首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biodegradative 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase of Pseudomonas mevalonii catalyzes the NAD(+)-dependent conversion of (S)-HMG-CoA to (R)-mevalonate. Crystallographic analysis of abortive ternary complexes of this enzyme revealed lysine 267 located at a position in the active site, suggesting that it might serve as the general acid/base for catalysis. Site-directed mutagenesis and subsequent chemical derivatization were therefore employed to investigate this active site lysine. Replacement of lysine 267 by alanine, histidine, or arginine resulted in mutant enzymes that lacked detectable activity. Lysine 267 was next replaced by the lysine analogues aminoethylcysteine and carboxyamidomethylcysteine. Using instead of the wild-type enzyme the fully active, cysteine-free mutant enzyme C156A/C296A, lysine 267 was first replaced by cysteine. Cysteine 267 of mutant enzyme C156A/C296A/K267C was then treated with bromoethylamine or iodoacetamide to insert aminoethylcysteine (AEC) or carboxyamidomethylcysteine at position 267. The carboxyamidomethylcysteine derivative was inactive, whereas mutant enzyme C156A/C296A/K267AEC exhibited high catalytic activity. That aminoethylcysteine, but not other basic amino acids, can replace the function of lysine 267 documents both the importance of this residue and the requirement for a precisely positioned positive charge at the active site of the enzyme.  相似文献   

2.
Lysine 234 is a residue highly conserved in all beta-lactamases, except in the carbenicillin-hydrolyzing enzymes, in which it is replaced by an arginine. Informational suppression has been used to create amino acid substitutions at this position in the broad spectrum Escherichia coli beta-lactamase TEM-1, in order to elucidate the role of this residue which lies on the wall at the closed end of the active site cavity. The mutants K234R and K234T were constructed and their kinetic constants measured. Replacement of lysine 234 by arginine yields an enzyme with similar activity toward cephalosporins and most penicillins, except toward the carboxypenicillins for which the presence of the guanidine group enhances the transition state binding. The removal of the basic group in the mutant K234T yields a protein variant which retains a low activity toward penicillins, but losts drastically its ability to hydrolyze cephalosporins. Moreover, these two mutations largely decreased the affinity of the enzyme for penicillins (10-fold for K234R and 50-fold for K234T). This can be correlated with the disruption of the predicted electrostatic binding between the C3 carboxylic group of penicillins and the amine function of the lysine. Therefore, lysine 234 in the E. coli beta-lactamase TEM-1 is involved both in the initial recognition of the substrate and in transition state stabilization.  相似文献   

3.
Acylpeptide hydrolase of Aeropyrum pernix K1 is composed of a catalytic alpha/beta hydrolase domain and a non-catalytic beta-propeller domain. The Glu88 residue of the propeller domain is highly conserved in the prolyl oligopeptidase family and forms an inter-domain salt bridge with Arg526, a key residue for substrate binding. We have dissected the functions of Glu88 using site-directed mutagenesis, steady-state kinetics analyses, and molecular dynamics simulations. In E88A and E88A/R526K mutants, with a broken inter-domain salt bridge and a positive charge at position 526, catalytic activities for both a peptidase substrate and an esterase substrate were almost abolished. Analysis of the pH dependence of the mutants' reaction kinetics indicates that these mutations lead to changes in the electrostatic environment of the active site, which can be modulated by chloride ions. These findings indicate that the neutralization at position 526 is favorable for the activity of the enzyme, which is also verified by the catalytic behavior of E88A/R526V mutant. All mutants have lower thermodynamic stability than the wild-type. Therefore, Glu88 plays two major roles in the function of the enzyme: neutralizing the positive charge of Arg526, thereby increasing the enzymatic activity, and forming the Glu88-Arg526 salt bridge, thereby stabilizing the protein.  相似文献   

4.
Site-directed mutagenesis is a powerful tool for identifying active-site residues essential for catalysis; however, this approach has only recently become available for acetate kinase. The enzyme from Methanosarcina thermophila has been cloned and hyper-produced in a highly active form in Escherichia coli (recombinant wild-type). The role of arginines in this acetate kinase was investigated. Five arginines (R91, R175, R241, R285, and R340) in the M. thermophila enzyme were selected for individual replacement based on their high conservation among sequences of acetate kinase homologues. Replacement of R91 or R241 with alanine or leucine produced variants with specific activities less than 0.1% of the recombinant wild-type enzyme. The circular dichroism spectra and other properties of these variants were comparable to those of recombinant wild-type, indicating no global conformational changes. These results indicate that R91 and R241 are essential for activity, consistent with roles in catalysis. The variant produced by conservative replacement of R91 with lysine had approximately 2% of recombinant wild-type activity, suggesting a positive charge is important in this position. The K(m) value for acetate of the R91K variant increased greater than 10-fold relative to recombinant wild-type, suggesting an additional role for R91 in binding this substrate. Activities of both the R91A and R241A variants were rescued 20-fold when guanidine or derivatives were added to the reaction mixture. The K(m) values for ATP of the rescued variants were similar to those of recombinant wild-type, suggesting that the rescued activities are the consequence of replacement of important functional groups and not changes in the catalytic mechanism. These results further support roles for R91 and R241 in catalysis. Replacement of R285 with alanine, leucine, or lysine had no significant effect on activity; however, the K(m) values for acetate increased 6-10-fold, suggesting R285 influences the binding of this substrate. Phenylglyoxal inhibition and substrate protection experiments with the recombinant wild-type enzyme and variants were consistent with the presence of one or more essential arginine residues in the active site as well as with roles for R91 and R241 in catalysis. It is proposed that R91 and R241 function to stabilize the previously proposed pentacoordinate transition state during direct in-line transfer of the gamma-phosphate of ATP to acetate. The kinetic characterization of variants produced by replacement of R175 and R340 with alanine, leucine, or lysine indicated that these residues are not involved in catalysis but fulfill important structural roles.  相似文献   

5.
Ohta K  Masuda T  Ide N  Kitabatake N 《The FEBS journal》2008,275(14):3644-3652
Thaumatin is an intensely sweet-tasting protein. To identify the critical amino acid residue(s) responsible for elicitation of the sweetness of thaumatin, we prepared mutant thaumatin proteins, using Pichia pastoris, in which alanine residues were substituted for lysine or arginine residues, and the sweetness of each mutant protein was evaluated by sensory analysis in humans. Four lysine residues (K49, K67, K106 and K163) and three arginine residues (R76, R79 and R82) played significant roles in thaumatin sweetness. Of these residues, K67 and R82 were particularly important for eliciting the sweetness. We also prepared two further mutant thaumatin I proteins: one in which an arginine residue was substituted for a lysine residue, R82K, and one in which a lysine residue was substituted for an arginine residue, K67R. The threshold value for sweetness was higher for R82K than for thaumatin I, indicating that not only the positive charge but also the structure of the side chain of the arginine residue at position 82 influences the sweetness of thaumatin, whereas only the positive charge of the K67 side chain affects sweetness.  相似文献   

6.
Zhang X  Bruice TC 《Biochemistry》2006,45(28):8562-8567
Molecular dynamics (MD) simulations of Thermus thermophilus chorismate mutase substrate complex (TtCM x S) have been carried out at 298 K, 333 K, and the temperature of optimum activity: 343 K. The enzyme exists as trimeric subunits with active sites shared between two neighboring subunits. Two features distinguish intersubunit linkages of the thermophilic and mesophilic enzyme Bacillus subtilis chorismate mutase substrate complex (BsCM x S): (i) electrostatic interactions by intersubunit ion pairs (Arg3-Glu40*/41, Arg76-Glu51* and Arg69*-Asp101, residues labeled with an asterisk are from the neighboring subunit) in the TtCM x S are not present in the structure of the BsCM x S; and (ii) replacement of polar residues with short and nonpolar residues in the interstices of the TtCM x S tighten the intersubunit hydrophobic interactions compared to BsCM x S. Concerning the active site, electrostatic interactions of the critically placed Arg6 and Arg63* with the two carboxylates of chorismate place the latter in a reactive conformation to spontaneously undergo a Claisen rearrangement. The optimum geometry at the active site has the CZ atoms of the two arginines 11 A apart. With a decrease in temperature, Arg63* moves toward Arg6 and the average conformation structure of chorismate moves further away from the reactive ground state conformation. This movement is due to the decrease in distance separating the electrostatic (in the main) and hydrophobic interacting pairs holding the two subunits together.  相似文献   

7.
Crystal structures of human thymidylate synthase (hTS) revealed that the protein exists in active and inactive conformations, defined by the position of a loop containing the active site nucleophile. TS is highly homologous among diverse species; however, the residue at position 163 (hTS) differs among species. Arginine at this position is predicted by structural modeling to enable conformational switching. Arginine or lysine is reported at this position in all mammals in the GenBank and Ensembl databases, with arginine reported in only primates. Sequence analysis of the TS gene of representative primates revealed that arginine occurs at this relative position in all primates except a representative of prosimians. Mutant human proteins were created with residues at position 163 that occur in TSs from prokaryotes and eukaryotes. Catalytic constants (k cat) of mutant enzymes were 45–149% of hTS, with the lysine mutant (R163K) exhibiting the highest k cat. The effect of lysine substitution on solution structure and on ligand binding was investigated. R163K exhibited higher intrinsic fluorescence, a more negative molar ellipticity, and higher dissociation constants (K d) for ligands that modulate protein conformation than hTS. Temperature effects on intrinsic fluorescence and catalytic activity of hTS and R163K are consistent with proteins populating different conformational states. The data indicate that the enzyme with arginine at the position corresponding to 163 (hTS) evolved after the divergence of prosimians and simians and that substitution of lysine by arginine confers unique structural and functional properties to the enzyme expressed in simian primates.  相似文献   

8.
W Seol  A J Shatkin 《Biochemistry》1992,31(13):3550-3554
To investigate an active site(s) in the Escherichia coli alpha-ketoglutarate premease, 11 point mutants were made in the corresponding structural gene, kgtP, by oligonucleotide-directed mutagenesis and the polymerase chain reaction. On the basis of sequences conserved in KgtP and related members of a transporter superfamily [Henderson P. J. F., & Maiden, M. C. (1990) Philos. Trans. R. Soc. London B 326, 391], Arg76 was replaced with Ala, Asp, or Lys; Asp88 with Asn or Glu; His90 with Ala; Arg92 with Ala or Lys; and Arg198 with Ala, Asp, or Lys. Mutant proteins expressed using the T7 polymerase system were in each case shown to be membrane-associated. However, they differed in transport activity. Mutants H90A and R198K had activities similar to that of wild type, and R76K and R198A retained 10-60% of the wild-type activity. In all other mutants, alpha-ketoglutarate transport was abolished. The results suggest that Arg92, which is highly conserved among other members of the transporter superfamily, is necessary for activity and also that Asp88 is critical for function, as observed for the tetracycline transporter. These data show further that a positive charge is essential at position 76 and is also important, but not absolutely required, at position 198 for alpha-ketoglutarate transport. Unlike lacY permease which was inactivated by deleting the last helix [McKenna, E., Hardy, D., Pastore, J. C., & Kaback, H. R. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 2969], a KgtP truncation mutant missing the last putative membrane-spanning region was relatively stable and also retained 10-50% of the wild-type level of alpha-ketoglutarate transport activity.  相似文献   

9.
A highly thermostable xylanase (Xyl I) produced by Thermomonospora sp. was purified to homogeneity and was classified as a family 10 xylanase based on its molecular weight (38,000 Da) and isoelectric point (4.1). K2d analysis showed that the secondary structure of Xyl I was made up of 38% alpha-helix and 10% beta-sheet. The optimal temperature for the activity of Xyl I was 80 degrees C. Xyl I was highly thermostable with half-lives of 86, 30, and 15 min at 80, 90, and 100 degrees C respectively. Xyl I was stable in an expansive pH range of 5 to 10 with more than 75% residual activity. Our present investigation using o-phthalaldehyde (OPTA) as the chemical initiator for fluorescent chemoaffinity labeling and trinitrobenzenesulphonic acid (TNBS) as chemical modifier have revealed the presence of a single lysine residue in the active site of Xyl I. The high pK value for the basic limb of the pH profile reflects the ionization of a lysine residue. The higher K(m) values and similar k(cat) values of the TNBS modified enzyme in comparison to native enzyme and the substrate protection against OPTA and TNBS, suggested the presence of the lysine residue in the substrate-binding site.  相似文献   

10.
PchB from Pseudomonas aeruginosa possesses isochorismate pyruvate lyase (IPL) and weak chorismate mutase (CM) activity. Homology modeling based on a structurally characterized CM, coupled with randomization of presumed key active site residues (Arg54, Glu90, Gln91) and in vivo selection for CM activity, was used to derive mechanistic insights into the IPL activity of PchB. Mutation of Arg54 was incompatible with viability, and the CM and IPL activities of an engineered R54K variant were reduced 1,000-fold each. The observation that position 90 was tolerant to substitution but position 91 was essentially confined to Gln or Glu in functional variants rules out involvement of Glu90 in general base catalysis. Counter to the generally accepted mechanistic hypothesis for pyruvate lyases, we propose for PchB a rare [1,5]-sigmatropic reaction mechanism that invokes electrostatic catalysis in analogy to the [3,3]-pericyclic rearrangement of chorismate in CMs. A common catalytic principle for both PchB functions is also supported by the covariance of the catalytic parameters for the CM and IPL activities and the shared functional requirement for a protonated Glu91 in Q91E variants. The experiments demonstrate that focusing directed evolution strategies on the readily accessible surrogate activity of an enzyme can provide valuable insights into the mechanism of the primary reaction.  相似文献   

11.
Class D β-lactamases pose an emerging threat to the efficacy of β-lactam therapy for bacterial infections. Class D enzymes differ mechanistically from other β-lactamases by the presence of an active-site N-carboxylated lysine that serves as a general base to activate the serine nucleophile for attack. We have used site-saturation mutagenesis at position V117 in the class D β-lactamase OXA-1 to investigate how alterations in the environment around N-carboxylated K70 affect the ability of that modified residue to carry out its normal function. Minimum inhibitory concentration analysis of the 20 position 117 variants demonstrates a clear pattern of charge and polarity effects on the level of ampicillin resistance imparted on Escherichia coli (E. coli). Substitutions that introduce a negative charge (D, E) at position 117 reduce resistance to near background levels, while the positively charged K and R residues maintain the highest resistance levels of all mutants. Treatment of the acidic variants with the fluorescent penicillin BOCILLIN FL followed by SDS-PAGE shows that they are active for acylation by substrate but deacylation-deficient. We used a novel fluorescence anisotropy assay to show that the specific charge and hydrogen-bonding potential of the residue at position 117 affect CO(2) binding to K70, which in turn correlates to deacylation activity. These conclusions are discussed in light of the mechanisms proposed for both class D β-lactamases and BlaR β-lactam sensor proteins and suggest a reason for the preponderance of asparagine at the V117-homologous position in the sensors.  相似文献   

12.
The charge on the side chain of the internal pore residue lysine 519 (K519) of the Torpedo ClC-0 chloride (Cl-) channel affects channel conductance. Experiments that replace wild-type (WT) lysine with neutral or negatively charged residues or that modify the K519C mutant with various methane thiosulfonate (MTS) reagents show that the conductance of the channel decreases when the charge at position 519 is made more negative. This charge effect on the channel conductance diminishes in the presence of a high intracellular Cl- concentration ([Cl-]i). However, the application of high concentrations of nonpermeant ions, such as glutamate or sulfate (SO42-), does not change the conductance, suggesting that the electrostatic effects created by the charge at position 519 are unlikely due to a surface charge mechanism. Another pore residue, glutamate 127 (E127), plays an even more critical role in controlling channel conductance. This negatively charged residue, based on the structures of the homologous bacterial ClC channels, lies 4-5 A from K519. Altering the charge of this residue can influence the apparent Cl- affinity as well as the saturated pore conductance in the conductance-Cl- activity curve. Amino acid residues at the selectivity filter also control the pore conductance but mutating these residues mainly affects the maximal pore conductance. These results suggest at least two different conductance determinants in the pore of ClC-0, consistent with the most recent crystal structure of the bacterial ClC channel solved to 2.5 A, in which multiple Cl--binding sites were identified in the pore. Thus, we suggest that the occupancy of the internal Cl--binding site is directly controlled by the charged residues located at the inner pore mouth. On the other hand, the Cl--binding site at the selectivity filter controls the exit rate of Cl- and therefore determines the maximal channel conductance.  相似文献   

13.
Olucha J  Ouellette AN  Luo Q  Lamb AL 《Biochemistry》2011,50(33):7198-7207
An isochorismate-pyruvate lyase with adventitious chorismate mutase activity from Pseudomonas aerugionsa (PchB) achieves catalysis of both pericyclic reactions in part by the stabilization of reactive conformations and in part by electrostatic transition-state stabilization. When the active site loop Lys42 is mutated to histidine, the enzyme develops a pH dependence corresponding to a loss of catalytic power upon deprotonation of the histidine. Structural data indicate that the change is not due to changes in active site architecture, but due to the difference in charge at this key site. With loss of the positive charge on the K42H side chain at high pH, the enzyme retains lyase activity at ~100-fold lowered catalytic efficiency but loses detectable mutase activity. We propose that both substrate organization and electrostatic transition state stabilization contribute to catalysis. However, the dominant reaction path for catalysis is dependent on reaction conditions, which influence the electrostatic properties of the enzyme active site amino acid side chains.  相似文献   

14.
A conserved lysine residue in the "P loop" of domain III renders sodium channels highly selective. Conversion of this residue to glutamate, to mimic the homologous position in calcium channels, enables Ca2+ to permeate sodium channels. Because the lysine-to-glutamate mutation converts a positively charged side chain to a negative one, it has been proposed that a positive charge at this position suffices for Na+ selectivity. We tested this idea by converting the critical lysine to cysteine (K1237C) in mu 1 rat skeletal sodium channels expressed in Xenopus oocytes. Selectivity of the mutant channels was then characterized before and after chemical modification to alter side-chain charge. Wild-type channels are highly selective for Na+ over Ca2+ (PCa/PNa < 0.01). The K1237C mutation significantly increases permeability to Ca2+ (PCa/PNa = 0.6) and Sr2+. Analogous mutations in domains I (D400C), II (E755C), and IV (A1529C) did not alter the selectivity for Na+ over Ca2+, nor did any of the domain IV mutations (G1530C, W1531C, and D1532C) that are known to affect monovalent selectivity. Interestingly, the increase in permeability to Ca2+ in K1237C cannot be reversed by simply restoring the positive charge to the side chain by using the sulfhydryl modifying reagent methanethiosulfonate ethylammonium. Single-channel studies confirmed that modified K1237C channels, which exhibit a reduced unitary conductance, remain permeable to Ca2+, with a PCa/PNa of 0.6. We conclude that the chemical identity of the residue at position 1237 is crucial for channel selectivity. Simply rendering the 1237 side chain positive does not suffice to restore selectivity to the channel.  相似文献   

15.
There is now overwhelming evidence supporting a common mechanism for fumarate reduction in the respiratory fumarate reductases. The X-ray structures of substrate-bound forms of these enzymes indicate that the substrate is well positioned to accept a hydride from FAD and a proton from an arginine side chain. Recent work on the enzyme from Shewanella frigidimarina [Doherty, M. K., Pealing, S. L., Miles, C. S., Moysey, R., Taylor, P., Walkinshaw, M. D., Reid, G. A., and Chapman, S. K. (2000) Biochemistry 39, 10695-10701] has strengthened the assignment of an arginine (Arg402) as the proton donor in fumarate reduction. Here we describe the crystallographic and kinetic analyses of the R402A, R402K, and R402Y mutant forms of the Shewanella enzyme. The crystal structure of the R402A mutant (2.0 A resolution) shows it to be virtually identical to the wild-type enzyme, apart from the fact that a water molecule occupies the position previously taken by part of the guanidine group of R402. Although structurally similar to the wild-type enzyme, the R402A mutant is inactive under all the conditions that were studied. This implies that a water molecule, in this position in the active site, cannot function as the proton donor for fumarate reduction. In contrast to the R402A mutation, both the R402K and R402Y mutant enzymes are active. Although this activity was at a very low level (at pH 7.2 some 10(4)-fold lower than that for the wild type), it does imply that both lysine and tyrosine can fulfill the role of an active site proton donor, albeit very poorly. The crystal structures of the R402K and R402Y mutant enzymes (2.0 A resolution) show that distances from the lysine and tyrosine side chains to the nearest carbon atom of fumarate are approximately 3.5 A, clearly permitting proton transfer. The combined results from mutagenesis, crystallographic, and kinetic studies provide formidable evidence that R402 acts as both a Lewis acid (stabilizing the build-up of negative charge upon hydride transfer from FAD to fumarate) and a Br?nsted acid (donating the proton to the substrate to complete the formation of succinate).  相似文献   

16.
The presence of exported chorismate mutases produced by certain organisms such as Mycobacterium tuberculosis has been shown to correlate with their pathogenicity. As such, these proteins comprise a new group of promising selective drug targets. Here, we report the high-resolution crystal structure of the secreted dimeric chorismate mutase from M. tuberculosis (*MtCM; encoded by Rv1885c), which represents the first 3D-structure of a member of this chorismate mutase family, termed the AroQ(gamma) subclass. Structures are presented both for the unliganded enzyme and for a complex with a transition state analog. The protomer fold resembles the structurally characterized (dimeric) Escherichia coli chorismate mutase domain, but exhibits a new topology, with helix H4 of *MtCM carrying the catalytic site residue missing in the shortened helix H1. Furthermore, the structure of each *MtCM protomer is significantly more compact and only harbors one active site pocket, which is formed entirely by one polypeptide chain. Apart from the structural model, we present evidence as to how the substrate may enter the active site.  相似文献   

17.
The rapid reaction kinetics of wild-type xanthine dehydrogenase from Rhodobacter capsulatus and variants at Arg-310 in the active site have been characterized for a variety of purine substrates. With xanthine as substrate, k(red) (the limiting rate of enzyme reduction by substrate at high [S]) decreased approximately 20-fold in an R310K variant and 2 x 10(4)-fold in an R310M variant. Although Arg-310 lies on the opposite end of the substrate from the C-8 position that becomes hydroxylated, its interaction with substrate still contributed approximately 4.5 kcal/mol toward transition state stabilization. The other purines examined fell into two distinct groups: members of the first were effectively hydroxylated by the wild-type enzyme but were strongly affected by the exchange of Arg-310 to methionine (with a reduction in k(red) greater than 10(3)), whereas members of the second were much less effectively hydroxylated by wild-type enzyme but also much less significantly affected by the amino acid exchanges (with a reduction in k(red) less than 50-fold). The effect was such that the 4000-fold range in k(red) seen with wild-type enzyme was reduced to a mere 4-fold in the R310M variant. The data are consistent with a model in which "good" substrates are bound "correctly" in the active site in an orientation that allows Arg-310 to stabilize the transition state for the first step of the overall reaction via an electrostatic interaction at the C-6 position, thereby accelerating the reaction rate. On the other hand, "poor" substrates bound upside down relative to this "correct" orientation. In so doing, they are unable to avail themselves of the additional catalytic power provided by Arg-310 in wild-type enzyme but, for this reason, are significantly less affected by mutations at this position. The kinetic data thus provide a picture of the specific manner in which the physiological substrate xanthine is oriented in the active site relative to Arg-310 and how this residue is used catalytically to accelerate the reaction rate (rather than simply bind substrate) despite being remote from the position that is hydroxylated.  相似文献   

18.
We compared wild-type rat skeletal muscle NaChs (micro1) and a mutant NaCh (Y1586K) that has a single amino acid substitution, lysine (K) for tyrosine (Y), at position 1586 in the S6 transmembrane segment of domain 4. In Y1586K, macroscopic current decay is faster, the V(1/2) of the activation curve is shifted in the depolarized direction, and the fast-inactivation curve is less steep compared with mu1. After an 8-ms depolarization pulse, Y1586K recovers from inactivation much more slowly than mu1. The recovery is double exponential, suggesting recovery from two inactivation states. Varying the depolarization protocols isolates entry into an additional, "atypical" inactivation state in Y1586K that is distinct from typical fast or slow inactivation. Substitution of positively charged arginine (R) at Y1586 produces an inactivation phenotype similar to that of Y1586K. Substitution by negatively charged aspartic acid (D) or uncharged alanine (A) at Y1586 produces an inactivation phenotype similar to mu1. Our results suggest that the positive charge of lysine (K) produces the atypical inactivation state in Y1586K. We propose that a conformational change during depolarization alters the relative position of the 1586K residue in the D4-S6 segment and that atypical inactivation in Y1586K occurs via an electrostatic interaction in or near the inner pore region.  相似文献   

19.
Ligand-targeted anticancer therapeutics represent an opportunity for the selective and efficient delivery of drugs to tumours. The chemical coupling of ligands to drugs or drug carrier systems is, however, often hampered by the presence of multiple reactive groups within the ligand, for example, epsilon-NH(2) groups in lysine side chains. In this paper, we describe the isolation by phage display of human epidermal growth factor (EGF) variants without lysine and a reduced number of arginine residues. The selection on A431 carcinoma cells also revealed that R41 is indispensable for EGF binding activity as all EGF variants contained an arginine residue at this position. One EGF variant (EGFm1) with K28Q, R45S, K48S and R53S mutations was expressed in bacteria and showed an identical binding activity as wild-type EGF. EGFm1 could be labelled with fluorescein isothiocyanate demonstrating the accessibility of the N-terminal amino group for coupling reagents. Furthermore, coupling of EGFm1 to PEGylated liposomes resulted in target cell-specific binding and internalization of the liposomes. These human EGF variants should be advantageous for the generation of anticancer therapeutics targeting the EGF receptor, which is overexpressed by a wide variety of different tumours.  相似文献   

20.
The structure of the flavin-dependent alkanesulfonate monooxygenase (SsuD) exists as a TIM-barrel structure with an insertion region located over the active site that contains a conserved arginine (Arg297) residue present in all SsuD homologues. Substitution of Arg297 with alanine (R297A SsuD) or lysine (R297K SsuD) was performed to determine the functional role of this conserved residue in SsuD catalysis. While the more conservative R297K SsuD possessed a lower k(cat)/K(m) value (0.04 ± 0.01 μM(-1) min(-1)) relative to wild-type (1.17 ± 0.22 μM(-1) min(-1)), there was no activity observed with the R297A SsuD variant. Each of the arginine variants had similar K(d) values for flavin binding as wild-type SsuD (0.32 ± 0.15 μM), but there was no measurable binding of octanesulfonate. The low levels of activity for the R297A and R297K SsuD variants correlated with the absence of any detectable C4a-(peroxy)flavin formation in stopped-flow kinetic studies. Single-turnover experiments were performed in the presence of SsuE to evaluate both the reductive and oxidative half-reaction. With wild-type SsuD a lag phase is observed following the reductive half-reaction by SsuE that represents flavin transfer or conformational changes associated with the binding of substrates. Evaluation of the Arg297 SsuD variants in the presence of SsuE showed no lag phase following reduction by SsuE, and the flavin was oxidized immediately following the reductive half-reaction. These results corresponded with a lack of detectable changes in the proteolytic susceptibility of R297A and R297K SsuD in the presence of reduced flavin and/or octanesulfonate, signifying the absence of a conformational change in these variants with the substitution of Arg297.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号