80% RIP at TLC), whereas the volume contribution of the ABD (delta ABD) levels off (to 20% RIP at TLC). The diaphragmatic volume displacement calculated from the theoretical analysis described by Mead and Loring also levels off at high volumes similarly as the ABD but is approximately 50% RIP at TLC. Finally, the axial movements of the three parts of the diaphragm are linearly related to the RC and ABD cross-sectional-area changes (r 0.91-0.97) and are even significantly better correlated with the "calculated" diaphragmatic volume displacement.  相似文献   

16.
Chest wall distortion is common in infants and is especially visible in preterm infants. It has been suggested that this distortion increases the volume displacement of the diaphragm during inspiration, which may be associated with muscular fatigue and apnea. We studied 10 preterm infants who had no evidence of lung disease, investigating the effect of chest wall distortion on the volume displacement and work of the diaphragm. The volume changes of the respiratory system were partitioned using an inductance plethysmograph. The minute volume displacement and the work of the diaphragm were calculated using the partitioned abdominal volume change and the gastric and esophageal pressures. The paradoxical movement of the chest wall lasted an average of 36% of inspiration. The minute volume displacement of the diaphragm ranged from 72 to 176% of the minute pulmonary ventilation, and diaphragmatic work ranged from 94 to 793% of that performed on the lungs. The amount of chest wall distortion, as reflected by the duration of the paradoxical chest wall movement, the minute volume excursion, or work of the diaphragm, was not related to the mechanical properties of the lungs. This estimated work load may represent a significant expenditure of calories in these infants and may contribute to the development of diaphragmatic fatigue, apnea, and a prolonged need for mechanical ventilation.  相似文献   

17.
Chest wall distortion leads to increased minute volume displacement of the diaphragm (MVDD) and diaphragmatic work (DW) in preterm infants. Lung mechanics, MVDD, and DW were measured at weekly intervals in six preterm infants between 29 and 36 wk postconceptional age. Over the period of study, MVDD and DW decreased significantly, whereas dynamic lung compliance consistently increased. There was no consistent change in the pulmonary ventilation, total pulmonary resistance, the work performed on the lungs, or the change in intraesophageal pressure with tidal breathing. The improvement in the stability of the chest wall, as indicated by the change in these dynamic measurements of diaphragmatic function, parallels the decrease in static chest wall compliance and the clinical course of the resolution of apnea of prematurity.  相似文献   

18.
In this article, we aimed at investigating the interaction between breathing and swallowing patterns in normal subjects. Ten healthy volunteers were included in the study. Diaphragm EMG activity was recorded by a needle electrode inserted into the 7th or 8th intercostal space. Swallowing was monitored by submental EMG activity, and laryngeal vertical movement was recorded by using a movement sensor. A single voluntary swallow was initiated during either the inspiration or expiration phases of respiration, and changes in EMG activity were evaluated. When a swallow coincided with either inspiration or expiration, the duration of the respiratory phase was prolonged. Normal subjects were able to voluntarily swallow during inspiration. During the inspiration phase with swallowing, diaphragmatic activity did not ceased and during the expiration phase with swallowing, there was a muscle activity in the diaphragm muscle.  相似文献   

19.
In this project we evaluate the dynamic changes during expiration at different levels of positive-end-expiratory pressure (PEEP) in ventilated patients. We wanted to discriminate between normal lung function and acute respiratory distress syndrome (ARDS). After approval by the local Ethic Committee we studied two ventilated patients: (one with normal lung function and one with ARDS) We used the 50 ms scan mode of the EBCT. The beam was positioned 1 cm above the diaphragm while the table position remained unchanged. We developed an electronic trigger that utilizes the respirator's synchronizing signal to start the EBCT at the onset of expiration. During controlled mechanical expiration at two levels of PEEP (0 and 15 cm H2O), pulmonary aeration was rated as: well-aerated (-900HU to -500HU), poorly aerated (-500HU to -100HU) and non-aerated (-100HU to +100HU). Pathological and normal lung functions showed different dynamic changes. The different PEEP levels resulted in a significant change of pulmonary aeration in the same patient. Although we studied only two patients, respiratory triggered EBCT may be accurate in discriminating pathological changes due to the abnormal lung function in a mechanically ventilated patient.  相似文献   

20.
In an attempt to understand the role of the parasternal intercostals in respiration, we measured the changes in length of these muscles during a variety of static and dynamic respiratory maneuvers. Studies were performed on 39 intercostal spaces from 10 anesthetized dogs, and changes in parasternal intercostal length were assessed with pairs of piezoelectric crystals (sonomicrometry). During static maneuvers (passive inflation-deflation, isovolume maneuvers, changes in body position), the parasternal intercostals shortened whenever the rib cage inflated, and they lengthened whenever the rib cage contracted. The changes in parasternal intercostal length, however, were much smaller than the changes in diaphragmatic length, averaging 9.2% of the resting length during inflation from residual volume to total lung capacity and 1.3% during tilting from supine to upright. During quiet breathing the parasternal intercostals always shortened during inspiration and lengthened during expiration. In the intact animals the inspiratory parasternal shortening was close to that seen for the same increase in lung volume during passive inflation and averaged 3.5%. After bilateral phrenicotomy, however, the parasternal intercostal shortening during inspiration markedly increased, whereas tidal volume diminished. These results indicate that 1) the parasternal intercostals in the dog are real agonists (as opposed to fixators) and actively contribute to expand the rib cage and the lung during quiet inspiration, 2) the relationship between lung volume and parasternal length is not unique but depends on the relative contribution of the various inspiratory muscles to tidal volume, and 3) the physiological range of operating length of the parasternal intercostals is considerably smaller than that of the diaphragm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号