首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
125I-Porcine brain natriuretic peptide (125I-pBNP) bound to mouse astrocytes in primary culture in a time-dependent manner (t1/2 = 4.5 min), similar to 125I-human atrial natriuretic peptide (125I-hANP) (t1/2 = 5 min). Binding was saturable and reached equilibrium after 90 min at 22 degrees C for both radioligands. Scatchard analysis suggested a single class of binding sites for pBNP with a binding affinity and capacity (KD = 0.08 nM; Bmax = 78.3 fmol/mg of protein) similar to those of hANP1-28 (KD = 0.1 nM; Bmax = 90.3 fmol/mg of protein). In competition binding studies, pBNP or human/rat atrial natriuretic peptide (ANP) analogues [hANP1-28, rat ANP1-28 (rANP1-28), and rANP5-28] displaced 125I-hANP, 125I-pBNP, and 125I-rANP1-28 completely, all with IC50 values of less than nM (0.14-0.83 nM). All four peptides maximally stimulated cyclic GMP (cGMP) production by 10 min at 22 degrees C at concentrations of 1 microM with EC50 values ranging from 50 to 100 nM. However, maximal cGMP induction by brain natriuretic peptide (BNP) (25.9 +/- 2.1 pmol/mg of protein) was significantly greater than that by hANP1-28 (11.5 +/- 2.2 pmol/mg of protein), rANP1-28 (16.5 +/- 2.0 pmol/mg of protein), and rANP5-28 (15.8 +/- 2.2 pmol/mg of protein). These studies indicate that BNP and ANPs act on the same binding sites and with similar affinities in cultured mouse astrocytes. BNP, however, exerts a greater effect on cGMP production. The difference in both affinity and selectivity between binding and cGMP production may indicate the existence of receptor subtypes that respond differentially to natriuretic peptides despite similar binding characteristics.  相似文献   

2.
By the use of combined in vitro radioreceptor binding and autoradiographic techniques, we analyzed the pharmacological properties and the anatomical localization of the vasoactive intestinal polypeptide (VIP) receptor in rat superior mesenteric artery and in medium and small mesenteric artery branches. 125I-VIP was bound by sections of rat superior mesenteric artery in a manner consistent with the labeling of specific VIP receptors, with Kd and Bmax values of 0.23 nM and 0.71 pmol/mg protein respectively. Inhibition of 125I-VIP binding with VIP and related peptides gives the following rank order of potency: VIP greater than peptide histidine methionine greater than secretin. Light microscope autoradiography reveals specific VIP binding sites within the medial layer of superior mesenteric artery and its branches. Medium and small sized vessels are richer in 125I-VIP binding sites than the larger ones.  相似文献   

3.
Nicotine induced a phasic contraction in the rabbit urinary bladder. The response was abolished by hexamethonium and partially reduced by atropine and capsaicin. Simultaneous atropine and capsaicin treatment did not abolish the contraction. These findings suggest that the response to nicotine is due to acetylcholine, tachykinins, and unknown mediator release. In contrast, nicotine-induced contraction diminished following the chronic nicotine treatment without a change of its pharmacological properties. These results suggest the possibility that chronic nicotine treatment causes a decrease in nicotinic receptor numbers. Therefore, the binding properties of (-)-[3H]nicotine on rabbit urinary detrusor muscle membrane fractions were studied to evaluate the effects of chronic nicotine treatment on nicotinic receptors. Specific (-)-[3H]nicotine binding reached saturation and Scatchard plots were curvilinear, suggesting the existence of two different affinity sites for (-)-[3H]nicotine. Dissociation constants (KD) and maximum binding sites (Bmax) were KD1 = 4.91 +/- 1.88 nM, Bmax1 = 2.42 +/- 0.22 fmol/mg protein and KD2 = 263 +/- 56 nM, Bmax2 = 25.0 +/- 4.3 fmol/mg protein. In urinary bladder membrane fractions from chronic nicotine-treated rabbits, KD and Bmax values were KD1 = 3.96 +/- 0.38 nM, Bmax1 = 1.07 +/- 0.25 fmol/mg protein and KD2 = 249 +/- 12 nM, Bmax2 = 10.8 +/- 1.5 fmol/mg protein. Dissociation constants for both sites following chronic nicotine treatment did not change but maximum binding site numbers for both sites significantly decreased (p less than 0.05). These results suggest that the decrease in contractile response evoked by nicotine after chronic nicotine treatment in rabbit urinary bladder is due to a decrease in numbers of nicotinic receptors.  相似文献   

4.
High affinity binding sites for luteinizing hormone-releasing hormone (LHRH) were characterized in Djungarian hamsters. Scatchard analysis was used to demonstrate specific LHRH-binding in hamster and, serving as controls, rat pituitaries (dissociation constant, KD = 0.6 nM, binding capacity, BM = 2.5 +/- 0.7 fmol/mg tissue; KD = 0.6 nM, BM = 6.9 +/- 1.9 fmol/mg tissue, respectively). In contrast to results obtained with rat ovaries (KD = 0.9 nM, BM = 3.0 +/- 0.9 fmol/mg tissue), no specific LHRH-binding was detected in hamster ovaries. Thus, it seems that direct gonadal action of LHRH in the Djungarian hamster is not involved in ovarian regulation.  相似文献   

5.
The interaction of vasoactive intestinal peptide (VIP) with isolated Leydig cells from rat testis was time- and temperature-dependent, as well as saturable and specific. Scatchard analysis suggested the presence of both high- and low-affinity binding sites with KD values of 1.7 and 43 nM, respectively, and receptor concentrations of 35 and 1394 fmol VIP bound/mg protein in mature (3- to 6-month old) rats. When considering pubertal (45-day old) rats, the affinities were similar but the binding capacities showed considerably lower values (25 and 193 fmol VIP bound/mg protein) indicating that VIP receptors are subject to developmental changes during animal maturation.  相似文献   

6.
Using quantitative autoradiography, we have investigated the binding sites for the potent competitive non-N-methyl-D-aspartate (non-NMDA) glutamate receptor antagonist [3H]6-cyano-7-nitro-quinoxaline-2,3-dione ([3H]-CNQX) in rat brain sections. [3H]CNQX binding was regionally distributed, with the highest levels of binding present in hippocampus in the stratum radiatum of CA1, stratum lucidum of CA3, and molecular layer of dentate gyrus. Scatchard analysis of [3H]CNQX binding in the cerebellar molecular layer revealed an apparent single binding site with a KD = 67 +/- 9.0 nM and Bmax = 3.56 +/- 0.34 pmol/mg protein. In displacement studies, quisqualate, L-glutamate, and kainate also appeared to bind to a single class of sites. However, (R,S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) displacement of [3H]CNQX binding revealed two binding sites in the cerebellar molecular layer. Binding of [3H]AMPA to quisqualate receptors in the presence of potassium thiocyanate produced curvilinear Scatchard plots. The curves could be resolved into two binding sites with KD1 = 9.0 +/- 3.5 nM, Bmax = 0.15 +/- 0.05 pmol/mg protein, KD2 = 278 +/- 50 nM, and Bmax = 1.54 +/- 0.20 pmol/mg protein. The heterogeneous anatomical distribution of [3H]CNQX binding sites correlated to the binding of L-[3H]glutamate to quisqualate receptors and to sites labeled with [3H]AMPA. These results suggest that the non-NMDA glutamate receptor antagonist [3H]CNQX binds with equal affinity to two states of quisqualate receptors which have different affinities for the agonist [3H]AMPA.  相似文献   

7.
The specific binding of L-N6-[3H]phenylisopropyladenosine (L-[3H]PIA) to solubilized receptors from rat brain membranes was studied. The interaction of these receptors with relatively low concentrations of L-[3H]PIA (0.5-12.0 nM) in the presence of Mg2+ showed the existence of two binding sites for this agonist, with respective dissociation constant (KD) values of 0.24 and 3.56 nM and respective receptor number (Bmax) values of 0.28 +/- 0.03 and 0.66 +/- 0.05 pmol/mg of protein. In the presence of GTP, the binding of L-[3H]PIA also showed two sites with KD values of 24.7 and 811.5 nM and Bmax values of 0.27 +/- 0.09 and 0.93 +/- 0.28 pmol/mg of protein for the first and the second binding site, respectively. Inhibition of specific L-[3H]PIA binding by 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) (0.1-300 nM) performed with the same preparations revealed two DPCPX binding sites with Ki values of 0.29 and 13.5 nM, respectively. [3H]DPCPX saturation binding experiments also showed two binding sites with respective KD values of 0.81 and 10.7 nM and respective Bmax values of 0.19 +/- 0.02 and 0.74 +/- 0.06 pmol/mg of protein. The results suggest that solubilized membranes from rat brain possess two adenosine receptor subtypes: one of high affinity with characteristics of the A1 subtype and another with lower affinity with characteristics of the A3 subtype of adenosine receptor.  相似文献   

8.
The promethazine-sensitive [3H]mepyramine binding was used to determine the presence of histamine H1 receptors in membranes from bovine retina. Specific mepyramine binding to retinal membranes was reversible, saturable and of high affinity. The apparent dissociation constant (KD = 2.2 +/- 0.4 nM) and the density of binding sites (Bmax = 60.9 +/- 5.1 fmol/mg protein), obtained in equilibrium studies, were similar to those found in bovine brain cortex. Binding was stereospecific and the inhibitory potencies of H1 and H2 antagonists indicated that [3H] mepyramine binding sites in the retina have characteristics of H1 receptors.  相似文献   

9.
1. We determined the number of beta-receptors in the whole spinal cord of the adult rat and in the cervical, thoracal, and lumbal/sacral parts. 2. The undivided spinal cord contains 47 +/- 10 fmol/mg beta-receptors (KD = 2066 +/- 982 pmol/liter), and the cervical part of the spinal cord contains 53 +/- 8 fmol/mg protein (KD = 3224 +/- 1775 pmol/liter). The thoracal part shows 40 +/- 1 fmol/mg protein (KD = 3229 +/- 104 pmol/liter), and the lumbal/sacral spinal cord contains 48 +/- 8 fmol/mg protein (KD = 3610 +/- 1610 pmol/liter). 3. Competitive inhibition studies with l-practolol, dl-atenolol, and ICI 118,551 were performed and we calculated by a computer program in the whole spinal cord the following ratio of beta-receptor subtypes: 80 +/- 5% Beta 1-receptors and 20 +/- 5% beta 2-receptors. 4. The basal and (-)-isoproterenol- and NaF-stimulated activity of adenylate cyclase was highest in the cervical part of the spinal cord and equally distributed between the thoracal and the lumbal/sacral parts. 5. The whole synaptosomal protein of the cervical part of the spinal cord contained 132 +/- 20 fmol, the thoracal part 117 +/- 3 fmol, and the lumbal/sacral part 133 +/- 22 fmol.  相似文献   

10.
This study reports the characterization of receptors for vasoactive intestinal peptide (VIP) on membranes prepared from bovine cerebral arteries. By use of HPLC we prepared two purified monoiodinated VIP radioligands with nearly equivalent cerebral vasorelaxant potency as native VIP, [Tyr(125I)10 )VIP and [Tyr(125I)22]VIP. The former resulted in a higher proportion of specific binding to arterial membranes than the latter and was therefore thought to be the superior radioligand for receptor characterization. The binding of [Tyr(125I)10]VIP to cerebral arterial membranes was saturable, specific, reversible, and dependent on time and temperature. Scatchard analysis suggested the presence of a high- and a low-affinity binding site with KD values of 0.2 and 11 nM and receptor concentrations of 79 and 737 fmol/mg of protein, respectively. The dose-response curves for binding to the VIP receptor by the VIP-homologous peptides PHI, PHM, and rat growth hormone-releasing factor (GRF) were very similar to their dose-response curves for relaxation of cerebral arteries. The order of potency was VIP greater than PHM greater than PHI greater than rat GRF. It is suggested that the characteristics of the vascular VIP binding sites and the close correlation between the binding and vasorelaxant properties of VIP and its related peptides argue for the vascular binding sites being functional receptors for VIP.  相似文献   

11.
Characterization of Opioid Receptors in Cultured Neurons   总被引:1,自引:1,他引:0  
The appearance of mu-, delta-, and kappa-opioid receptors was examined in primary cultures of embryonic rat brain. Membranes prepared from striatal, hippocampal, and hypothalamic neurons grown in dissociated cell culture each exhibited high-affinity opioid binding sites as determined by equilibrium binding of the universal opioid ligand (-)-[3H]bremazocine. The highest density of binding sites (per mg of protein) was found in membranes prepared from cultured striatal neurons (Bmax = 210 +/- 40 fmol/mg protein); this density is approximately two-thirds that of adult striatal membranes. By contrast, membranes of cultured cerebellar neurons and cultured astrocytes were devoid of opioid binding sites. The opioid receptor types expressed in cultured striatal neurons were characterized by equilibrium binding of highly selective radioligands. Scatchard analysis of binding of the mu-specific ligand [3H]D-Ala2,N-Me-Phe4,Gly-ol5-enkephalin to embryonic striatal cell membranes revealed an apparent single class of sites with an affinity (KD) of 0.4 +/- 0.1 nM and a density (Bmax) of 160 +/- 20 fmol/mg of protein. Specific binding of (-)-[3H]bremazocine under conditions in which mu- and delta-receptor binding was suppressed (kappa-receptor labeling conditions) occurred to an apparent single class of sites (KD = 2 +/- 1 nM; Bmax = 40 +/- 15 fmol/mg of protein). There was no detectable binding of the selective delta-ligand [3H]D-Pen2,D-Pen5-enkephalin. Thus, cultured striatal neurons expressed mu- and kappa-receptor sites at densities comparable to those found in vivo for embryonic rat brain, but not delta-receptors.  相似文献   

12.
Receptors for vasoactive intestinal peptide (VIP) have been characterized in rat lymphoid cells. The interaction of [125I] VIP with blood mononuclear cells was rapid, reversible, specific and saturable. At apparent equilibrium, the binding of [125I] VIP was competitively inhibited by native VIP in the 0.01-100 nM range concentration. The binding data were compatible with the existence of two classes of receptors: a high-affinity class with a Kd = 0.050 +/- 0.009 nM and a low binding capacity (2.60 +/- 0.28 fmol/10(6) cells), and a low-affinity class with a Kd = 142 +/- 80 nM and a high binding capacity (1966 +/- 330 fmol/10(6) cells). Secretin, glucagon, insulin and somatostatin did not show any effect at a concentration as high as 100 nM. With spleen lymphoid cells, stoichiometric studies were performed. The binding data were compatible with the existence of two classes of receptors: a high-affinity class with a Kd = 0.100 +/- 0.033 nM and a low binding capacity (4.60 +/- 1.07 fmol/10(6) cells), and low-affinity class with a Kd = 255 +/- 110 nM and high binding capacity (2915 +/- 1160 fmol/10(6) cells). With thymocytes, no binding was obtained under different conditions.  相似文献   

13.
We have demonstrated specific, high affinity binding of a biologically active Tyr23-monoiodinated derivative of ACTH, [125I][Phe2,Nle4]ACTH 1-24, in rat brain homogenates. Similarly, in metabolically inhibited and noninhibited rat whole brain slices there is a specific "binding-sequestration" process that is dependent on time, protein concentration, and pH. In homogenates, binding curves were best described by a two-site model and provided the following parameters: Kd1 = 0.65 +/- 0.47 nM, Bmax1 = 21 +/- 41 fmol/mg protein; Kd2 = 97 +/- 48 nM, Bmax2 = 3.5 +/- 1.8 pmol/mg protein. In metabolically viable brain slices, concentration-competition curves of [125I][Phe2,Nle4]ACTH 1-24 binding-sequestration can be described by three components (Kd1 = 14 +/- 24 nM, Bmax1 = 50 +/- 95 fmol/mg protein; Kd2 = 2.4 +/- 1.9 microM, Bmax2 = 44 +/- 49 pmol/mg protein; Kd3 = 0.16 +/- 1.0 mM, Bmax3 = 5.3 +/- 54 nmol/mg protein). Metabolic inhibition, by removal of glucose and addition of 100 microM ouabain, abolishes the lowest affinity, highest capacity binding-sequestrian component only (Kd1 = 7.1 +/- 14 nM, Bmax1 = 8.7 +/- 16 fmol/mg protein; Kd2 = 7.4 +/- 4.49 microM, Bmax2 = 37 +/- 27 pmol/mg protein). The two binding-sequestration parameter estimates obtained from metabolically inhibited tissue slices are not significantly different from those of the two higher affinity components obtained with noninhibited tissue. Thus, metabolic inhibition permits demonstration of ACTH receptor binding only, unconfounded by sequestration or internalization of ligand:receptor complexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The N-methyl-D-aspartate (NMDA) receptor complex as defined by the binding of [3H]MK-801 has been solubilized from membranes prepared from both rat and porcine brain using the anionic detergent deoxycholate (DOC). Of the detergents tested DOC extracted the most receptors (21% for rat, 34% for pig), and the soluble complex, stabilized by the presence of MK-801, could be stored for up to 1 week at 4 degrees C with less than 25% loss in activity. Receptor preparations from both species exhibited [3H]MK-801 binding properties in solution very similar to those observed in membranes (Bmax = 485 +/- 67 fmol/mg of protein, KD = 11.5 +/- 2.9 nM in rat; Bmax = 728 +/- 108 fmol/mg of protein, KD = 7.1 +/- 1.6 nM in pig, n = 3). The pharmacological profile of the solubilized [3H]MK-801 binding site was virtually identical to that observed in membranes. The rank order of potency of: MK-801 greater than (-)-MK-801 = thienylcyclohexylpiperidine greater than dexoxadrol greater than SKF 10,047 greater than ketamine, for inhibition of [3H]MK-801 binding, was observed in all preparations. The receptor complex in solution exhibited many of the characteristic modulations observed in membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Cholinergic receptor sites in bovine cerebral arteries were analyzed using radioligand binding techniques with the cholinergic agonist, 3H-acetylcholine (ACh), as the ligand. Specific binding of 3H-ACh to membrane preparations of bovine cerebral arteries was saturable, of two binding sites, with dissociation constant (KD) values of 0.32 and 23.7 nM, and maximum binding capacity (Bmax) values of 67 and 252 fmol/mg protein, respectively. Specific binding of 3H-ACh was displaced effectively by muscarinic cholinergic agents and less effectively by nicotinic cholinergic agents. IC50 values of cholinergic drugs for 3H-ACh binding were as follows: atropine, 38.5 nM; ACh, 59.8 nM; oxotremorine, 293 nM; scopolamine 474 nM; carbamylcholine, 990 nM. IC50 values of nicotinic cholinergic agents such as nicotine, cytisine and alpha-bungarotoxin exceeded 50 microM. Choline acetyltransferase activity was 1.09 nmol/mg protein/hour in the cerebral arteries. These findings suggest that the cholinergic nerves innervate the bovine cerebral arteries and that there are at least two classes of ACh binding sites of different affinities on muscarinic receptors in these arteries.  相似文献   

16.
Functional vasoactive intestinal peptide (VIP) receptors have been characterized in rat peritoneal macrophages. The binding depended on time, temperature and pH, and was reversible, saturable and specific. Scatchard analysis of binding data suggested the presence of two classes of binding sites: a class with high affinity (kd = 1.1 +/- 0.1 nM) and low capacity (11.1 +/- 1.5 fmol/10(6) cells), and a class with low affinity (kd = 71.6 +/- 10.2 nM) and high capacity (419.0 +/- 80.0 fmol/10(6) cells). Structural requirements of these receptors were studied with peptides structurally or not structurally related to VIP. Several peptides inhibited 125I-VIP binding to rat peritoneal macrophages with the following order of potency: VIP greater than rGRF greater than hGRF greater than PHI greater than secretin. Glucagon, insulin, somatostatin, pancreastatin and octapeptide of cholecystokinin (CCK 26-33) were ineffective. VIP induced an increase of cyclic AMP production. Half-maximal stimulation (ED50) was observed at 1.2 +/- 0.5 nM VIP, and maximal stimulation (3-fold above basal levels) was obtained between 0.1-1 microM. Properties of these binding sites strongly support the concept that VIP could behave as regulatory peptide on the macrophage function.  相似文献   

17.
Opioid receptors have been characterized in Drosophila neural tissue. [3H]Etorphine (universal opioid ligand) bound stereospecifically, saturably, and with high affinity (KD = 8.8 +/- 1.7 nM; Bmax = 2.3 +/- 0.2 pmol/mg of protein) to Drosophila head membranes. Binding analyses with more specific ligands showed the presence of two distinct opioid sites in this tissue. One site was labeled by [3H]dihydromorphine ([3H]DHM), a mu-selective ligand: KD = 150 +/- 34 nM; Bmax = 3.0 +/- 0.6 pmol/mg of protein. Trypsin or heat treatment (100 degrees C for 15 min) of the Drosophila extract reduced specific [3H]DHM binding by greater than 80%. The rank order of potency of drugs at this site was levorphanol greater than DHM greater than normorphine greater than naloxone much greater than dextrorphan; the mu-specific peptide [D-Ala2,Gly-ol5]-enkephalin and delta-, kappa-, and sigma-ligands were inactive at this site. The other site was labeled by (-)-[3H]ethylketocyclazocine ((-)-[3H]EKC), a kappa-opioid, which bound stereospecifically, saturably, and with relatively high affinity to an apparent single class of receptors (KD = 212 +/- 25 nM; Bmax = 1.9 +/- 0.2 pmol/mg of protein). (-)-[3H]EKC binding could be displaced by kappa-opioids but not by mu-, delta-, or sigma-opioids or by the kappa-peptide dynorphin. Specific binding constituted approximately 70% of total binding at 1 nM and approximately 50% at 800 nM for all three radioligands ([3H]etorphine, [3H]EKC, and [3H]DHM). Specific binding of the delta-ligands [3H][D-Ala2,D-Leu5]-enkephalin and [3H][D-Pen2,D-Pen5]-enkephalin was undetectable in this preparation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Although dopamine-containing cells are known to be present in sympathetic ganglia, the site of action and the role of dopamine in ganglion function remain obscure. In the present work, we evaluated the interaction of dopamine receptor ligands with particulate membrane fractions from bovine chromaffin cells and adrenal medullary homogenates using the D2 dopamine receptor radioligand [3H]N-methylspiperone ([3H]NMSP). Scatchard analysis of [3H]NMSP saturation experiments revealed a Bmax of 24.1 +/- 1.6 fmol/mg of protein and a KD of 0.23 +/- 0.03 nM in the particulate fraction from adrenal medulla homogenates and a Bmax of 26.5 +/- 2.7 fmol/mg of membrane protein and a KD of 0.25 +/- 0.02 nM in the particulate fraction prepared from isolated adrenal chromaffin cells. There were approximately 1,000 receptors/cell. There were no detectable levels of specific [3H]NMSP binding in the particulates prepared from adrenal cortical or capsular homogenates. Competition studies with the nonradioactive D2 receptor antagonists spiperone, chlorpromazine, and (-)-sulpiride revealed KI values of 0.28, 21, and 196 nM, respectively. The (+) isomer of butaclamol displayed a 604-fold higher affinity than the (-) isomer. Competition studies with the dopamine receptor agonists dopamine and apomorphine revealed affinities of 3,960 and 417 nM, respectively. A correlation coefficient of 0.96 was obtained in studies comparing the potencies of drugs in inhibiting specific [3H]NMSP binding in bovine adrenal medullary homogenates and in inhibiting specific [3H]NMSP binding to brain D2 dopamine receptors. In summary, radiolabeling studies using [3H]NMSP have revealed the presence of D2 dopamine receptors on bovine adrenal chromaffin cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
1. Isolated chromaffin cells from bovine adrenal medulla were used to study glucose transport in a homogeneous neural tissue. 2. The affinity of glucose transporters was 1.20 +/- 0.52 mM by the infinite-cis technique and 1.02 +/- 0.09 mM by the direct transport experiments. 3. The affinity for 2-deoxyglucose of these transporters was 2.3 mM. 4. The glucose transporters, quantified by [3H]cytochalasin B binding, were 419,532 +/- 120,740 receptors/cell, which corresponds to about 7.2 +/- 2 pmol/mg of protein, with KD = 0.1 microM. 5. High-affinity insulin receptors with KD = 3.95 nM were present at a density of 68,400 +/- 7500 per cell. 6. Insulin and secretagogues increased glucose transport, raising the transporter number at the plasma membrane without changes in the affinity.  相似文献   

20.
The H3 receptor is a high-affinity histamine receptor that inhibits release of several neurotransmitters, including histamine. We have characterized H3 receptor binding in bovine brain and developed conditions for its solubilization. Particulate [3H]histamine binding showed an apparently single class of sites (KD = 4.6 nM; Bmax = 78 fmol/mg of protein). Of the detergents tested, digitonin at a detergent/protein ratio of 1:1 (wt/wt) yielded the greatest amount of solubilized receptors, typically 15-30% of particulate binding. Neither equilibrium binding of [3H]histamine to receptors (KD = 6.1 nM; Bmax = 92 fmol/mg of protein) nor the inhibitor profile was substantially altered by digitonin solubilization. However, solubilization did increase the rate of [3H]histamine association with and dissociation from the receptor. Size-exclusion chromatography indicated an apparent molecular weight of 220,000 for the solubilized receptor, and peak binding from this column retained its guanine nucleotide sensitivity. These last two observations are consistent with the solubilized receptor occurring in complex with a guanine nucleotide-binding protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号