首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BarbaraMoser  MartinSchütz 《Oikos》2006,114(2):311-321
Classical foraging theory states that animals feeding in a patchy environment can maximise their long term prey capture rates by quitting food patches when they have depleted prey to a certain threshold level. Theory suggests that social foragers may be better able to do this if all individuals in a group have access to the prey capture information of all other group members. This will allow all foragers to make a more accurate estimation of the patch quality over time and hence enable them to quit patches closer to the optimal prey threshold level. We develop a model to examine the foraging efficiency of three strategies that could be used by a cohesive foraging group to initiate quitting a patch, where foragers do not use such information, and compare these with a fourth strategy in which foragers use public information of all prey capture events made by the group. We carried out simulations in six different prey environments, in which we varied the mean number of prey per patch and the variance of prey number between patches. Groups sharing public information were able to consistently quit patches close to the optimal prey threshold level, and obtained constant prey capture rates, in groups of all sizes. In contrast all groups not sharing public information quit patches progressively earlier than the optimal prey threshold value, and experienced decreasing prey capture rates, as group size increased. This is more apparent as the variance in prey number between patches increases. Thus in a patchy environment, where uncertainty is high, although public information use does not increase the foraging efficiency of groups over that of a lone forager, it certainly offers benefits over groups which do not, and particularly where group size is large.  相似文献   

2.
Ecological networks incorporate myriad biotic interactions that determine the selection pressures experienced by the embedded populations. We argue that within food webs, the negative scaling of abundance with body mass and foraging theory predict that the selective advantages of larger egg size should be smaller for sit‐and‐wait than active‐hunting generalist predators, leading to the evolution of a difference in egg size between them. Because body mass usually scales negatively with predator abundance and constrains predation rate, slightly increasing egg mass should simultaneously allow offspring to feed on more prey and escape from more predators. However, the benefits of larger offspring would be relatively smaller for sit‐and‐wait predators because (i) due to their lower mobility, encounters with other predators are less common, and (ii) they usually employ a set of alternative hunting strategies that help to subdue relatively larger prey. On the other hand, for active predators, which need to confront prey as they find them, body‐size differences may be more important in subduing prey. This difference in benefits should lead to the evolution of larger egg sizes in active‐hunting relative to sit‐and‐wait predators. This prediction was confirmed by a phylogenetically controlled analysis of 268 spider species, supporting the view that the structure of ecological networks may serve to predict relevant selective pressures acting on key life history traits.  相似文献   

3.
Foraging theory predicts that predators should prefer foraging in habitat patches with higher prey densities. However, density depends on the spatial scale at which a “patch” is defined by an observer. Ecologists strive to measure prey densities at the same scale that predators do, but many natural landscapes lack obvious, well-defined prey patches. Thus one must determine the scale at which predators define patches of prey. We estimated the scale at which guppies, Poecilia reticulata, selected patches of zooplankton prey using a behavioral assay. Guppies could choose between two prey arrays, each manipulated to have a density that depended on the spatial scale at which density was calculated. We estimated the scale of guppy foraging by comparing guppy preferences across a series of trials in which we systematically varied the scale associated with “high” prey density. This approach enables the application of foraging theory to non-discrete habitats and prey landscapes.  相似文献   

4.
Interactions between predators foraging in the same patch may strongly influence patch use and functional response. In particular, there is continued interest in how the magnitude of mutual interference shapes predator–prey interactions. Studies commonly focus on either patch use or the functional response without attempting to link these important components of the foraging puzzle. Predictions from both theoretical frameworks suggest that predators should modify foraging efforts in response to changes in feeding rate, but this prediction has received little empirical attention. We study the linkage between patch departure rates and food consumption by the hunting spider, Pardosa milvina, using field enclosures in which prey and predator densities were manipulated. Additionally, the most appropriate functional response model was identified by fitting alternative functional response models to laboratory foraging data. Our results show that although prey availability was the most important determinant of patch departure rates, a greater proportion of predators left enclosures containing elevated predator abundance. Functional response parameter estimation revealed significant levels of interference among predators leading to lower feeding rates even when the area allocated for each predator was kept constant. These results suggest that feeding rates determine patch movement dynamics, where interference induces predators to search for foraging sites that balance the frequency of agonistic interactions with prey encounter rates.  相似文献   

5.
The diets of sympatric predators may overlap, especially when their body sizes are similar and foraging area is relatively small. It may be also supposed that some differences in their foraging strategies may counteract competitive interactions among them, and therefore be of advantage to these species. To reveal such phenomena the composition of food of cormorant and adult pikeperch was studied in the Dobczyce Reservoir (S Poland) from June to November 2002. The main prey species were the same and the range of prey size was similar for both piscivores. Despite these similarities, the potential for dietary overlap was strongly reduced due to two differences in their foraging patterns: (1) different preferred prey species (cormorants foraged mainly roach, whereas pikeperch selected juvenile percids); (2) different size of simultaneously selected prey (in summer, cormorants selected larger prey, while in autumn larger prey was selected by pikeperch). These differences may be explained by some general features of birds and fishes, which determine the costs to the individual of capturing prey. The observed selection of different prey species and sizes may be also important for the co-occurrence of other piscivorous birds and fishes sharing common food resources.  相似文献   

6.
Theoretical treatments of intraguild predation and its effects on behavioral interactions regard the phenomenon as a size‐structured binary response wherein predation among competitors is completely successful or completely unsuccessful. However, intermediate outcomes occur when individuals escape intraguild (IG) interactions with non‐lethal injuries. While the effects of wounds for prey include compromised mobility and increased predation risk, the consequences of similar injuries among top predators are not well understood, despite the implications for species interactions. Using an amphibian IG predator, Ambystoma opacum (Caudata: Ambystomatidae), we examined associations between non‐lethal injuries and predator body size, foraging strategy, microhabitat selection, and intraspecific agonistic interactions. Wounds were common among IG predators, generally increasing in frequency throughout larval ontogeny. Non‐lethal injuries were associated with differences in predator body size and behavior, with injured predators exhibiting smaller body sizes, increased use of benthic microhabitats, reduced agonistic displays, and increased risk of intraspecific aggression. While such effects were not ultimately associated with reduced foraging success, non‐lethal injury could contribute to niche partitioning between injured and healthy predators via habitat selection, but injured predators likely continue to exert predatory pressure on IG and basal prey populations. Our results indicate that studies of top‐down population regulation should incorporate injury‐related modifications to both prey and predator behavior and size structure.  相似文献   

7.
A tension between cooperation and conflict characterizes the behavioral dynamics of many social species. The foraging benefits of group living include increased efficiency and reduced need for vigilance, but social foraging can also encourage theft of captured prey from conspecifics. The payoffs of stealing prey from others (scrounging) versus capturing prey (producing) may depend not only on the frequency of each foraging strategy in the group but also on an individual’s ability to steal. By observing the foraging behavior of juvenile coho salmon (Oncorhynchus kisutch), we found that, within a group, relatively smaller coho acted primarily as producers and took longer to handle prey, and were therefore more likely to be targeted by scroungers than relatively larger coho. Further, our observations suggest that the frequency of scrounging may be higher when groups contained individuals of different sizes. Based on these observations, we developed a model of phenotype-limited producer-scrounger dynamics, in which rates of stealing were structured by the relative size of producers and scroungers within the foraging group. Model simulations show that when the success of stealing is positively related to body size, relatively large predators should tend to be scroungers while smaller predators should be producers. Contrary to previous models, we also found that, under certain conditions, producer and scrounger strategies could coexist for both large and small phenotypes. Large scroungers tended to receive the highest payoff, suggesting that producer-scrounger dynamics may result in an uneven distribution of benefits among group members that—under the right conditions—could entrench social positions of dominance.  相似文献   

8.
Richard Shine 《Oecologia》1986,69(2):260-267
Filesnakes (Acrochordus arafurae) are large (to 2 m), heavy-bodied snakes of tropical Australia. Sexual dimorphism is evident in adult body sizes, weight/length ratios, and body proportions (relative head and tail lengths). Dimorphism is present even in neonates. Two hypotheses for the evolution of such dimorphism are (1) sexual selection or (2) adaptation of the sexes to different ecological niches. The hypothesis of sexual selection is consistent with general trends of sexually dimorphic body sizes in snakes, and accurately predicts, for A. arafurae, that the larger sex (female) is the one in which reproductive success increases most strongly with increasing body size. However, the sexual dimorphism in relative head sizes is not explicable by sexual selection.The hypothesis of adaptation to sex-specific niches predicts differences in habitats and/or prey. I observed major differences between male and female A. arafurae in prey types, prey sizes and habitat utilization (shallow versus deep water). Hence, the sexual dimorphism in relative head sizes is attributed to ecological causes rather than sexual selection. Nonetheless, competition between the sexes need not be invoked as the selective advantage of this character divergence. It is more parsimonious to interpret these differences as independent adaptations of each sex to increase foraging success, given pre-existing sexually-selected differences in size, habitat or behavior. Data for three other aquatic snake species, from phylogenetically distant taxa, suggest that sexual dimorphism in food habits, foraging sites and feeding morphology, is widespread in snakes.  相似文献   

9.
The honey badger, or ratel, Mellivora capensis has not been well studied despite its extensive distribution. As part of the first detailed study, visual observations of nine habituated free-living individuals (five females, four males) were used to investigate seasonal, annual and sexual differences in diet and foraging behaviour. Theory predicts that generalist predators 'switch' between alternative prey species depending on which prey species are currently most abundant, and diet breadth expands in response to decreased availability of preferred food types. There were significant seasonal differences in the consumption of eight prey categories related to changes in prey availability but no seasonal differences in food intake per kg of body mass. As predicted, the cold-dry season diet was characterized by low species richness and low foraging yield but high dietary diversity, while the reverse was true in the hot-dry and hot-wet seasons. In accordance with these predictions, results suggest that the honey badger maintains its intake level by food switching and by varying dietary breadth. Despite marked sexual size dimorphism, male and female honey badgers showed no intersexual differences in prey size, digging success, daily food intake per unit body weight or foraging behaviour. Results do not support the hypothesis that size dimorphism is primarily an adaptation to reduce intersexual competition for food.  相似文献   

10.
Competition in a group of equal foragers   总被引:1,自引:0,他引:1  
Abstract Using techniques from renewal process theory, we build a stochastic model for gain accumulation in a group of equal competitors foraging in a patchy environment. The model for gain of the individuals is based on the waiting times between subsequent prey encounters by the group. These waiting times depend on the number of foragers in the group. A single parameter of this dependency encompasses a variety of foraging scenarios, from co-operation to scramble. With constant patch size, correlations between gains of any pair of foragers are negative. This dependency is most intense in small groups. Increased variation in patch size makes correlations in gains between group members positive irrespective of the group size. For a solitary forager, variance in gain approaches zero with increasing time in the patch. For an individual member in a group, variance grows monotonically. Thus, depending on the patch departure rule controlling the time to be spent in the patch, solitary foragers may have a smaller variance in gain than members in a group. As solitary foragers also potentially harvest all prey in the patch, it is hard to believe that grouping behavior would evolve solely on the basis of foraging.  相似文献   

11.
Predator–prey relationships are vital to ecosystem function and there is a need for greater predictive understanding of these interactions. We develop a geometric foraging model predicting minimum prey size scaling in marine and terrestrial vertebrate predators taking into account habitat dimensionality and biological traits. Our model predicts positive predator–prey size relationships on land but negative relationships in the sea. To test the model, we compiled data on diets of 794 predators (mammals, snakes, sharks and rays). Consistent with predictions, both terrestrial endotherm and ectotherm predators have significantly positive predator–prey size relationships. Marine predators, however, exhibit greater variation. Some of the largest predators specialise on small invertebrates while others are large vertebrate specialists. Prey–predator mass ratios were generally higher for ectothermic than endothermic predators, although dietary patterns were similar. Model‐based simulations of predator–prey relationships were consistent with observed relationships, suggesting that our approach provides insights into both trends and diversity in predator–prey interactions.  相似文献   

12.
State-dependent risk-taking by predators in systems with defended prey   总被引:2,自引:0,他引:2  
Thomas N. Sherratt 《Oikos》2003,103(1):93-100
Even defended prey items may contain nutrients that can sustain predators in times of energetic need. Conversely, a well-fed predator might be expected to avoid attacking prey items that have a chance of being defended, particularly if there is an abundance of familiar palatable prey to support it. To further understand the implications of optimal state-dependent foraging behaviour by predators in systems that contain defended prey, I developed a stochastic dynamic programming model. This state-dependent approach formally accounts for the trade-off between avoiding starvation and minimising harm from attacking defended prey. It predicts that the mean attack probability of predators on defended models and their undefended mimics should decline in a sigmoidal fashion with increasing availability of alternative undefended prey, and that the foraging decisions of predators should in general be relatively insensitive to the probability that a potentially defended prey item is indeed defended. Some implications of these predictions are that conspicuous warning signals are more likely to evolve in systems that contain an abundance of alternative undefended prey, and that imperfect mimicry will provide almost complete protection to the mimic when predators are readily supported by alternative food sources. Somewhat surprisingly, increasing the density of nutritious undefended mimics while keeping the densities of all other prey types constant tended to decrease the attack rates of predators on encounter with mimics and their defended models. This increase in dietary conservatism arose because in these cases there would be more prey available to sustain the predator if it ever found itself critically low in energy.  相似文献   

13.
1.?Theory suggests that the relationship between predator diversity and prey suppression should depend on variation in predator traits such as body size, which strongly influences the type and strength of species interactions. Prey species often face a range of different sized predators, and the composition of body sizes of predators can vary between communities and within communities across seasons. 2.?Here, I test how variation in size structure of predator communities influences prey survival using seasonal changes in the size structure of a cannibalistic population as a model system. Laboratory and field experiments showed that although the per-capita consumption rates increased at higher predator-prey size ratios, mortality rates did not consistently increase with average size of cannibalistic predators. Instead, prey mortality peaked at the highest level of predator body size diversity. 3.?Furthermore, observed prey mortality was significantly higher than predictions from the null model that assumed no indirect interactions between predator size classes, indicating that different sized predators were not substitutable but had more than additive effects. Higher predator body size diversity therefore increased prey mortality, despite the increased potential for behavioural interference and predation among predators demonstrated in additional laboratory experiments. 4.?Thus, seasonal changes in the distribution of predator body sizes altered the strength of prey suppression not only through changes in mean predator size but also through changes in the size distribution of predators. In general, this indicates that variation (i.e. diversity) within a single trait, body size, can influence the strength of trophic interactions and emphasizes the importance of seasonal shifts in size structure of natural food webs for community dynamics.  相似文献   

14.
Current theory predicts that larger‐bodied snakes not only consume larger prey (compared with smaller individuals), but may also have a different range of prey available to them due to their thermal biology. It has been argued that smaller individuals, with lower thermal inertia (i.e. faster cooling rates at nightfall when air temperature falls and basking opportunities are limited), may be thermally restricted to foraging and hunting during the day on diurnally active prey, and have reduced capacity to hunt crepuscular and nocturnal prey species. This predictive theory was investigated by way of dietary analysis, assessment of thermal biology and thermoregulation behaviour in an ambush forager, the south‐west carpet python (Morelia spilota imbricata, Pythonidae). Eighty‐seven scats were collected from 34 individual pythons over a 3‐year radiotelemetry monitoring study. As predicted by gape size limitation, larger pythons took larger prey; however, 65% of prey items of small pythons were represented by nocturnally active, small mammals, a larger proportion than present in larger snakes. Several measures of thermal biology (absolute body temperature, thermal differential of body temperature to air temperature, maximum hourly heating and cooling rates) were not strongly affected by python body mass. Additionally, body temperature was only influenced by the behavioural choice of microhabitat selection and was not affected by python body size or position, suggesting that these behavioural choices do not allow smaller pythons to vastly increase their temporal foraging window. By coupling dietary analysis, measures of body temperature and behavioural observations of free‐ranging animals, we conclude that, contrary to theoretical predictions, a small body size does not thermally restrict the temporal window for ambush foraging in M. s. imbricata. An ontogenetic or size‐determined switch from ambush feeding to actively foraging on slower prey would account for the differences in prey taken by these animals. The concept of altered foraging behaviour warrants further investigation in this species.  相似文献   

15.
Foraging behaviors of the piscivorous cornetfish Fistularia commersonii were observed at shallow reefs in Kuchierabu-jima Island, southern Japan. This fish foraged on two types of prey fishes: one was reef fish that typically dwell on or near substrata (e.g., Tripterygiidae and Labridae), and the other was pelagic fish that shoal in the water column (e.g., Clupeidae and Carangidae). The prey sizes, prey types and foraging behaviors changed as the predator size increased. Prey sizes were largely limited by gape size of the cornetfish, and small predators consumed small prey. The small cornetfish (10–30 cm in total length) fed only on reef fish captured after stalking (where the fish slowly approaches the prey and then suddenly attacks). The stalking was done either solitarily or in foraging association with conspecifics. Large fish (30–120 cm) fed on both types of fishes by stalking and/or chasing (where the fish chases the prey using its high mobility and attacks), either solitarily or in foraging association with con- or heterospecifics. Thus, chasing was only performed by the large cornetfish against pelagic prey fish in associative foraging with other con- and heterospecific predators. As their body sizes increased, F. commersonii began to show a diversification of foraging behaviors, which was strongly related not only to the habitat types and anti-predatory behaviors of the prey fishes but also to associative foraging with con- or heterospecifics, which improves their foraging success.  相似文献   

16.
Gösta Nachman 《Oikos》2001,94(1):72-88
Predators and prey are usually heterogeneously distributed in space so that the ability of the predators to respond to the distribution of their prey may have a profound influence on the stability and persistence of a predator‐prey system. A special type of dynamics is “hide‐and‐seek” characterized by a high turnover rate of local populations of prey and predators, because once the predators have found a patch of prey they quickly overexploit it, whereupon the starving predators either should move to better places or die. Continued persistence of prey and predators thus hinges on a long‐term balance between local extinctions and founding of new subpopulations. The colonization rate depends on the rate of emigration from occupied patches and the likelihood of successfully arriving at a suitable new patch, while extinction rate depends on the local population dynamics. Since extinctions and colonizations are both discrete probabilistic events, these phenomena are most adequately modeled by means of a stochastic model. In order to demonstrate the qualitative differences between a deterministic and stochastic approach to population dynamics, a spatially explicit tritrophic predator‐prey model is developed in a deterministic and a stochastic version. The model is parameterized using data for the two‐spotted spider mite (Tetranychus urticae) and the phytoseiid mite predator Phytoseiulus persimilis inhabiting greenhouse cucumbers.
Simulations show that the deterministic and stochastic approaches yield different results. The deterministic version predicts that the populations will exhibit violent fluctuations, implying that the system is fundamentally unstable. In contrast, the stochastic version predicts that the two species will be able to coexist in spite of frequent local extinctions of both species, provided the system consists of a sufficiently large number of local populations. This finding is in agreement with experimental results. It is therefore concluded that demographic stochasticity in combination with dispersal is capable of producing and maintaining sufficient asynchrony between local populations to ensure long‐term regional (metapopulation) persistence.  相似文献   

17.
To explain the adaptive significance of sex role partitioning and reversed sexual size dimorphism among raptors, owls and skuas, where females are usually larger than males, we combine several previous hypotheses with some new ideas. Owing to their structural and behavioural adaptations for prey capture, predatory birds have better prospects than other birds of defending their offspring against nest predators. This makes sex role partitioning advantageous; one parent guards the offspring while the other forages for the family. Further, among predators hunting alert prey such as vertebrates, two mates because of interference may not procur much more food than would one mate hunting alone. By contrast, two mates feeding on less alert prey may together obtain almost twice as much food as one mate hunting alone. For these reasons, partitioning of breeding labours might be adaptive only in predatory birds. An initial imbalance favours female nest guarding and male foraging: the developing eggs might be damaged if the female attacks prey; their mass might reduce her flight performance; she must visit the nest to lay; and the male feeds her before she lays (‘courtship feeding’). Increased female body size should enhance egg production, incubation, ability to tear apart prey for the young, and, in particular, offspring protection in predatory birds. Efficient foraging during the breeding period then becomes most important for the male. This imposes great demands on aerial agility in males, particularly among predators of agile prey. Flight performance decreases with increasing size in five of six aspects explored. The male must therefore not be too large in relation to the most important prey. For these reasons, he should be smaller than the female. Among predatory birds, size dimorphism increases with the proportion of birds in the diet, which may be explained as follows. Adult birds have mainly one type of predators: other predatory birds. Because almost only these specialists exploit adult birds, they carry out most of the cropping of this prey. A predator of easier prey competes with many other kinds of predators, which considerably reduce prey abundance in its territory. This is not so for predators of adult birds. Further, because birds are extremely agile, the specialized predator can hunt efficiently only within a limited size range of birds, whose flight skill it can match. Increased size dimorphism among these predators therefore should be particularly important for enlarging the combined food base of the pair. A bird specialist may consume much of the available prey in the suitable size range during the breeding period. When the predator's young are large enough to defend themselves, the female aids better by hunting than by guarding the chicks. It is advantageous among bird specialists if she hunts prey of other sizes than does the male, who has by then reduced prey abundance in his prey size class. But among predatory birds hunting easier prey the female gains little by hunting outside the male's prey spectrum, because other kinds of predators will have reduced the prey abundance outside as well as inside the male's preferred size range. Intra-pair food separation through large sexual size dimorphism therefore should be particularly advantageous among predators of birds. This may be the main reason why the degree of size dimorphism increases with the dietary proportion of birds.  相似文献   

18.
Dangerous prey and daring predators: a review   总被引:1,自引:0,他引:1  
How foragers balance risks during foraging is a central focus of optimal foraging studies. While diverse theoretical and empirical work has revealed how foragers should and do manage food and safety from predators, little attention has been given to the risks posed by dangerous prey. This is a potentially important oversight because risk of injury can give rise to foraging costs similar to those arising from the risk of predation, and with similar consequences. Here, we synthesize the literature on how foragers manage risks associated with dangerous prey and adapt previous theory to make the first steps towards a framework for future studies. Though rarely documented, it appears that in some systems predators are frequently injured while hunting and risk of injury can be an important foraging cost. Fitness costs of foraging injuries, which can be fatal, likely vary widely but have rarely been studied and should be the subject of future research. Like other types of risk‐taking behaviour, it appears that there is individual variation in the willingness to take risks, which can be driven by social factors, experience and foraging abilities, or differences in body condition. Because of ongoing modifications to natural communities, including changes in prey availability and relative abundance as well as the introduction of potentially dangerous prey to numerous ecosystems, understanding the prevalence and consequences of hunting dangerous prey should be a priority for behavioural ecologists.  相似文献   

19.
Diet selection among several prey types present in a dense aggregation, permitting a predator to become satiated without changing patches, may be important for predators that can eat many small prey items in a single bout. Choice in this scenario differs from that in optimal foraging models for sequential diet choice model and simultaneous choice models when travel time between patches is needed. Furthermore, satiation and depletion effects may be important in dense prey aggregations. We predicted that in dense prey aggregations, predators should eat the most profitable prey first, switching to smaller prey as larger ones become depleted and predators become satiated, and that prey below some minimum profitability should be rejected. When large numbers of prey of varying sizes were presented simultaneously, broad‐headed skinks (Eumeces laticeps) preferentially consumed large crickets, ate some medium‐sized crickets late in ingestion sequences, but ate no small crickets. Prey depletion, with selection of the currently most profitable prey type, appears to account for much of observed prey switching, and satiation may contribute. When four crickets of each of four sizes were presented, lizards ate largest first, then medium‐sized. Some then ate small crickets, but none ate very small crickets. These observations and exclusion of small crickets from the diet by many lizards when larger ones were unavailable support the predictions. In tests with three sizes of juvenile mice presented singly, the smallest were attacked at shortest latency and eaten, medium‐sized mice were attacked at greater latency but could not be subdued, and large mice were not attacked. These data suggest that as prey become too large to subdue and eat readily, profitability declines until they are excluded from the diet. Unsuccessful attacks on medium‐sized mice suggest that lizards had to learn their own capabilities with respect to a novel prey type.  相似文献   

20.
Predator–prey size (PPS) relationships are determined by predator behaviour, with the likelihood of prey being eaten dependent on their size relative to that of the consumer. Published PPS relationships for 30 pelagic or benthic marine fish species were analysed using quantile regression to determine how median, lower and upper prey sizes varied with predator size and habitat. Habitat effects on predator foraging activity/mode, morphology, growth and natural mortality are quantified and the effects on PPS relationships explored. Pelagic species are more active, more likely to move by caudal fin propulsion and grow more rapidly but have higher mortality rates than benthic species, where the need for greater manoeuvrability when foraging in more physically complex habitats favours ambush predators using pectoral fin propulsion. Prey size increased with predator size in most species, but pelagic species ate relatively smaller prey than benthic predators. As pelagic predators grew, lower prey size limits changed little, and prey size range increased but median relative prey size declined, whereas the lower limit increased and median relative prey size was constant or increased in benthic species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号