首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Glutamate:glyoxylate aminotransferase had been reported to be present exclusively in the peroxisomes of plant leaves and to participate in the glycollate pathway in leaf photorespiration (Tolbert (1971) Annu. Rev. Plant Physiol. 22, 45-74]. Glutamate:glyoxylate aminotransferase activity was already present in the etiolated cotyledons of cucumber (Cucumis sativus) seedlings, and increased during greening. The enzyme was present only in the cytosol of the etiolated cotyledons and appeared in the peroxisomes during greening. The enzyme was purified to homogeneity from the cytosol of the etiolated cotyledons and from the peroxisomes of the green cotyledons of cucumber seedlings. The two enzyme preparations had nearly identical enzymic and physical properties. On the basis of these findings, roles of glutamate:glyoxylate aminotransferase in the glycollate pathway in photorespiration, and the mechanism of its appearance in the peroxisomes during greening, are discussed.  相似文献   

3.
The photorespiratory enzyme L-serine:glyoxylate amino- transferase (SGAT; EC 2.6.1.45) was purified from Arabidopsis thaliana leaves. The f'mal enzyme was approximately 80 % pure as revealed by sodium dodecyl sulfatepolyacrylamide gel electrophoresis with silver staining. The identity of the enzyme was confirmed by LC/MS/MS analysis. The molecular mass estimated by gel filtration chromato- graphy on Sephadex G-150 under non-denaturing conditions, mass spectrometry (matrix-assisted laser desorption/ ionization/time of flight technique) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 82.4 kDa, 42.0 kDa, and 39.8 kDa, respectively, indicating dimer as the active form. The optimum pH value was 9.2. The enzyme activity was inhibited by aminooxyacetate and β-chloro-L-alanine both compounds reacting with the carbonyl group of pyridoxal phosphate. The enzyme's transaminating activity with L-alanine and glyoxylate as substrates was approximately 55 % of that observed with L-serine and glyoxylate. The lower Kmvalue (1.25 mM) for L-alanine, compared with that of other plant SGATs, and the kcat/Km(Ala) ratio being approxi- mately 2-fold higher than kcat/Km(Ser) suggested that, during photorespiration, Ala and Ser are used by Arabidopsis SGAT with equal efficiency as amino group donors for glyoxylate. The equilibrium constant (Keq), derived from the Haldane relation, for the transamination reaction between L-serine and glyoxylate with the formation of hydroxypyruvate and glycine was 79.1, strongly favoring glycine synthesis. However, it was accompanied by a low Km value of 2.83 mM for glycine. A comparison of some kinetic properties of the studied enzymes with the recombinant Arabidopsis SGATs previously obtained revealed substantial differences. The ratio of the velocity of the transamination reaction with L-alanine and glyoxylate as substrates versus that with L-serine and glyoxylate was 1:1.8 for the native enzyme, whereas it was 1:7 for the recombinant SGAT. Native SGAT showed a much lower Km value for L-alanine compared to the recombinant enzyme.  相似文献   

4.
5.
6.
Serine: glyoxylate aminotransferase (EC 2.6.1.45) from rye seedlings catalysed transamination between L-serine and glyoxylate according to the Ping Pong Bi Bi mechanism with double substrate inhibition. As judged from the Km values, L-serine, L-alanine, and L-asparagine served as substrates for the enzyme with glyoxylate, whereas L-alanine and L-asparagine underwent transamination with hydroxypyruvate as acceptor. Pyridoxal phosphate (PLP) seems to be rather loosely bound to the enzyme protein. Aminooxyacetate and D-serine were found to be pure competitive inhibitors of the enzyme, with Ki values of 0.12 microM and 1.6 mM, respectively. Among the PLP inhibitors isonicotinic acid hydrazide and hydroxylamine were far less effective than aminooxyacetate (20% and 70% inhibition at 0.1 mM concentration, respectively). Inhibition by the SH group inhibitors at 1 mM concentration did not exceed 50%. L-Serine distinctly diminished the inhibitory effect of this type inhibitors. Preincubation of the enzyme with glyoxylate distinctly diminished transamination. Glyoxylate limited the inhibitory action of formaldehyde probably by competing for the reactive groups present in the active centre.  相似文献   

7.
A protein which binds specifically to [3H]-zeatin has been isolated from cucumber cotyledons by chromatographic techniques. Its binding to [3H]-zeatin was inhibited remarkably by the addition of non-radioactive cytokinins and the order of inhibition was zeatin > -zeatin riboside > N6-(2-isopentenyl)adenine > N6-(2-isopentenyl)adenosine > N6-benzyl-adenosine > kinetin riboside. This protein behaved as a soluble protein with an apparent molecular size of 43,000 daltons on gel filtration through calibrated Sephadex G-100 column. The dissociation constant, Kd, of the protein-zeatin complex was about 4 × 10–7 M.  相似文献   

8.
Summary A photorespiration mutant of Nicotiana sylvestris lacking serine: glyoxylate aminotransferase activity was isolated in the M2 generation following EMS mutagenesis. Mutants showing chlorosis in air and normal growth in 1% CO2 were fed [14C]-2-glycolate to examine the distribution of 14C among photorespiratory intermediates. Mutant strain NS 349 displayed a 9-fold increase in serine accumulation relative to wild-type controls. Enzyme assays revealed an absence of serine: glyoxylate aminotransferase (SGAT) activity in NS 349, whereas other peroxisomal enzymes were recovered at normal levels. Heterozygous siblings of NS 349 segregating air-sensitive M3 progeny in a 31 ratio were shown to contain one half the normal level of SGAT activity, indicating that air sensitivity in NS 349 results from a single nuclear recessive mutation eliminating SGAT activity. Since toxicity of the mutation depends on photorespiratory activity, callus cultures of the mutant were initiated and maintained under conditions suppressing the formation of functional plastids. Plantlets regenerated from mutant callus were shown to retain the SGAT deficiency and conditional lethality in air. The utility of photorespiration mutants of tobacco as vehicles for genetic manipulation of ribulose bisphosphate carboxylase/oxygenase at the somatic cell level is discussed.  相似文献   

9.
Two different aminotransferases, that have glyoxylate as the amino acceptor, have specific activities of 1 to 2 mumol . min-1 . mg of protein-1 in the isolated peroxisomal fraction from spinach leaves. Their properties were evaluated after separation on a hydroxylapatite column. Both enzymes had a Km for glyoxylate of 0.15 mM and an amino acid Km of 2 to 3 mM. Reactions proceeded by a Ping Pong Bi Bi mechanism. Serine:glyoxylate aminotransferase was relatively specific for both substrates and could only be slightly reversed with 100 mM glycine, although the Ki of glycine was 33 mM. The glutamate:glyoxylate amino-transferase protein was equally active in catalyzing an alanine:glyoxylate aminotransferase reaction, but the reverse reactions with 100 mM glycine were hardly measureable, although the Ki (glycine) was 8.7 mM. Protection against hydroxylamine inhibition from reaction with pyridoxal phosphate was used to investigate the specificity of amino acid binding. Substrate amino acids protected at about the same concentration as their Km, while glycine protected at its Ki concentration. Thus, the nearly irreversible catalysis with glycine is not due to a failure to bind glycine. The significance of a peroxisomal alanine:glyoxylate aminotransferase activity has not been incorporated into schemes for the oxidative photosynthetic carbon cycle.  相似文献   

10.
A novel alanine:glyoxylate aminotransferase was found in a hyperthermophilic archaeon, Thermococcus litoralis. The amino acid sequence of the enzyme did not show a similarity to any alanine:glyoxylate aminotransferases reported so far. Homologues of the enzyme appear to be present in almost all hyperthermophilic archaea whose whole genomes have been sequenced.  相似文献   

11.
Alanine aminotransferase increased in pumpkin cotyledons duringgermination with the greatest increase occurring in green cotyledons.The enzyme was found in the soluble fraction and was inhibitedby NH2OH and p-chloromercuribenzoate. Pyridoxal phosphate andglutathione or dithiothreitol overcame die respective inhibition.Dialysis of the enzyme reduced enzyme activity but the activitywas restored by the addition of pyridoxal phosphate. Alanineaminotransferase was proposed to play a major role in the synthesisof the alanine which occurs in pumpkin cotyledons during germination. (Received September 17, 1975; )  相似文献   

12.
Alanine: glyoxylate aminotransferase (EC 2.6.1.44), which is involved in the glyoxylate pathway of glycine and serine biosynthesis from tricarboxylic acid-cycle intermediates in Saccharomyces cerevisiae, was highly purified and characterized. The enzyme had Mr about 80 000, with two identical subunits. It was highly specific for L-alanine and glyoxylate and contained pyridoxal 5'-phosphate as cofactor. The apparent Km values were 2.1 mM and 0.7 mM for L-alanine and glyoxylate respectively. The activity was low (10 nmol/min per mg of protein) with glucose as sole carbon source, but was remarkably high with ethanol or acetate as carbon source (930 and 430 nmol/min per mg respectively). The transamination of glyoxylate is mainly catalysed by this enzyme in ethanol-grown cells. When glucose-grown cells were incubated in medium containing ethanol as sole carbon source, the activity markedly increased, and the increase was completely blocked by cycloheximide, suggesting that the enzyme is synthesized de novo during the incubation period. Similarity in the amino acid composition was observed, but immunological cross-reactivity was not observed among alanine: glyoxylate aminotransferases from yeast and vertebrate liver.  相似文献   

13.
A mutant of Hordeum vulgare L. (LaPr 85/84) deficient in serine: glyoxylate aminotransferase (EC 2.6.1.45) activity has been isolated. The plant also lacks serine: pyruvate aminotransferase and asparagine: glyoxylate aminotransferase activities. Genetic analysis of the mutation strongly indicates that these three activities are all carried on the same enzyme protein. The mutant is incapable of normal rates of photosynthesis in air but can be maintained at 0.7% CO2. The rate of photosynthesis cannot be restored by supplying hydroxypyruvate, glycerate, glutamate or ammonium sulphate through the xylem stream. This photorespiratory mutant demonstrates convincingly that photorespiration still occurs under conditions in which photosynthesis becomes insensitive to oxygen levels. Two major peaks and one minor peak of serine: glyoxylate aminotransferase activity can be separated in extracts of leaves of wild-type barley by diethylaminoethyl-sephacel chromatography. All three peaks are missing from the mutant, LaPr 85/84. The mutant showed the expected rate (50%) of ammonia release during photorespiration but produced CO2 at twice the wild-type rate when it was fed [14C]glyoxylate. The large accumulation of serine detected in the mutant under photorespiratory conditions shows the importance of the enzyme activity in vivo. The effect of the mutation on transient changes in chlorophyll a fluorescence initiated by changing the atmospheric CO2 concentration are presented and the role of the enzyme activity under nonphotorespiratory conditions is discussed.Abbreviations DEAE diethylaminoethyl - PFR photon fluence rate - SGAT serine:glyoxylate aminotransferase  相似文献   

14.
A cDNA library from ethephon-treated cucumber cotyledons (Cucumis sativus L. cv. Poinsett 76) was constructed. Two cDNA clones encoding putative peroxidases were isolated by means of a synthetic probe based on a partial amino acid sequence of a 33 kDa cationic peroxidase that had been previously shown to be induced by ethylene. DNA sequencing indicates that the two clones were derived from two closely related RNA species that are related to published plant peroxidase sequences. Southern analysis indicates that there are 1–5 copies in a haploid genome of a gene homologous to the cDNA clones. The deduced amino acid sequences are homologous with a tobacco (55% sequence identity), a horseradish (53%), a turnip (45%), and a potato (41%) peroxidase. The cloned sequences do not encode the 33 kDa peroxidase from which the original synthetic probe was been derived, but rather other putative peroxidases. An increase in the level of mRNA is evident by 3 hours after ethephon or ethylene treatment and plateaus by 15 hours.  相似文献   

15.
Havir EA 《Plant physiology》1986,80(2):473-478
Different organs of maize seedlings are known to contain different complements of NADH and NAD(P)H nitrate reductase (NR) activity. The study of the genetic programming that gives rise to such differences can be initiated by looking for genetic variants exhibiting different patterns of distribution of the above enzymes. We demonstrate in this work that scutella of very young maize seedlings contain NADH NR almost exclusively and that this activity is gradually replaced, as the seedling ages, with NAD(P)H NR. Leaves in the seedlings contain exclusively the NADH NR activity. A genetic variant is described that contains much reduced levels of NAD(P)H NR activity but not of NADH NR activity in the scutellum. This same variant exhibits a relatively low level of NAD(P)H NR but normal NADH NR activity in seedling root tips. These observations suggest that the genetic program used to specify the scutellar complement of NR activity shares some common components with the genetic program used to determine the young root tip complement of NR activities. Parts of regenerating callus at different stages of differentiation were examined to determine when the differences in NR complement begin to appear. The same pattern of NADH NR and NAD(P)H NR activities was found in unorganized as well as in organized callus, in recognizable root-like and even in green shoot-like material, both activities being present in all these tissues. An examination of the NR complement in different organs of a number of siblings originating from a cross involving transposon Mu-containing parents and having different levels of leaf NADH NR activity shows that the leaf NADH NR activity content and the scutellum NAD(P)H NR activity content are relatively independent of each other, indicating that the genetic programs specifying the NR content of these organs are not tightly coupled, if at all.  相似文献   

16.
Procedures were devised for heterotrophic culture and autotrophic establishment of protoplast-derived cell cultures from the sat mutant of Nicotiana sylvestris Speg. et Comes lacking serine: glyoxylate aminotransferase (SGAT; EC 2.6.1.45) activity. Increasing photon flux rates (dark, 40, 80 mol quanta·m-2·s-1) enhanced the growth rate of autotrophic (no sucrose) wild-type (WT) cultures in air and 1% CO2. Mutant cultures showed a similar response to light under conditions suppressing photorespiration (1% CO2), and maintained 65% of WT chlorophyll levels. In normal air, however, sat cultures developed severe photorespiratory toxicity, displaying a negligible rate of growth and rapid loss of chlorophyll to levels below 1% of WT. Low levels of sucrose (0.3%) completely reversed photorespiratory toxicity of the mutant cells in air. Mutant cultures maintained 75% of WT chlorophyll levels in air, displayed light stimulation of growth, and fixed 14CO2 at rates identical to WT. Autotrophic sat cultures accumulated serine to levels nearly nine-fold above that of WT cultures in air. Serine accumulated to similar levels in mixotrophic (0.3% sucrose) sat cultures in air, but had no deleterious effect on fixation of 14CO2 or growth, indicating that high levels of serine are not toxic, and that toxicity of the sat mutation probably stems from depletion of intermediates of the Calvin cycle. Autotrophic sat cultures were employed in selection experiments designed to identify spontaneous reversions restoring the capacity for growth in air. From a population of 678 000 sat colonies, 23 plantlets were recovered in which sustained growth in air resulted from reacquisition of SGAT activity. Twenty-two had SGAT levels between 25 and 50% of WT, but one had less than 10% of WT SGAT activity, and eventually developed symptoms typical of the sat mutant. The utility of autotrophic sat cultures for selection of chloroplast mutations diminishing the oxygenase activity of ribulose-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) is discussed.Abbreviations Chl chlorophyll - DW dry weight - FW fresh weight - SGAT Serine:glyoxylate aminotransferase - WT wild-type  相似文献   

17.
Purification of glycollate oxidase from greening cucumber cotyledons   总被引:7,自引:0,他引:7  
Glycollate oxidase (glycollate: oxygen oxidoreductase, EC 1.1.3.1) was purified to apparent homogeneity from crude extracts of greening cucumber cotyledons (Cucumis sat vus). Molecular sieving and chromatofocusing resulted in 700-fold purification and specific activity of 1 kat mg-1 protein. The enzyme exhibited a Mr of 180,000, or 700,000, respectively, and is a tetramer or 16-mer made of identical subunits of Mr 43,000. Monospecific antibodies were raised against the homogeneous protein.  相似文献   

18.
Han Q  Li J 《FEBS letters》2002,512(1-3):199-204
Wild-type rat lens main intrinsic protein (MIP) was heterologously expressed in the membrane of Spodoptera frugiperda (Sf21) cells using the baculovirus expression system and in mouse erythroid leukaemia cells (MEL C88). Both MEL and Sf21 cell lines expressing wild-type MIP were investigated for the conductance of ions using a whole cell patch clamp technique. An increase in conductance was seen in both expression systems, particularly on lowering the pH to 6.3. In Sf21 cells, addition of antibodies to the NPA1 box resulted in a reduction of current flow. These results suggest that MIP has pH-dependent ion channel activity, which involves the NPA1 box domain.  相似文献   

19.
《The Journal of cell biology》1993,123(5):1237-1248
Primary hyperoxaluria type 1 (PH 1), an inborn error of glyoxylate metabolism characterized by excessive synthesis of oxalate and glycolate, is caused by a defect in serine:pyruvate/alanine:glyoxylate aminotransferase (SPT/AGT). This enzyme is peroxisomal in human liver. Recently, we cloned SPT/AGT-cDNA from a PH 1 case, and demonstrated a point mutation of T to C in the coding region of the SPT/AGT gene encoding a Ser to Pro substitution at residue 205 (Nishiyama, K., T. Funai, R. Katafuchi, F. Hattori, K. Onoyama, and A. Ichiyama. 1991. Biochem. Biophys. Res. Commun. 176:1093-1099). In the liver of this patient, SPT/AGT was very low with respect to not only activity but also protein detectable on Western blot and immunoprecipitation analyses. Immunocytochemically detectable SPT/AGT labeling was also low, although it was detected predominantly in peroxisomes. On the other hand, the level of translatable SPT/AGT-mRNA was higher than normal, indicating that SPT/AGT had been synthesized in the patient's liver at least as effectively as in normal liver. Rapid degradation of the mutant SPT/AGT was then demonstrated in transfected COS cells and transformed Escherichia coli, accounting for the low level of immunodetectable mutant SPT/AGT in the patient's liver. The mutant SPT/AGT was also degraded much faster than normal in an in vitro system with a rabbit reticulocyte extract, and the degradation in vitro was ATP dependent. These results indicate that a single amino acid substitution in SPT/AGT found in the PH1 case leads to a reduced half- life of this protein. It appears that the mutant SPT/AGT is recognized in cells as an abnormal protein to be eliminated by degradation.  相似文献   

20.
Two plasmids containing an autonomously replicating sequence from Saccharomyces cerevisiae were constructed. Using these vectors, the AGX1 gene encoding alanine:glyoxylate aminotransferase (AGT) from S. cerevisiae, which converts glyoxylate into glycine but is not present in Ashbya gossypii, was expressed in A. gossypii. Geneticin-resistant transformants with the plasmid having the kanamycin resistance gene under the control of the translation elongation factor 1 α (TEF) promoter and terminator from A. gossypii were obtained with a transformation efficiency of approximately 10–20 transformants per microgram of plasmid DNA. The specific AGT activities of A. gossypii pYPKTPAT carrying the AGX1 gene in glucose- and rapeseed-oil-containing media were 40 and 160 mU mg−1 of wet mycelial weight, respectively. The riboflavin concentrations of A. gossypii pYPKTPAT carrying AGX1 gene in glucose- and rapeseed-oil-containing media were 20 and 150 mg l−1, respectively. In the presence of 50 mM glyoxylate, the riboflavin concentration and the specific riboflavin concentration of A. gossypii pYPKTPAT were 2- and 1.3-fold those of A. gossypii pYPKT without the AGX1 gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号