首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nucleotide sequence of Physarum polycephalum U4 snRNA*** was determined and compared to published U4 snRNA sequences. The primary structure of P polycephalum U4 snRNA is closer to that of plants and animals than to that of fungi. But, both fungi and P polycephalum U4 snRNAs are missing the 3' terminal hairpin and this may be a common feature of lower eucaryote U4 snRNAs. We found that the secondary structure model we previously proposed for 'free' U4 snRNA is compatible with the various U4 snRNA sequences published. The possibility to form this tetrahelix structure is preserved by several compensatory base substitutions and by compensatory nucleotide insertions and deletions. According to this finding, association between U4 and U6 snRNAs implies the disruption of 2 internal helical structures of U4 snRNA. One has a very low free energy, but the other, which represents one-half of the helical region of the 5' hairpin, requires 4 to 5 kcal to be open. The remaining part of the 5' hairpin is maintained in the U4/U6 complex and we observed the conservation, in all U4 snRNAs studied, of a U bulge residue at the limit between the helical region which has to be melted and that which is maintained. The 3' domain of U4 snRNA is less conserved in both size and primary structure than the 5' domain; its structure is also more compact in the RNA in solution. In this domain, only the Sm binding site and the presence of a bulge nucleotide in the hairpin on the 5' side of the Sm site are conserved throughout evolution.  相似文献   

2.
This paper describes the sequence of 257 nucleotides from the 3' end of RNA 2 of barley stripe mosaic virus ( BSMV , strain Argentina Mild) including an internal oligo (A) tract localized at a distance of 236 nucleotides from the 3' end, and the 3' terminal tRNA-like structure accepting tyrosine. This sequence is shown to be the same with RNAs 1,2 and 3 of another BSMV strain, Norwich , for at least the first 106 nucleotides from the 3' end. The 3' extremity of BSMV RNA bears some resemblance to tRNATyr from yeast in its primary structure. The possible secondary structures of the tRNA-like sequence in BSMV genome are discussed.  相似文献   

3.
E O Shuster  C Guthrie 《Cell》1988,55(1):41-48
Yeast U2 snRNA (1175 nucleotides) is six times larger than its mammalian counterpart (188 nucleotides). Using deletion analysis, we show that the molecule can be divided into three phenotypically distinct domains. As expected, the highly conserved 5' domain (approximately 120 nucleotides) is absolutely essential for viability. Surprisingly, however, deletion of the central 945 nucleotides has no effect on growth rate. In contrast, removal of sequences in the 3' terminal 110 nucleotides results in low numbers of slow-growing colonies; these cells contain U2 with altered 3' ends. This domain can be folded into a secondary structure that strongly resembles the 3' terminal stem-loop IV of human U2. We conclude that yeast U2 contains two functionally important elements. While the 5' domain is known to be directly involved in the splicing reaction, the 3' domain may function primarily in the generation of stable small nuclear ribonucleoprotein particles.  相似文献   

4.
Precursor-specific nucleotide sequences can govern RNA folding.   总被引:9,自引:0,他引:9  
D A Stahl  T A Walker  B Meyhack  N R Pace 《Cell》1979,18(4):1133-1143
  相似文献   

5.
Functional analysis of the sea urchin U7 small nuclear RNA.   总被引:11,自引:2,他引:9       下载免费PDF全文
U7 small nuclear RNA (snRNA) is an essential component of the RNA-processing machinery which generates the 3' end of mature histone mRNA in the sea urchin. The U7 small nuclear ribonucleoprotein particle (snRNP) is classified as a member of the Sm-type U snRNP family by virtue of its recognition by both anti-trimethylguanosine and anti-Sm antibodies. We analyzed the function-structure relationship of the U7 snRNP by mutagenesis experiments. These suggested that the U7 snRNP of the sea urchin is composed of three important domains. The first domain encompasses the 5'-terminal sequences, up to about nucleotides 7, which are accessible to micrococcal nuclease, while the remainder of the RNA is highly protected and hence presumably bound by proteins. This region contains the sequence complementarities between the U7 snRNA and the histone pre-mRNA which have previously been shown to be required for 3' processing (F. Schaufele, G. M. Gilmartin, W. Bannwarth, and M. L. Birnstiel, Nature [London] 323:777-781, 1986). Nucleotides 9 to 20 constitute a second domain which includes sequences for Sm protein binding. The complementarities between the U7 snRNA sequences in this region and the terminal palindrome of the histone mRNA appear to be fortuitous and play only a secondary, if any, role in 3' processing. The third domain is composed of the terminal palindrome of U7 snRNA, the secondary structure of which must be maintained for the U7 snRNP to function, but its sequence can be drastically altered without any observable effect on snRNP assembly or 3' processing.  相似文献   

6.
The stability of potential RNA stem-loop structures in human immunodeficiency virus isolates, HTLV-III and ARV, has been calculated, and the relevance to the local significant secondary structures in the sequence has been tested statistically using a Monte Carlo simulation method. Potentially significant structures exist in the 5'non-coding region, the boundary regions between the protein coding frames, and the 3' non-coding region. The locally optimal secondary structure occurring in the 5' terminal region has been assessed using different overlapping segment sizes and the Monte Carlo method. The results show that the most favorable structure for the 5' mRNA leader sequence of HIV has two stem-loops folded at nucleotides 5-104 in the R region (stem-loop I, 5-54 and stem-loop II, 58-104). A large fluctuation of segment score of the local optimal secondary structure also occurs in the boundary between the exterior glycosylated protein or outer membrane protein and transmembrane protein coding region. This finding is surprising since no RNA signals or RNA processing are expected to occur at this site. In addition, regions of the genome predicted to have significantly more open structure at the RNA level correlate closely with hypervariable sites found in these viral genomes. The possible importance of local secondary structure to the biological function of the human immunodeficiency virus genome is discussed.  相似文献   

7.
增强子是基因转录调控的一个重要而必需的元件,其最.初发现于SV40早期基因的表达过程中[1,2].自此以后,相继发现这一远端基因调控序列广泛存在于真核细胞、原核细胞和病毒基因组中[3-7].本文选取活性较高的痘苗病毒原核增强子样序列VV1为目的片段,利用缺失和随机突变的方法对VV1功能区进行分析,阐明其结构和功能的关系,进一步丰富原核增强子的作用机理和基因转录调控方面的研究.  相似文献   

8.
9.
The Mason-Pfizer monkey virus (MPMV) genome contains a cis-acting element that serves to facilitate nucleocytoplasmic export of intron-containing RNA. This element, known as the constitutive transport element (CTE), has been mapped to a 154-nt region close to the 3' end of the MPMV genome. The CTE contains a degenerate direct repeat of approximately 70 nt. We have probed the secondary structure of the CTE using double-strand- and single-strand-specific ribonucleases and chemical modification agents. A mutational analysis was also performed to confirm critical features of the CTE structure, as well as to identify regions that contain sequence-specific information required for function. Our results indicate that the CTE forms a long stem structure that contains a 9-nt terminal hairpin loop as well as two identical 16-nt inner loops. The inner loop sequences are rotated 180 degrees relative to each other within the structure. The mutational analysis shows that primary sequences in the loop regions are important for function, suggesting that they may contain binding sites for cellular proteins involved in RNA export. Interestingly, sequences with significant homology to the inner loop regions are found in the genomes of spumaviruses and mouse intracisternal A particles.  相似文献   

10.
The 5' and 3' domains of yeast U6 snRNA contain sequences that are thought to be important for binding to Prp24 and Lsm proteins. By extensive mutational analysis of yeast U6 snRNA, we confirmed that the 3' terminal uridine tract of U6 snRNA is important for U6 binding to Lsm proteins in yeast. Binding of Prp24 protein to U6 RNA is dependent on or is strongly enhanced by U6 binding of Lsm proteins. This supports a model for U6 snRNP assembly in which U6 RNA binds to the Lsm2-8 core prior to binding Prp24 protein. Using compensatory base-pairing analysis, we show that at least half of the recently identified U6 telestem as well as a nucleotide sequence in the other half of the telestem are important for binding of U6 RNA to Prp24 protein. Surprisingly, disruption of base pairing in the unconfirmed half of the telestem enhanced U6-Prp24 binding. Truncation of the entire 3' terminal domain or nearly the entire 5' terminal domain of yeast U6 allowed for detectable levels of splicing to proceed in vitro. In addition to gaining knowledge of the function of the 5' and 3' domains of yeast U6, our results help define the minimal set of requirements for yeast U6 RNA function in splicing. We present a revised secondary structural model of yeast U6 snRNA in free U6 snRNPs.  相似文献   

11.
The 3' terminus of TYMV RNA, which possesses tRNA-like properties, has been studied. A 3' terminal fragment of 112 nucleotides was obtained by cleavage with RNase H after hybridization of a synthetic oligodeoxynucleotide to the viral RNA. The accessibility of cytidine and adenosine residues was probed with chemical modification. Enzymatic digestion studies were performed with RNase T1, nuclease S1 and the double-strand specific RNase from the venom of the cobra Naja naja oxiana. A model is proposed for the secondary structure of the 3' terminal region of TYMV RNA comprising 86 nucleotides. The main feature of this secondary structure is the absence of a conventional acceptor stem as present in canonical tRNA. However, the terminal 42 nucleotides can be folded in a tertiary structure which bears strong resemblance with the acceptor arm of canonical tRNA. Comparison of this region of TYMV RNA with that of other RNAs from both the tymovirus group and the tobamovirus group gives support to our proposal for such a three-dimensional arrangement. The consequences for the recognition by TYMV RNA of tRNA-specific enzymes is discussed.  相似文献   

12.
By chemical and enzymatic probing, we have analyzed the secondary structure of rodent BC1 RNA, a small brain-specific non-messenger RNA. BC1 RNA is specifically transported into dendrites of neuronal cells, where it is proposed to play a role in regulation of translation near synapses. In this study we demonstrate that the 5' domain of BC1 RNA, derived from tRNA(Ala), does not fold into the predicted canonical tRNA cloverleaf structure. We present evidence that by changing bases within the tRNA(Ala) domain during the course of evolution, an extended stem-loop structure has been created in BC1 RNA. The new structural domain might function, in part, as a putative binding site for protein(s) involved in dendritic transport of BC1 RNA within neurons. Furthermore, BC1 RNA contains, in addition to the extended stem-loop structure, an internal poly(A)-rich region that is supposedly single stranded, followed by a second smaller stem-loop structure at the 3' end of the RNA. The three distinct structural domains reflect evolutionary legacies of BC1 RNA.  相似文献   

13.
Predicted single-stranded structure at the 3' splice site is a conserved feature among intervening sequences (IVSs) in eukaryotic nuclear tRNA precursors. The role of 3' splice site structure in splicing was examined through hexanucleotide insertions at a central intron position in the Saccharomyces cerevisiae tRNA gene. These insertions were designed to alter the structure at the splice site without changing its sequence. Endonuclease cleavage of pre-tRNA substrates was then measured in vitro, and suppressor activity was examined in vivo. A precursor with fully double-stranded structure at the 3' splice site was not cleaved by endonuclease. The introduction of one unpaired nucleotide at the 3' splice site was sufficient to restore cleavage, although at a reduced rate. We have also observed that guanosine at the antepenultimate position provides a second consensus feature among IVSs in tRNA precursors. Point mutations at this position were found to affect splicing although there was no specific requirement for guanosine. These and previous results suggest that elements of secondary and/or tertiary structure at the 3' end of IVSs are primary determinants in pre-tRNA splice site utilization whereas specific sequence requirements are limited.  相似文献   

14.
The G proteins transduce hormonal and other signals into regulation of enzymes such as adenylyl cyclase and retinal cGMP phosphodiesterase. Each G protein contains an alpha subunit that binds and hydrolyzes guanine nucleotides and interacts with beta gamma subunits and specific receptor and effector proteins. Amphipathic and secondary structure analysis of the primary sequences of five different alpha chains (bovine alpha s, alpha t1 and alpha t2, mouse alpha i, and rat alpha o) predicted the secondary structure of a composite alpha chain (alpha avg). The alpha chains contain four short regions of sequence homologous to regions in the GDP binding domain of bacterial elongation factor Tu (EF-Tu). Similarities between the predicted secondary structures of these regions in alpha avg and the known secondary structure of EF-Tu allowed us to construct a three-dimensional model of the GDP binding domain of alpha avg. Identification of the GDP binding domain of alpha avg defined three additional domains in the composite polypeptide. The first includes the amino terminal 41 residues of alpha avg, with a predicted amphipathic alpha helical structure; this domain may control binding of the alpha chains to the beta gamma complex. The second domain, containing predicted beta strands and alpha helices, several of which are strongly amphipathic, probably contains sequences responsible for interaction of alpha chains with effector enzymes. The predicted structure of the third domain, containing the carboxy terminal 100 amino acids, is predominantly beta sheet with an amphipathic alpha helix at the carboxy terminus. We propose that this domain is responsible for receptor binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Sequences of 191 flavivirus RNAs belonging to four sero-groups were used to predict the secondary structure of the 3' noncoding region (3' NCR) directly upstream of the conserved terminal hairpin. In mosquito-borne flavivirus RNAs (n = 164) a characteristic structure element was identified that includes a phylogenetically well-supported pseudoknot. This element is repeated in the dengue and Japanese encephalitis RNAs and centers around the conserved sequences CS2 and RCS2. In yellow fever virus RNAs that contain one CS2 motif, only one copy of this pseudoknotted structure was found. The conserved pseudoknotted element is absent from the 3' NCR of tick-borne virus RNAs, which altogether adopt a secondary structure that is very different from that of mosquito-borne virus RNAs. The strong conservation of the pseudoknot in mosquito-borne flavivirus RNAs implies a stronger relationship between these viruses than concluded from previous secondary structure analyses. The role of the (tandem) pseudoknots in flavivirus replication is discussed.  相似文献   

16.
17.
Proposed secondary structure of eukaryotic U14 snRNA.   总被引:5,自引:1,他引:4       下载免费PDF全文
U14 snRNA is a small nuclear RNA that plays a role in the processing of eukaryotic ribosomal RNA. We have investigated the folded structure of this snRNA species using comparative analysis of evolutionarily diverse U14 snRNA primary sequences coupled with nuclease digestion analysis of mouse U14 snRNA. Covariant nucleotide analysis of aligned mouse, rat, human, and yeast U14 snRNA primary sequences suggested a basic folding pattern in which the 5' and 3' termini of all U14 snRNAs were base-paired. Subsequent digestion of mouse U14 snRNA with mung bean (single-strand-specific), T2 (single-strand-preferential), and V1 (double-strand-specific) nucleases defined the major and minor cleavage sites for each nuclease. This digestion data was then utilized in concert with the comparative sequence analysis of aligned U14 snRNA primary sequences to refine the secondary structure model suggested by computer-predicted folding. The proposed secondary structure of U14 snRNA is comprised of three major hairpin/helical regions which includes the helix of base-paired 5' and 3' termini. Strict and semiconservative covariation of specific base-pairs within two of the three major helices, as well as nucleotide changes that strengthen or extend base-paired regions, support this folded conformation as the evolutionary conserved secondary structure for U14 snRNA.  相似文献   

18.
We present the sequence of the 5' terminal 585 nucleotides of mouse 28S rRNA as inferred from the DNA sequence of a cloned gene fragment. The comparison of mouse 28S rRNA sequence with its yeast homolog, the only known complete sequence of eukaryotic nucleus-encoded large rRNA (see ref. 1, 2) reveals the strong conservation of two large stretches which are interspersed with completely divergent sequences. These two blocks of homology span the two segments which have been recently proposed to participate directly in the 5.8S-large rRNA complex in yeast (see ref. 1) through base-pairing with both termini of 5.8S rRNA. The validity of the proposed structural model for 5.8S-28S rRNA complex in eukaryotes is strongly supported by comparative analysis of mouse and yeast sequences: despite a number of mutations in 28S and 5.8S rRNA sequences in interacting regions, the secondary structure that can be proposed for mouse complex is perfectly identical with yeast's, with all the 41 base-pairings between the two molecules maintained through 11 pairs of compensatory base changes. The other regions of the mouse 28S rRNA 5'terminal domain, which have extensively diverged in primary sequence, can nevertheless be folded in a secondary structure pattern highly reminiscent of their yeast' homolog. A minor revision is proposed for mouse 5.8S rRNA sequence.  相似文献   

19.
More than half of yeast U1 snRNA is dispensable for growth.   总被引:9,自引:2,他引:7  
Yeast U1 snRNA (568 nucleotides) is 3.5-fold larger than its mammalian counterpart (164 nucleotides) and contains apparent sequence homology only at the 5' and 3' ends. We have used deletion analysis to determine whether the yeast-specific U1 sequences play essential roles in vivo. Yeast cells carrying a deletion of more than 60% (355 nucleotides) of the single-copy U1 gene are viable, though slow-growing, while a deletion of 316 nucleotides allows essentially wild-type growth. The boundaries of the viable deletions define a dispensable internal domain which comprises sequences unique to yeast. In contrast, the essential 5' and 3' terminal domains correspond to phylogenetically conserved sequences and/or structures previously implicated in RNA:RNA and RNA:protein interactions. The minimal essential sequences of yeast U1 can be drawn in a secondary structure which resembles metazoan U1 in four of seven structural domains.  相似文献   

20.
The small nuclear RNAs of Drosophila   总被引:10,自引:0,他引:10  
We have investigated the sequences of the major small nuclear RNAs of Drosophila cultured cells, with the objective of elucidating phylogenetically conserved primary and secondary structures by comparison of the data with previously determined sequences of these RNAs in vertebrate species. Our results reveal striking degrees of conservation between each Drosophila RNA and its vertebrate cognate, and also demonstrate blocks of homology among the Drosophila small nuclear RNAs, as previously described for vertebrates. The most conserved features include the 5' terminal region of U1 RNA, though to function in pre-mRNA splicing, most of the regions of U4 RNA recently implicated in 3' processing of pre-mRNA, and the major snRNP protein binding site ("domain A") that is also shared by vertebrate U1, U2, U4 and U5 RNAs. Several other conserved features have been revealed, suggesting additional regions of functional significance in these RNAs and also providing further insights into the evolutionary history of the small nuclear RNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号