首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Of the RNA labelled after incubation of hepatoma cells with radioactive precursors for 20 and 150 min. 35% and 70%, respectively, can be isolated from nuclei by two consecutive extractions with 0.14 M NaCl at pH 8. The isolated RNA is complexed with nuclear proteins forming structures with sedimentation coefficients of less than 30 S to greater than 100 S. Similar complexes from rat liver isolated under the same experimental conditions show coefficients of 30-40 S. The RNA-associated proteins are similar, on the basis of sodium dodecyl sulphate/polyacrylamide gel electrophoresis, to the respective proteins of other cell types. The presence on these RNP complexes of six discrete small nuclear RNAs (snRNA) has been established. Experiments with a reversible inhibitor of RNA synthesis, D-galactosamine, demonstrated, differences in the turnover of hnRNA and snRNA. The half-lives of the six snRNA species has been determined, varying from 32 h for snRNA species a, b and d, to 22 h for snRNA species e and f and to 13 h for snRNA species c. Treatment of the nuclear extracts with 0.7 M and 1 M NaCl results in dissociation of hnRNA from the 'core' and other polypeptides, whereas snRNA remains complexed with polypeptides of Mr 54 000-59 000. Incubation of the nuclear extracts at 0 C with low doses of pancreatic R Nase (up to 1.5 micrograms/ml), which renders approximately 80% of the hnRNA acid-soluble and cleaves most of the snRNA, results in conversion of the high-molecular-weight hnRNPs to 30-S structures, without disrupting the 30-S RNP. Treatment of the nuclear extracts with higher doses of RNase (3 micrograms/ml) leads to disruption of the 30-S RNP and release of the hnRNA-associated proteins, underlining the importance of hnRNA-protein interaction for the retainment of the hnRNP structures.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Structural studies on Neurospora RNA polymerases and associated proteins   总被引:3,自引:0,他引:3  
Extensive structural homology between the three nuclear RNA polymerases of Neurospora crassa has been observed by peptide and immunological analyses. Within each polymerase, we found structural similarity between subunits in the 65- to 75-kDa range and one of the two large subunits. We observed also that polymerase II, as isolated, is associated with a 700-kDa complex of 12 polypeptides which is localized in the nucleus. A 75-kDa subunit of the 700-kDa complex was found to be structurally related to the 220-kDa subunit of polymerase II. We suggest, on the basis of the in vitro association, the common nuclear localization and the structural homology, that the 700-kDa complex and polymerase II may be associated in vivo. Evidence is also presented which suggests that polymerase III may interact with chromatin via two of its smallest subunits. A simple procedure for isolating nuclei from Neurospora is described.  相似文献   

15.
16.
17.
18.
U1 small nuclear RNA is thought to be involved in messenger RNA splicing by binding to complementary sequences in pre-mRNA. We have investigated intermolecular base-pairing between pre-mRNA (hnRNA) and U1 small nuclear RNA by psoralen crosslinking in situ, with emphasis on ribonucleoprotein structure. HeLa cells were pulse-labeled with [3H]uridine under conditions in which hnRNA is preferentially labeled. Isolated nuclei were treated with aminomethyltrioxsalen , which produces interstrand crosslinks at sites of base-pairing between hnRNA and U1 RNA. hnRNA-ribonucleoprotein (hnRNP) particles were isolated in sucrose gradients containing 50% formamide, to dissociate non-crosslinked U1 RNA, and then analyzed by immunoaffinity chromatography using a human autoantibody that is specific for the ribonucleoprotein form of U1 RNA (anti-U1 RNP). After psoralen crosslinking, pulse-labeled hnRNA in hnRNP particles reproducibly bound to anti-U1 RNP. The amount of hnRNA bound to anti-U1 RNP was reduced 80 to 85% when psoralen crosslinking of nuclei was omitted, or if the crosslinks between U1 RNA and hnRNA were photo-reversed prior to immunoaffinity chromatography. Analysis of the proteins bound to anti-U1 RNP after crosslink reversal revealed polypeptides having molecular weights similar to those previously described for U1 RNP. These proteins did not bind to control, non-immune human immunoglobulin G. These results indicate that the subset of nuclear U1 RNA that is base-paired with hnRNA at a given time in the cell is a ribonucleoprotein. This raises the possibility that these proteins, as well as U1 RNA itself, may participate in pre-mRNA splice site recognition by U1 RNP.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号