首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The leak fluxes of Na+, K+, Mg++ and Ca++ in mouse thymocytes are increased by Concavaline A (Con A), within minutes after mitogen addition. The intracellular Mg++ and K+ concentrations were decreased and the Na+ and Ca++ contents were increased by Con A in mouse thymocytes and spleen cells.  相似文献   

2.
Summary Electrical membrane properties of solitary spiking cells during newt (Cynops pyrrhogaster) retinal regeneration were studied with whole-cell patch-clamp methods in comparison with those in the normal retina.The membrane currents of normal spiking cells consisted of 5 components: inward Na+ and Ca++ currents and 3 outward K+ currents of tetraethylammonium (TEA)-sensitive, 4-aminopyridine (4-AP)-sensitive, and Ca++-activated varieties. The resting potential was about -40mV. The activation voltage for Na+ and Ca++ currents was about -30 and -17 mV, respectively. The maximum Na+ and Ca++ currents were about 1057 and 179 pA, respectively.In regenerating retinae after 19–20 days of surgery, solitary cells with depigmented cytoplasm showed slowrising action potentials of long duration. The ionic dependence of this activity displayed two voltage-dependent components: slow inward Na+ and TEA-sensitive outward K+ currents. The maximum inward current (about 156 pA) was much smaller than that of the control. There was no indication of an inward Ca++ current.During subsequent regeneration, the inward Ca++ current appeared in most spiking cells, and the magnitude of the inward Na+, Ca++, and outward K+ currents all increased. By 30 days of regeneration, the electrical activities of spiking cells became identical to those in the normal retina. No significant difference in the resting potential and the activation voltage for Na+ and Ca++ currents was found during the regenerating period examined.  相似文献   

3.
We recently reported that U937 cell mitochondria express a functional Na+-dependent ascorbic acid (AA) transporter recognised by anti-SVCT2 antibodies. The present study confirms and extends these observations by showing that this transporter is characterised by a Km and a pH-dependence comparable with that reported for the plasma membrane SVCT2. In isolated mitochondria, Na+ increased AA transport rate in a cooperative manner, revealed by a sigmoid curve and a Hill coefficient of 2, as also observed in intact Raw 264.7 cells (uniquely expressing SVCT2). There was however a striking difference on the Na+ concentrations necessary to reach saturation, i.e., 1 or 100 mM for the mitochondrial and plasma membrane transporters, respectively. Furthermore the mitochondrial, unlike the plasma membrane, transporter was fully active also in the absence of added Ca++ and/or Mg++.Taken together, the results presented in this study indicate that the U937 cell mitochondrial transporter of AA, because of its very low requirement for Na+ and independence for Ca++ and Mg++, displays kinetic characteristics surprisingly similar with those of the plasma membrane SVCT2.  相似文献   

4.
Summary In many cell systems, the permeability of membrane junctions is modulated by the cytoplasmic level of free Ca++. To examine whether the calcium-dependent regulatory protein calmodulin is involved in this process, the ability of anticalmodulin drugs to influence the cell-to-cell passage of injected current and an organic tracer was tested using standard intracellular glass microelectrode techniques. Several antipsychotics and local anesthetics were found to block junctional communication in the epidermis of the beetleTenebrio molitor. Treatment of the epidermis with chlorpromazine (0.25 mM) raised intercellular resistance two- to threefold within 20 to 25 min; cell-to-cell passage of electrical current was abolished within 41±5 min. Loss of electrotonic coupling was accompanied by a block in the cell-to-cell movement of the organic tracer carboxyfluorescein. The reaction is fully reversible, with normal electrotonic coupling being restored within 2 to 4 hr. Other antipsychotics and local anesthetics had similar effects on cell coupling. The order of potency found was: trifluoperazine>thioridazine> d-butaclamol>chlorprothixine=chlorpromazine> l-butaclamol> dibucaine>tetracaine. The relative uncoupling potencies of these drugs correlate well with their known ability to inhibit calmodulin-dependent phosphodiesterase activity. Other anesthetic compounds, procaine and pentobarbital, did not block cell-to-cell communication. Altering the extracellular Ca++ concentration did not affect the rate of uncoupling by antipsychotics, while chelation of extracellular Ca++ with EGTA raised electrotonic coupling. The effect of three metabolic inhibitors on coupling was also examined. Iodoacetate uncoupled the epidermal cells while DNP and cyanide did not. These results are discussed in terms of possible mechanisms by which calmodulin may control junctional communication in this tissue.  相似文献   

5.
Behaviour of different water soluble and exchangeable bases in a brackishwater fish pond soil was studied under four levels of water salinity, in combination with and without organic matter application. The results showed average content of water soluble bases to increase with increase in water salinity. The bases were dominated by Na+ followed by Mg++, Ca++ and K+ in decreasing order. SAR values of water increased with increase in water salinity and decreased slightly on organic matter treatment.Total content of exchangeable bases in soils was fairly high and was dominated by Ca++ and Mg++, followed by Na+ and K+ respectively. Amount of exchangeable Ca++ + Mg++ decreased while that of Na+ increased with increase in water salinity levels. Amount of exchangeable K+ did not show any appreciable change. Application of organic matter tended to increase the exchangeable Ca++ + Mg++ content and decrease the amount of exchangeable Na+ in the soil, while exchangeable K+ content remained practically unaffected due to organic matter treatment.Formed part of a Ph.D. thesis submitted to Bidhan Chandra Agricultural University, India in 1978Formed part of a Ph.D. thesis submitted to Bidhan Chandra Agricultural University, India in 1978  相似文献   

6.
The permeability of the membrane surfaces where cells are in contact (junctional membranes) in Chironomus salivary glands depends on Ca++ and Mg++. When the concentration of these ions at the junctional membranes is raised sufficiently, these normally highly permeable membranes seal off; their permeability falls one to three orders, as they approach the nonjunctional membranes in conductance. This permeability transformation is achieved in three ways: (a) by iontophoresis of Ca++ into the cell; (b) by entry of Ca++ and/or Mg++ from the extracellular fluid into the cell through leaks in the cell surface membrane (e.g., injury); or (c) by entry of these ions through leaks arising, probably primarily in the perijunctional insulation, due to trypsin digestion, anisotonicity, alkalinity, or chelation. Ca++ and Mg++ appear to have three roles in the junctional coupling processes: (a) in the permeability of the junctional membranes; (b) in the permeability of the perijunctional insulation; and (c) a role long known— in the mechanical stability of the cell junction. The two latter roles may well be closely interdependent, but the first is clearly independent of the others.  相似文献   

7.
The ionic requirement for generating action potentials in ventral longitudinal muscle fibers dissected from beetle larvae was examined by conventional electrophysiological techniques. Muscle fibers that generated only graded responses in physiological saline were able to generate an all-or-none action potential when the potassium permeability of the membrane was inhibited by tetraethylammonium+ added to the saline. The peak of the action potential thus elicited was intimately related to the external Ca++ concentration. The action potential was blocked by Co++ which is known as a competitive inhibitor of Ca-spikes. Neither tetrodotoxin (3 μM) nor a Na-free condition effectively blocked the generation of the action potential. Mg++ induced a shift in the peak of the action potential; this was, however, due to the stabilizing action of Mg++ but not due to the penetration of Mg++ through the muscle membrane. No action potential was elicited in the muscle fiber when immersed in a Ca-free, EGTA saline even when a high concentration of either Mg++, Na+, or tetraethylammonium+ was present. The action potential of the larval muscle fiber was thus concluded to be a Ca-spike, through the channel of which Na+ or Mg++ did not penetrate.  相似文献   

8.
Intracellular Ca++ is known to influence Na+ flux in luminal membranes. Abnormally elevated Ca++ levels in some cells is believed to be the primary pathophysiologic defect in cystic fibrosis (CF). This in turn is thought to alter Na+ transport which accounts for certain clinical manifestations of this disease. Two Na+-dependent intestinal transport mechanisms have been reported to be suppressed or missing in CF. To examine whether alterations in cell Ca++ may account for these findings, studies were performed to examine the influence of Ca++ on Na+-solute co-transport across intestinal luminal membranes. Purified brush border membrane vesicles prepared from rat small bowel were preincubated in either Ca++-free buffer or buffer containing 2.5 mM CaCl2. Ca++ loaded vesicles showed marked inhibition of Na+ co-transport of taurocholic acid, taurochenodeoxycholic acid, glucose and valine when compared to controls. The uptake of Na+ was also significantly reduced by intravesicular Ca++. These data demonstrate that intravesicular Ca++ inhibits Na+-coupled solute transport as well as Na+ influx across intestinal brush border membranes. These data suggest that intracellular Ca++ may suppress Na+-dependent solute absorption in the intestine. Results presented here further support the theory that elevated intracellular Ca++ may account for intestinal malabsorption and other altered transport phenomena reported in CF.  相似文献   

9.
ACh-induced depolarization (D response) in D cells markedly decreases as the external Na+ is reduced. However, when Na+ is completely replaced with Mg++, the D response remains unchanged. When Na+ is replaced with Tris(hydroxymethyl)aminomethane, the D response completely disappears, except for a slight decrease in membrane resistance. ACh-induced hyperpolarization (H response) in H cells is markedly depressed as the external Cl- is reduced. Frequently, the reversal of the H response; i.e., depolarization, is observed during perfusion with Cl--free media. In cells which show both D and H responses superimposed, it was possible to separate these responses from each other by perfusing the cells with either Na+-free or Cl--free Ringer's solution. High [K+]0 often caused a marked hyperpolarization in either D or H cells. This is due to the primary effect of high [K+]0 on the presynaptic inhibitory fibers. The removal of this inhibitory afferent interference by applying Nembutal readily disclosed the predicted K+ depolarization. In perfusates containing normal [Na+]0, the effects of Ca++ and Mg++ on the activities of postsynaptic membrane were minimal, supporting the current theory that the effects of these ions on the synaptic transmission are mainly presynaptic. The possible mechanism of the hyperpolarization produced by simultaneous perfusion with both high [K+]0 and ACh in certain H cells is explained quantitatively under the assumption that ACh induces exclusively an increase in Cl- permeability of the H membrane.  相似文献   

10.
The Importance of Calcium in Poststimulation Potentiation   总被引:1,自引:0,他引:1       下载免费PDF全文
Isotonic contractions recorded both before and during poststimulation potentiation in the toad isolated ventricle (Bufo marinus) revealed that the phenomenon of poststimulation potentiation was not altered by the presence or absence of the catechol amines, or by the specific amine antagonist, DCI. Similarly the inhibitors, sodium fluoride and sodium iodoacetate, were without effect. Changes in [Ca++], [Mg++], and [Na+] affected the degree of potentiation. High [Ca++] as well as the cardiac glycosides abolished it, low [Na+] and the absence of Mg++ depressed it. It has been shown that the percentage potentiation depends to some extent upon the total number of contractions occurring during the rapid stimulation phase. The amplitude of the contractions during this stage did not influence the degree of potentiation. These results are discussed in terms of Ca++ accumulation or redistribution associated with an early phase of the membrane depolarization.  相似文献   

11.
We performed experiments to elucidate the calcium influx pathways in freshly dispersed rabbit corneal epithelial cells. Three possible pathways were considered: voltage-gated Ca++ channels, Na+/Ca++ exchange, and nonvoltage-dependent Ca++-permeable channels. Whole cell inward currents carrying either Ca++ or Ba++ were not detected using voltage clamp techniques. We also used imaging technology and the Ca++-sensitive ratiometric dye fura 2 to measure changes in intracellular Ca++ concentration ([Ca]i). Bath perfusion with NaCl Ringer's solution containing the calcium channel agonist Bay-K-8644 (1 m), or Ni++ (40 m), a blocker of many voltage-dependent calcium channels, did not affect [Ca++]i. Membrane depolarization with a KCl Ringer's bath solution resulted in a decrease in [Ca++]i. These results are inconsistent with the presence of voltage gated Ca++ channels. Nonvoltage gated Ca++ entry, on the other hand, would be reduced by membrane depolarization and enhanced by membrane hyperpolarization. Agents which hyperpolarize via stimulation of K+ current, such as flufenamic acid, resulted in an increase in ratio intensity. The cells were found to be permeable to Mn++ and bath perfusion with 5 mm Ni++ decreased [Ca++]i suggesting that the Ca++ conductance was blocked. These results are most consistent with a nonvoltage gated Ca++ influx pathway. Finally, replacing extracellular Na+ with Li+ resulted in an increase in [Ca++]i if the cells were first Na+-loaded using the Na+ ionophore monensin and ouabain, a Na+-K+-ATPase inhibitor. These results suggest that Na+/Ca++ exchange may also regulate [Ca++] in this cell type.The authors are grateful to Chris Bartling for expert technical assistance with the imaging experiments, Helen Hendrickson for cell preparation, and Jonathon Monck for helpful discussions regarding imaging technology. This work was supported by National Institutes of Health grants EYO3282, EYO6005, DK08677, and an unrestricted award from Research to Prevent Blindness.  相似文献   

12.
The influence of K+, Na+, Mg++, Li+, a serotonin, acetylcholine and tubocurarine on calcium-ganglioside-interactions was studied by way of equilibrium dialysis using 45Ca as tracer. Experiments were carried out at 22 °C and 4 °C, respectively. The concentrations of the substances were in the range of physiologically relevant conditions. Cations caused a release of Ca++ from calcium-ganglioside-complexes in the sequence of their molar efficiency: Mg++ ≈ Li+ > K+ ≈ Na+. Tubocurarine, serotonin and acetylcholine also affected calcium-ganglioside-interactions. Ca++ was displaced from ganglioside most effectively by tubocurarine, followed by serotonin, whereas acetylcholine competed considerably more weakly.  相似文献   

13.
Abstract

A procedure for purification of the bungarotoxin-binding fraction of sarcolemma from rabbit skeletal muscle is described. Muscle is homogenized in 0.25M sucrose without high salt extraction and membrane fractions separated initially by differential centrifugation procedures. An ultracentrifugation pellet enriched in cell surface and sarcoplasmic reticulum markers is further fractionated on a dextran gradient (density = 1.0 to 1.09). Two fractions are identified as sarcolemma according to high specific activities for lactoperoxidaseiodination, Na+, K+-ATPase and α-bungarotoxin-binding. No Ca++, Mg++-ATPase activity is found in these fractions. A third fraction, the dextran gradient pellet, is enriched in Ca++, Mg++-ATPase activity and lactoperoxidase iodinatable material and characterized by low bungarotoxin binding. This fraction represents a mixture of sarcoplasmic reticulum and transverse tubules with some sarcolemma contamination.  相似文献   

14.
The intracellular ion content of the halophilic blue-green alga, Aphanothece halophytica was studied as a function of age, external sodium and external potassium concentration. Intracellular Na+ was found to be about 0.38 millimoles/g dry mass. Intracellular K+ concentrations were as high as 1 M and varied directly with external salinity. Intracellular Ca++ and Mg++ were in the range previously reported for fresh water blue-green algae despite their extremely high extracellular concentrations. Average cell size is consistent at room temperature with two exceptions. When the outside K+ is lower than 6.5 mM the cells tend to be smaller with less intracellular K+ and high Ca++. In stationary phase cultures the cells are larger with high intracellular Mg++ and low K+.  相似文献   

15.
The electrophysiological properties of a hormone-dependent, differentiated thyroid epithelial cell strain were studied using intracellular microelectrodes. The average membrane potential of solitary, isolated cells was –78.4 ± 1.3 mV. The membrane potential depolarized 55 mV per tenfold increase in extracellular potassium concentation. Weak electrical coupling was recorded between contiguous cells. Like tyroid cells in vivo, these cells did not generate action potentials. In some cells a spontaneous, slow transition in the membrane potential from –80mV to –30 mV was accompanied by an increase in input resistance. Membrane potential transitions could be induced by perfusing cells with isotonic Hanks solutions saturated with CO2 (pH = 5.5) or by perfusing cells with hypotonic Hanks solutions (190–290 mOsm/kg). Membrane potential transitions were due to a decreased potassium permeability. Noradrenaline elicted both a fast depolarization and a slow depolarization. The fast depolarization was due to an increase in conductance of Na+ channels and of Cl channels. Intracellular injection of Ca++ elicited the fast depolarization. Intracellular injection of EGTA or cobalt abolished the fast depolarization. Replacemnt of extracellular Ca++ by Mg++ did not affect the fast depolarization. Thus, the fast depolarization was due to accumulation of intracellular Ca++. The fast depolarization was abolished by the alpha adrenergic blocker phentolamine (10–6 M), and was not abolished by the beta adrenergic blocker propranolol (10–5 M).  相似文献   

16.
At pH 6.4, rat kidney mitochondrial kynurenine aminotransferase activity is enhanced several-fold by the addition of CaCl2, apparently because Ca++ facilitates the translocation of α-ketoglutarate, one of the substrates, across the mitochondrial inner membrane. Chloride salts or Mg++, Mn++, Na+, K+, and NH4+ did not have this effect. At pH 6.8, the enzyme activity was near maximal even without added Ca++ but was strongly depressed by either of two calcium chelating agents, quinolinic acid (Q.A.) and ethyleneglycol-bis(β-aminoethyl ether)N,N′-tetraacetic acid (EGTA). These observations support the view that Ca++ is involved in regulating kidney mitochondrial translocation of α-ketoglutarate and that the reported interference of polycarboxylate anion translocation by Q.A. in vivo depends on the ability of that agent to chelate Ca++.  相似文献   

17.
Summary With the aid of sodium-sensitive glass electrodes, changes in sodium ion activity were studied in the course of subsequent additions of components required for ATP hydrolysis provided by Na+–K+-dependent membrane ATPase. Membrane ATPase was obtained from guinea pig kidney cortex. In the presence of ATP, Mg++ and Na+ in media, the addition of K+ caused an increase in Na+ activity. The omission of ATP or its substitution by ADP as well as the addition of Ca++ to the media eliminated the above-mentioned increase of Na+ activity. Quabain did not affect Na+ release caused by the addition of K+, although it significantly inhibited ATPase activity of the preparation. The data obtained were considered to be a direct indication of ion exchange during the course of membrane ATPase reaction. This ion-exchange stage of the reaction is not inhibited by ouabain. The ratio of sodium ions released per one inorganic phosphate formed in the course of the reaction was found to be much higher than that established for transporting membranes of intact cells. A possible cause of this difference is discussed.  相似文献   

18.
Ca++ fluxes in resealed synaptic plasma membrane vesicles   总被引:5,自引:0,他引:5  
The effect of the monovalent cations Na+, Li+, and K+ on Ca++ fluxes has been determined in resealed synaptic plasma membrane vesicle preparations from rat brain. Freshly isolated synaptic membranes, as well as synaptic membranes which were frozen (?80°C), rapidly thawed, and passively loaded with K2/succinate and 45CaCl2, rapidly released approximately 60% of the intravesicular Ca++ when exposed to NaCl or to the Ca++ ionophore A 23187. Incubation of these vesicles with LiCl caused a lesser release of Ca++. The EC50 for Na+ activation of Ca++ efflux from the vesicles was approximately 6.6mM. exposure of the Ca++-loaded vesicles to 150 mM KCl produced a very rapid (?1 sec) loss of Ca++ from the vesicles, but the Na+-induced efflux could still be detected above this K+ - sensitive effect. Vesicles pre-loaded with NaCl (150 mM) exhibited rapid 45Ca uptake with an estimated EC50 for Ca++ of 7–10 μM. This Ca++ uptake was blocked by dissipation of the Na+ gradient. These observations are suggestive of the preservation in these purified frozen synaptic membrane preparations of the basic properties of the Na+Ca++ exchange process and of a K+ - sensitive Ca++ flux across the membranes.  相似文献   

19.
In the negative EOG-generating process a cation which can substitute for Na+ was sought among the monovalent ions, Li+, Rb+, Cs+, NH4+, and TEA+, the divalent ions, Mg++, Ca++, Sr++, Ba++, Zn++, Cd++, Mn++, Co++, and Ni++, and the trivalent ions, Al+++ and Fe+++. In Ringer solutions in which Na+ was replaced by one of these cations the negative EOG's decreased in amplitude and could not maintain the original amplitudes. In K+-Ringer solution in which Na+ was replaced by K+, the negative EOG's reversed their polarity. Recovery of these reversed potentials was examined in modified Ringer solutions in which Na+ was replaced by one of the above cations. Complete recovery was found only in the normal Ringer solution. Thus, it was clarified that Na+ plays an irreplaceable role in the generation of the negative EOG's. The sieve hypothesis which was valid for the positive EOG-generating membrane or IPSP was not found applicable in any form to the negative EOG-generating membrane. The reversal of the negative EOG's found in K+- , Rb+- , and Ba++-Ringer solutions was attributed to the exit of the internal K+. It is, however, not known whether or not Cl- permeability increases in these Na+-free solutions and contributes to the generation of the reversed EOG's.  相似文献   

20.
The partition of sulfate, Ca++, and Mg++ across the membrane of the sartorius muscle has been studied, and the effect of various concentrations of these ions in the Ringer solution on the cellular level of Na+, K+, and Cl- has been determined. The level of the three divalent ions in toad plasma and muscle in vivo has been assayed. Muscle was found to contain an almost undetectable amount of inorganic sulfate. Increases in the external level of these ions brought about increases in intracellular content, calculated from the found extracellular space as determined with radioiodinated serum albumin or inulin. Less of the cell water is available to sulfate than to Cl-, and the Mg++ space is less than the Na+ space. An amount of muscle water similar to that found for Li+ and I- appears to be available to these divalent ions. Sulfate efflux from the cell was extremely rapid, and it was not found possible to differentiate kinetically between intra- and extracellular material. These results are consistent with the theory of a three phase system, assuming the muscle to consist of an extracellular phase and two intracellular phases. Mg++ and Ca++ are adsorbed onto the ordered phase, and increments in cellular content found on raising the external level are assumed to occur in the free intracellular phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号