首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Process Biochemistry》2014,49(10):1723-1732
The removal and transformation of seven high molecular weight polycyclic aromatic hydrocarbons (PAHs), namely benz[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, indeno[1,2,3-c,d]pyrene and benzo[g,h,i]perylene, by a freshwater microalga Selenastrum capricornutum under gold and white light irradiation was studied. The two light sources did not result in significant differences in the biodegradation of the selected PAHs in live algal cells, but white light was more effective in promoting photodegradation than was gold light in dead cells. The removal efficiency of seven PAHs, as well as the difference between live and dead microalgal cells, was PAH compound-dependent. Benz[a]anthracene and benzo[a]pyrene were highly transformed in live and dead algal cells, and dead cells displayed greater transformation levels than live cells. Further investigation comparing the transformation of single PAH compound, benzo[a]pyrene, by S. capricornutum and another green microalgal species, Chlorella sp., demonstrated that the transformation in dead cells was similar, indicating the process was algal-species independent. Dead algal cells most likely acted as a photosensitizer and accelerated the photodegradation of PAHs.  相似文献   

2.
Activation of aryl hydrocarbon receptor (AhR) by 30 polycyclic aromatic hydrocarbons (PAHs) was determined in the chemical-activated luciferase expression (CALUX) assay, using two exposure times (6 and 24h), in order to reflect the metabolization of PAHs. AhR-inducing potencies of PAHs were expressed as induction equivalency factors (IEFs) relative to benzo[a]pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In 24h exposure assay, the highest IEFs were found for benzo[k]fluoranthene, dibenzo[a,h]anthracene and dibenzo[a,k]fluoranthene (approximately three orders of magnitude lower than TCDD) followed by dibenzo[a,j]anthracene, benzo[j]fluoranthene, indeno[1,2,3-cd]pyrene, and naphtho[2,3-a]pyrene. The 6h exposure to PAHs led to a significantly higher AhR-mediated activity than the 24h exposure (generally by two orders of magnitude), probably due to the high rate of PAH metabolism. The strongest AhR inducers showed IEFs approaching that of TCDD. Several PAHs, including some strong mutagens, such as dibenzo[a,l]pyrene, cyclopenta[cd]pyrene, and benzo[a]perylene, elicited only partial agonist activity. Calculation of IEFs based on EC25 values and/or 6h exposure data is suggested as an alternative approach to estimation of toxic potencies of PAHs with high metabolic rates and/or the weak AhR agonists. The IEFs, together with the recently reported relative mutagenic potencies of PAHs [Mutat. Res. 371 (1996) 123; Mutat. Res. 446 (1999) 1] were combined with data on concentrations of PAHs in extracts of model environmental samples (river sediments) to calculate AhR-mediated induction equivalents and mutagenic equivalents. The highest AhR-mediated induction equivalents were found for benzo[k]fluoranthene and benzo[j]fluoranthene, followed by indeno[1,2,3-cd]pyrene, dibenzo[a,h]anthracene, benzo[a]pyrene, dibenzo[a,j]anthracene, chrysene, and benzo[b]fluoranthene. High mutagenic equivalents in the river sediments were found for benzo[a]pyrene, dibenzo[a,e]pyrene, and naphtho[2,3-a]pyrene and to a lesser extent also for benzo[a]anthracene, benzo[b]fluoranthene, indeno[1,2,3-cd]pyrene, benzo[j]fluoranthene, dibenzo[a,e]fluoranthene and dibenzo[a,i]pyrene. These data illustrate that AhR-mediated activity of PAHs, including the highly mutagenic compounds, occurring in the environment but not routinely monitored, could significantly contribute to their adverse effects.  相似文献   

3.
The bipotent liver progenitor cells, so called oval cells, may participate at the early stages of hepatocarcinogenesis induced by chemical carcinogens. Unlike in mature parenchymal cells, little is known about formation of DNA adducts and other genotoxic events in oval cells. In the present study, we employed spontaneously immortalized rat liver WB-F344 cell line, which is an established in vitro model of oval cells, in order to study genotoxic effects of selected carcinogenic polycyclic aromatic hydrocarbons (PAHs). With exception of dibenzo[a,l]pyrene, and partly also benzo[g]chrysene and benz[a]anthracene, all other PAHs under the study induced high levels of CYP1A1 and CYP1B1 mRNA. In contrast, we observed distinct genotoxic and cytotoxic potencies of PAHs. Dibenzo[a,l]pyrene, and to a lesser extent also benzo[a]pyrene, benzo[g]chrysene and dibenzo[a,e]pyrene, formed high levels of DNA adducts. This was accompanied with accumulation of Ser-15 phosphorylated form of p53 protein and induction of apoptosis. Contrary to that, benz[a]anthracene, chrysene, benzo[b]fluoranthene and dibenzo[a,h]anthracene induced only low amounts of DNA adducts formation and minimal apoptosis, without exerting significant effects on p53 phosphorylation. Finally, we studied effects of 2,4,3',5'-tetramethoxystilbene and fluoranthene, inhibitors of CYP1B1 activity, which plays a central role in metabolic activation of dibenzo[a,l]pyrene. In a dose-dependent manner, both compounds inhibited apoptosis induced by dibenzo[a,l]pyrene, suggesting that it interferes with the metabolic activation of the latter one. The present data show that in model cell line sharing phenotypic properties with oval cells, PAHs can be efficiently metabolized to form ultimate genotoxic metabolites. Liver progenitor cells could be thus susceptible to this type of genotoxic insult, which makes WB-F344 cell line a useful tool for studies of genotoxic effects of organic contaminants in liver cells. Our results also suggest that, unlike in mature hepatocytes, CYP1B1 might be a primary enzyme responsible for formation of DNA adducts in liver progenitor cells.  相似文献   

4.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants that have been linked to certain human cancers. The fjord region PAH dibenzo[a,l]pyrene exhibits the highest levels of carcinogenic activity of all PAH as yet tested in rodent tumor models. Another hexacyclic aromatic hydrocarbon, dibenzo[c,p]chrysene (DBC), is a unique PAH that possesses one bay region and two fjord regions within the same molecule. Due to its structure, which is a merger of the fjord region PAHs benzo[c]phenanthrene, benzo[c]chrysene, and benzo[g]chrysene, DBC is of considerable research interest. In order to investigate the pathway of regioselective metabolism we have studied the cytotoxicity, metabolic activation and DNA adduct formation of DBC in human mammary carcinoma MCF-7 cells in culture. The cytotoxicity assay indicated undisturbed cell proliferation even at concentrations as high as 4.5 microM (1.5 micro g/ml) DBC. Concurrently, DNA adducts were detected in MCF-7 cells treated with DBC only in low amounts (0.6 pmol adducts/mg DNA). On the contrary, exposure to anti-DBC-1,2-diol-3,4-epoxide and anti-DBC-11,12-diol-13,14-epoxide, two putatively genotoxic metabolites of DBC, resulted in high levels of DNA adducts (33 and 51 pmol adducts/mg DNA, respectively). Although DBC was not efficiently transformed into DNA-reactive metabolites in MCF-7 cells in culture, the results from our study indicate that the two fjord region diol-epoxide derivatives of DBC may serve as ultimate genotoxic metabolites once they are enzymatically generated under certain circumstances in vitro or in vivo.  相似文献   

5.
We have used the human hepatoma cell line, Hep G2, to examine the ability of hormones and xenobiotics to modulate the hepatic induction of benzo(a)pyrene hydroxylase and epoxide hydrolase. Hep G2 cells were cultured in Eagle's Minimum Essential Medium supplemented with 10% fetal calf serum. 3-Methylcholanthrene, diethylstilbestrol, testosterone propionate, and combinations of 3-meth-ylcholanthrene, and each of the hormones were added directly to the culture media. We subsequently studied the metabolism of benzo(a)pyrene using cell lysates of the Hep G2 cells. Metabolites were quantitated by high-performance liquid chromatography (HPLC) using fluorodetection. Exposure to 3-methyl-cholanthrene alone resulted in an eightfold increase in total benzo(a)pyrene metabolites with a change of the predominant metabolite from the 3-hydroxy-benzo(a)pyrene to the carcinogenic pathway of the benzo(a)pyrene-7,8-diol. Diethylstilbestrol and testosterone propionate resulted in small, but significant, decreases in metabolism of benzo(a)pyrene. When exposed in combination with 3-methyl-cholanthrene, testosterone propionate antagonized and diethylstilbestrol potentiated the metabolism of benzo(a)pyrene. 3-Methylcholanthrene, diethylstilbestrol, and combinations of 3-methylcholanthrene and diethylstilbestrol or testosterone propionate resulted in increased epoxide hydrolase activity as compared to controls. These results, carried out in a human hepatoma cell line, lend support to a concern for potentiated toxicity and carcinogenicity following exposure to complex chemical mixtures.  相似文献   

6.
The potential of polycyclic aromatic hydrocarbons (PAHs) to modulate microsomal epoxide hydrolase activity, determined using benzo[a]pyrene 5-oxide as substrate, in human liver, was evaluated and compared to rat liver. Precision-cut liver slices prepared from fresh human liver were incubated with six structurally diverse PAHs, at a range of concentrations, for 24 h. Of the six PAHs studied, benzo[a]pyrene, dibenzo[a,h]anthracene and fluoranthene gave rise to a statistically significant increase in epoxide hydrolase activity, which was accompanied by a concomitant increase in epoxide hydrolase protein levels determined by immunoblotting. The other PAHs studied, namely dibenzo[a,l]pyrene, benzo[b]fluoranthene and 1-methylphenanthrene, influenced neither activity nor enzyme protein levels. When rat slices were incubated under identical conditions, only benzo[a]pyrene and dibenzo[a,h]anthracene elevated epoxide hydrolase activity, which was, once again accompanied by a rise in protein levels. At the mRNA level, however, all six PAHs caused an increase, albeit to different extent. In rat, epoxide hydroxylase activity in lung slices was much lower than in liver slices. In lung slices, epoxide hydrolase activity was elevated following exposure to benzo[a]pyrene and dibenzo[a,l]pyrene and, to a lesser extent, 1-methylphenanthrene; similar observations were made at the protein level. At both activity and protein levels extent of induction was far more pronounced in the lung compared with the liver. It is concluded that epoxide hydrolase activity is an inducible enzyme by PAHs, in both human and rat liver, but induction potential by individual PAHs varies enormously, depending on the nature of the compound involved. Marked tissue differences in the nature of PAHs stimulating activity in rat lung and liver were noted. Although in the rat basal lung epoxide hydrolase activity is much lower than liver, it is more markedly inducible by PAHs.  相似文献   

7.
The metabolism of benzo[a]pyrene in randomly proliferating and confluent cultures of human skin fibroblast cells was compared with cell cultures in early S phase of the cell cycle after a G1 block. When each cell population was exposed to [G-3H]benzo[a]pyrene for 24 hours and the organic soluble metabolites in the extracellular medium and intracellular components were analyzed by HPLC, a quantitative increase in metabolism was observed in the confluent cell populations. The amount of organic soluble metabolites in the extracellular medium of the confluent dense cultures was 2.7 times the amount found in randomly proliferating cultures and 1.5 times that of the synchronized cultures. The trans-7,8- and 9,10 dihydrodiols and 3-hydroxy benzo[a]pyrene were the major metabolites formed. Small amounts of the sulphate conjugate, 9-hydroxy-benzo[a]pyrene and the tetrols were also detected. Cytoplasmic as well as nuclear extracts from the confluent cell cultures also contained higher amounts of metabolites compared to those from the randomly proliferating and S-phase cells. The levels of DNA modification by metabolically activated benzo[a]pyrene did not differ among the randomly proliferating, confluent and S-phase cells. However, the S-phase cells exhibited approximately 50-fold increase in the frequency of transformation compared to the randomly proliferating cells. Confluent cells were not transformed by benzo[a]pyrene. These data suggest that factors other than random modification of DNA by the carcinogen might have a significant role in the expression of a transformed phenotype and that metabolism and transformation are not directly related. Furthermore, confluent dense cultures with a heightened capability for metabolism of benzo[a]pyrene were more active in the detoxification of benzo[a]pyrene than in the production of the metabolites associated with cellular transformation.Abbreviations BaP benzo[a]pyrene - BaP-4,5-diol trans-4,5 dihydroxy-4,5-dihydrobenzo[a]pyrene - BaP-7,8-diol trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene - Bap-9,10-diol trans-9,10-dihydroxy-9,10 dihydrobenzo[a]pyrene - CM complete medium - HNF human neonatal foreskin - HPLC high pressure liquid chromatography - PAH polycyclic aromatic hydrocarbon - PDL population doubling - RP randomly proliferating  相似文献   

8.
Several substituted dibenzo[c,h]cinnolines were synthesized and evaluated for their potential to target topoisomerase I and for their relative cytotoxic activity. Select benzo[i]phenanthridines are capable of stabilizing the cleavable complex formed with topoisomerase I and DNA. This study was initiated to examine whether dibenzo[c,h]cinnolines, which are in essence aza analogues of benzo[i]phenanthridines, possess similar pharmacological properties. 2,3-Dimethoxy-8,9-methylenedioxybenzo[i]phenanthridine is one of the more potent benzo[i]phenanthridine derivatives in regard to topoisomerase I-targeting activity and cytotoxicity. The structure-activity relationship observed with these substituted dibenzo[c,h]cinnolines parallels that observed for benzo[i]phenanthridine derivatives. Compared to similarly substituted benzo[i]phenanthridines, the dibenzo[c,h]cinnoline analogues exhibit more potent topoisomerase I-targeting activity and cytotoxicity. The relative IC(50) values obtained in assessing the cytotoxicity of 2,3-dimethoxy-8,9-methylenedioxydibenzo[c,h]cinnoline and 2,3-dimethoxy-8,9-methylenedioxybenzo[i]phenanthridine in the human lymphoblastma cell line, RPMI8402, are 70 and 400 nM, respectively. In tumor cell lines selected for resistance to camptothecin and known to express mutant topoisomerase I, benzo[i]phenanthridine derivatives were not cross-resistant. In contrast, similarly substituted dibenzo[c,h]cinnolines with significant topoisomerase I-targeting activity did exhibit cross-resistance in these camptothecin-resistant cell lines. The cytotoxicity of these dibenzo[c,h]cinnolines was not diminished in cells overexpressing the efflux transporter, MDR1. These data indicate that substituted dibenzo[c,h]cinnolines can exhibit potent topoisomerase I-targeting activity and are capable of overcoming the multi-drug resistance associated with this efflux transporter.  相似文献   

9.
Relatively little is known about the mutagenicity of C24H14 PAH, a diverse group of five- and six-ring PAH, some of which are present at trace levels in the environment. To better understand the mutagenicity of this class of compounds, 11 C24H14 PAH, including benzo[a]perylene, benzo[b]perylene, dibenzo[a,e]fluoranthene, dibenzo[a,f]fluoranthene, dibenzo[j,l]fluoranthene, dibenzo[a,h]pyrene, dibenzo[a,i]pyrene, dibenzo[e,l]pyrene, naphtho[1,2-b]fluoranthene, naphtho[2,3-a]pyrene, and naphtho[2,3-e]pyrene, were tested in a mutagenicity assay based on human h1A1v2 cells. h1A1v2 cells are a line of human B-lymphoblastoid cells that have been engineered to express cytochrome P4501A1 (CYP1A1), an enzyme capable of metabolizing promutagenic PAH. Mutagenicity was measured at the thymidine kinase (tk) locus following a 72-h exposure period. Our results show that nine of the compounds were mutagenic. Benzo[a]perylene, dibenzo[a,e]fluoranthene, dibenzo[a,i]pyrene, and naphtho[2,3-a]pyrene were the most potent mutagens, having minimum mutagenic concentrations (MMC) (i.e., the dose at which the induced response was twice that of the negative controls) in the 1-5 ng/ml range. Benzo[b]perylene, dibenzo[a,h]pyrene, dibenzo[a,f]fluoranthene, and naphtho[2,3-e]pyrene were somewhat less potent mutagens, having MMC in the 10-30 ng/ml range. Dibenzo[e,l]pyrene, which had an MMC of 280 ng/ml, was the least potent mutagen. Dibenzo[j,l]fluoranthene and naphtho[1,2-b]fluoranthene were not mutagenic at the doses tested (1-3000 ng/ml). The most mutagenic compounds were also quite toxic. At the highest doses tested, benzo[a]perylene, dibenzo[a,e]fluoranthene, dibenzo[a,i]pyrene, dibenzo[a,h]pyrene, and dibenzo[a,f]fluoranthene induced > 60% killing, and naphtho[2,3-a]pyrene and naphtho[2,3-e]pyrene induced > 50% killing. Benzo[b]perylene, dibenzo[e,l]pyrene, dibenzo[j,l]fluoranthene, and naphtho[1,2-b]fluoranthene induced < 50% killing at the highest doses tested. Comparing these results to a previous study in which nine other C24H14 PAH were tested for mutagenicity in this same assay, it was found that dibenzo[a]pyrene isomers were generally more mutagenic than the other groups of C24H14 PAH tested. These observations are discussed with emphasis given to identifying C24H14 PAH that may be important environmental mutagens.  相似文献   

10.
The disadvantage of a whole cell system for studying the metabolism of xenobiotics is that some substrates and regulatory molecules do not readily cross the cell membrane. The present study describes a technique to permeabilize H-4-II-E rat hepatoma cells for the study of benzo(a)pyrene metabolism. NADPH is an essential cofactor in the in vitro microsomal metabolism of benzo(a)pyrene and has been shown by indirect measurement to be a rate limiting factor in mixed function oxidase activity in whole liver perfusion systems. The role of NADPH has not been directly demonstrated in an intact cell system. Using this permeabilized whole cell system it is possible to directly demonstrate that NADPH is rate limiting in the mixed function oxidation of benzo(a)pyrene.  相似文献   

11.
Naphthalene or benzo(a)pyrene (100 nmol) was instilled into the closed rat intestinal loop in situ and the appearance of the free compound and its metabolites was determined in portal blood. Naphthalene appeared mostly unchanged in blood whereas benzo(a)pyrene was extensively metabolized by mucosal cells. The results suggest that absorption and metabolism are competing processes in the gut.  相似文献   

12.
Cytochrome P450 has been implicated in the process of biotransformation of polycyclic aromatic hydrocarbons and of other organic pollutants by white-rot fungi. We have purified and reconstituted a benzo[a]pyrene hydroxylating cytochrome P450 (P450) from microsomal fractions of the white rot fungus Pleurotus pulmonarius. The microsomal P450 was recovered using a combination of n-aminooctyl agarose and hydroxyapatite chromatography and had an apparent molecular mass of 55 kDa. The purified protein exhibited moderate affinity for benzo[a]pyrene with a K(s) of 66 microM calculated from the Type I substrate binding spectra produced. Reconstitution of activity was achieved and a turnover of 0.75 nmol 3-hydroxybenzo[a]pyrene product/min/nmol P450 was observed, comparable to levels of metabolism observed by animal cytochromes P450 involved in xenobiotic detoxification.  相似文献   

13.
A strain of Aspergillus terreus was isolated from a polycyclic aromatic hydrocarbons (PAHs) polluted soil. The metabolism of pyrene and benzo(a)pyrene by this fungus was investigated in liquid submerged culture added of 50 and 25 ppm respectively of each compound. Depletion of pyrene and Benzo(a)pyrene was evident during the first stages of growth and was 60% and 27.5% respectively of the added amount after nine days of culture. Solvent extracts of the fermentation broth and mycelium were analysed for presence of metabolites by HPLC-MS technique. Under the present cultural conditions pyrene was mainly metabolised to pyrenylsulfate similarly to benzo(a)pyrene that led to benzo(a)pyrenylsulfate. The structure of 1-pyrenilsulfate was determined after purification of extracts and H-NMR analysis. The result show that the isolated A. terreus strain metabolises PAHs by reaction similar to those previously reported for non lignolinolytic fungi with a mechanism that suggests the hydroxylation by a cytochrome P-450 monooxygenase followed by conjugation with sulfate ion.  相似文献   

14.
SCE induction in Chinese hamster Don (lung) cells was compared with that in CHO (ovary) cells exposed under identical conditions to 14 known mutagens. Test protocols used for comparison were selected following a study of Don and CHO cell responses to aflatoxin B1 and benzo[a]pyrene. In the absence of added metabolizing enzymes 9-aminoacridine, 4-nitroquinoline 1-oxide, N-methyl-N-nitrosourea, dimethylcarbamoyl chloride, beta-propiolactone, daunomycin, aflatoxin B1 and 2-aminoanthracene were directly active in both cell lines; every substance positive in CHO cells was also positive in Don cells. However, the latter detected cyclophosphamide, hydrazine sulphate, benz[c]acridine, 3-methylcholanthrene and benzo[a]pyrene without addition of S9. CHO cells did not respond equivalently to these mutagens, either in the presence or absence of S9. Other differences between the cell lines depended on chemical exposure time, S9 pre-incubation or co-incubation conditions. For example, the ability of CHO cells to detect SCEs due to 2-aminoanthracene was acutely dependent on exposure time. In addition, Don cells exhibited lower background SCE values which were less variable than those of CHO cells under the same culture conditions. Although incapable of detecting 4-dimethylaminoazobenzene (butter yellow) and not as sensitive to cyclophosphamide as certain cell lines of liver origin, the pseudodiploid Don cell line possesses other desirable characteristics required for in vitro SCE assays, particularly with regard to intrinsic metabolic activation of polycyclic aromatic hydrocarbons and related substances.  相似文献   

15.
The toxicity of polycyclic aromatic hydrocarbons such as benzo(a)pyrene, 7,12-dimethylbenz(a)anthracene, and 3-methylcholanthrene has been associated with alterations in the proliferation of vascular smooth muscle cells and the development of lesions of mesenchymal origin. Because phosphorylation of endogenous substrates plays a central role in the regulation of smooth muscle cell growth, the present studies were conducted to evaluate the phosphorylation pattern of medial aortic protein upon repeated in vivo exposure of Japanese quail to benzo(a)pyrene (BaP). Medial aortic homogenates from quail treated for 10 weeks with 10 mg/kg benzo(a)pyrene or vehicle were processed for in vitro measurements of protein phosphorylation. In vitro phosphorylation of endogenous or exogenous proteins stimulated in vitro by phorbol myristate acetate/phosphatidyl-serine or cyclic AMP, known activators of protein kinase C and cyclic AMP-dependent protein kinase, respectively, was examined in the cytosolic and particulate fractions of homogenates from control and treated animals. Benzo(a)pyrene treatment significantly enhanced the basal phosphorylation of Mr 113, 35, and 23 kDa proteins in the cytosolic fraction. Modest increases in the phosphorylation of Mr 71, 52, and 38 kDa were also observed under basal conditions. No changes in the basal phosphorylation of particulate proteins were observed. Phosphorylation of endogenous protein substrates by protein kinase C in the cytosolic fraction was not altered by benzo(a)pyrene treatment. In contrast, inhibition of C-kinase-mediated phosphorylation of endogenous Mr 272, 72, and 45 kDa proteins was observed in the particulate fraction of aortic homogenates from benzo(a)pyrene-treated quail relative to controls. Exogenous histone phosphorylation by PKC in the particulate, but not cytosolic fraction, was decreased by benzo(a)pyrene treatment. The effects of benzo(a)pyrene on the C-kinase system were specific, since cAMP-mediated phosphorylation of endogenous proteins, as well as exogenous histone, was not altered by benzo(a)pyrene. Interestingly, benzo(a)pyrene treatment was associated with a selective increase of Mr 200, 80, and 67 kDa proteins in the cytosolic fraction. Collectively, these data are consistent with the hypothesis that medial protein phosphorylation is a significant molecular target of benzo(a)pyrene within the vascular wall.  相似文献   

16.
The effect of flavone and 7,8-benzoflavone on the metabolism of benzo[a]pyrene to fluorescent phenols by five cytochrome P-450 isozymes obtained from rabbit liver microsomes was determined. Benzo[a]pyrene metabolism was stimulated more than 5-fold by the addition of 600 microM flavone to a reconstituted monooxygenase system consisting of NADPH, cytochrome P-450 reductase, dilauroylphosphatidylcholine, and cytochrome P-450LM3c or cytochrome P-450LM4. In contrast, an inhibitory effect of flavone on benzo[a]pyrene metabolism was observed when cytochrome P-450LM2, cytochrome P-450LM3b, or cytochrome P-450LM6 was used in the reconstituted system. 7,8-Benzoflavone (50-100 microM) stimulated benzo[a]pyrene metabolism by the reconstituted monooxygenase system about 10-fold when cytochrome P-450LM3c was used, but benzo[a]pyrene hydroxylation was strongly inhibited when 7,8-benzoflavone was added to the cytochrome P-450LM6-dependent system. Smaller effects of 7,8-benzoflavone were observed on the metabolism of benzo[a]pyrene by the cytochrome P-450LM2-, cytochrome P-450LM3b-, and cytochrome P-450LM4-dependent monooxygenase systems. These results demonstrate that the activating and inhibiting effects of flavone and 7,8-benzoflavone on benzo[a]pyrene metabolism depend on the type of cytochrome P-450 used in the reconstituted monooxygenase system.  相似文献   

17.
We have used the human hepatoma cell line, Hep G2, to examine the ability of hormones and xenobiotics to modulate the hepatic induction of benzo(a)pyrene hydroxylase and epoxide hydrolase. Hep G2 cells were cultured in Eagle's Minimum Essential Medium supplemented with 10% fetal calf serum. 3-Methylcholanthrene, diethylstilbestrol, testosterone propionate, and combinations of 3-methylcholanthrene, and each of the hormones were added directly to the culture media. We subsequently studied the metabolism of benzo(a)pyrene using cell lysates of the Hep G2 cells. Metabolites were quantitated by high-performance liquid chromatography (HPLC) using fluorodetection. Exposure to 3-methylcholanthrene alone resulted in an eightfold increase in total benzo(a)pyrene metabolites with a change of the predominant metabolite from the 3-hydroxybenzo(a)pyrene to the carcinogenic pathway of the benzo(a)pyrene-7,8-diol. Diethylstilbestrol and testosterone propionate resulted in small, but significant, decreases in metabolism of benzo(a)pyrene. When exposed in combination with 3-methylcholanthrene, testosterone propionate antagonized and diethylstilbestrol potentiated the metabolism of benzo(a)pyrene. 3-Methylcholanthrene, diethylstilbestrol, and combinations of 3-methylcholanthrene and diethylstilbestrol or testosterone propionate resulted in increased epoxide hydrolase activity as compared to controls. These results, carried out in a human hepatoma cell line, lend support to a concern for potentiated toxicity and carcinogenicity following exposure to complex chemical mixtures.  相似文献   

18.
乳杆菌吸附苯并芘的特性   总被引:1,自引:0,他引:1  
[目的]探讨植物乳杆菌(Lactobacillus plantarum)121和戊糖乳杆菌(Lactobacillus pentosus)ML32的苯并芘吸附作用与机制.[方法]采用高效液相色谱检测菌体对苯并芘的吸附率.[结果]菌株121和ML32对苯并芘的吸附率分别为65.9%和64.9%,这种吸附特性与菌体活力无关,随培养时间延长、温度提高以及细胞浓度的上升而增加.菌株121和ML32的吸附率在pH 4和5时达到最大,分别为87.6%和89.0%.当培养液中Ca2+或Mg2+浓度大于0.05mol/L时,菌体吸附率与盐离子浓度呈正相关.苯洗脱会导致乳杆菌所吸附的苯并芘减少90%.经碱性蛋白酶、中性蛋白酶、溶菌酶及TCA和SDS等方法处理后,菌体吸附率上升,且不易被苯去除.在胆盐及胃酸环境下,两株菌的吸附率均提高至70%以上,而胰蛋白酶的存在仅对菌株121的吸附率有较大影响.[结论]两株乳杆菌可以通过吸附作用从环境中清除苯并芘,其吸附效果与细菌细胞壁的结构和组成有关.  相似文献   

19.
The ability of camel liver microsomes to metabolise a range of common environmental carcinogens including benzo(a)pyrene, dimethylbenzanthracene and aflatoxin B1 has been investigated. The camel liver has shown the ability to metabolise benzo(a)pyrene, dimethylbenzanthracene and aflatoxin B1 to a number of metabolites. The major metabolites of benzo(a)pyrene produced by camel liver enzymes were identified as its mono-hydroxy derivatives and suggest that the metabolic detoxification pathways of carcinogen metabolism are predominant in this species. Benzo(a)pyrene metabolising activity in camel liver required NADPH and was inhibited by CO and alpha-naphthoflavone suggesting the involvement of cytochrome P450 in the metabolism of this carcinogen by camel liver. The cytochrome P450-dependent metabolism of carcinogen and other specific substrates such as ethoxyresorufin and ethoxycoumarin, by camel liver enzymes, was about 50% higher than that of rat liver enzymes. The cytochrome P450-dependent metabolism of a variety of carcinogenic and other substrates by camel liver demonstrated that there are multiple forms of cytochrome P450 enzymes involved in the metabolism of a wide array of xenobiotics and pollutants.  相似文献   

20.
This work surveys the genetic toxicity of benzo(a)pyrene added to soil for Tradescantia plants (clone 02). Different adaptation levels of Tradescantia (clone 02) to soil pollution with benzo(a)pyrene have been estimated. Plant adaptation was not observed at the morphological level, but found for the physiological and genetic (with every adaptation stage) levels. The products of benzo(a)pyrene metabolism act as auxin on plants influencing the growth of root biomass and the cell size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号