Background: Anoxic brain injury is the primary cause of death after resuscitation from out-of-hospital cardiac arrest (OHCA) and prognostication is challenging. The aim of this study was to evaluate the potential of two fragments of tau as serum biomarkers for neurological outcome.
Methods: Single-center sub-study of 171 patients included in the Target Temperature Management (TTM) Trial randomly assigned to TTM at 33?°C or TTM at 36?°C for 24?h after OHCA. Fragments (tau-A and tau-C) of the neuronal protein tau were measured in serum 24, 48 and 72?h after OHCA. The primary endpoint was neurological outcome.
Results: Median (quartile 1 – quartile 3) tau-A (ng/ml) values were 58 (43–71) versus 51 (43–67), 72 (57–84) versus 71 (59–82) and 76 (61–92) versus 75 (64–89) for good versus unfavourable outcome at 24, 48 and 72?h, respectively (pgroup = 0.95). Median tau C (ng/ml) values were 38 (29–50) versus 36 (29–49), 49 (38–58) versus 48 (33–59) and 48 (39–59) versus 48 (36–62) (pgroup = 0.95). Tau-A and tau-C did not predict neurological outcome (area under the receiver-operating curve at 48?h; tau-A: 0.51 and tau-C: 0.51).
Conclusions: Serum levels of tau fragments were unable to predict neurological outcome after OHCA. 相似文献
Early prognostication of neurological outcome in comatose patients after cardiac arrest (CA) is vital for clinicians when assessing the survival time of sufferers and formulating appropriate treatment strategies to avoid the withdrawal of life-sustaining treatment (WLST) from patients. However, there is still a lack of sensitive and specific serum biomarkers for early and accurate identification of these patients. Using an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic approach, we discovered 55 differentially expressed proteins, with 39 up-regulated secreted serum proteins and 16 down-regulated secreted serum proteins between three comatose CA survivors with good versus poor neurological recovery. Then, four proteins were selected and were validated via an enzyme-linked immunosorbent assay (ELISA) approach in a larger-scale sample containing 32 good neurological outcome patients and 46 poor neurological outcome patients, and it was confirmed that serum angiotensinogen (AGT) and alpha-1-antitrypsin (SERPINA1) were associated with neurological function and prognosis in CA survivors. A prognostic risk score was developed and calculated using a linear and logistic regression model based on a combination of AGT, SERPINA1 and neuron-specific enolase (NSE) with an area under the curve of 0.865 (P < .001), and the prognostic risk score was positively correlated with the CPC value (R = 0.708, P < .001). We propose that the results of the risk score assessment not only reveal changes in biomarkers during neurological recovery but also assist in enhancing current therapeutic strategies for comatose CA survivors. 相似文献
目的:本研究旨在选择适合的大鼠,对比2月龄大鼠与4月龄大鼠CPR后神经功能评分及亚组评分,摸索利用不同月龄的大鼠CPR的可行性。方法通过严格监测SD大鼠制备模型过程中的心电、血压生理指标、测定各组大鼠不同时间点的神经功能缺失评分以及神经功能亚组评分、对比制备4月龄和2月龄大鼠心肺复苏模型的稳定性。结果电刺激致室颤,4月龄组大鼠的成模率为87.5%,远高于2月龄组大鼠,而死亡率无差异;在电刺激诱发CA过程中造成的血压变化,4月龄组大鼠明显低于2月龄组大鼠,存在极显著性差异( P <0.01);4月龄组大鼠与2月龄组大鼠CPR后各时间点的神经功能评分无统计学差异,而4月龄组大鼠与2月龄组大鼠的神经功能亚组评分在不同时间点,存在显著差异(P <0.05),4月龄大鼠与2月龄大鼠对比,心肺复苏后脑损伤的程度加重。结论4月龄大鼠更适合制备心肺复苏模型,该月龄组的大鼠制备模型成模率高,脑损伤程度重,更适合于用于心肺复苏的基础研究及治疗评价。 相似文献
The goal of this study was to investigate the effect of 1 mM exogenous lactate on cardiac function, and some metabolic parameters,
such as glycolysis, glucose oxidation, lactate oxidation, and fatty acid oxidation, in isolated working rat hearts. Hearts
from male Sprague-Dawley rats were isolated and perfused with 5 mM glucose, 1.2 mM palmitate, and 100 μU/ml insulin with or
without 1 mM lactate. The rates of glycolysis, glucose, lactate, and fatty acid oxidation were determined by supplementing
the buffer with radiolabeled substrates. Cardiac function was similar between lactate+ and lactate− hearts. Glycolysis was
not affected by 1 mM lactate. The addition of lactate did not alter glucose oxidation rates. Interestingly, palmitate oxidation
rates almost doubled when 1 mM lactate was present in the perfusate. This study suggests that subst rate supply to the heart
is crucially important when evaluating the data from metabolic studies. 相似文献
We tested the hypothesis that glycogen levels at the beginning of ischemia affect lactate production during ischemia and postischemic contractile function.Isolated working rat hearts were perfused at physiological workload with bicarbonate buffer containing glucose (10 mmol/L). Hearts were subjected to four different preconditioning protocols, and cardiac function was assessed on reperfusion. Ischemic preconditioning was induced by either one cycle of 5 min ischemia followed by 5, 10, or 20 min of reperfusion (PC5/5, PC5/10, PC5/20), or three cycles of 5 min ischemia followed by 5 min of reperfusion (PC3 × 5/5). All hearts were subjected to 15 min total, global ischemia, followed by 30 min of reperfusion. We measured lactate release, timed the return of aortic flow, compared postischemic to preischemic power, and determined tissue metabolites at selected time points.Compared with preischemic function, cardiac power during reperfusion improved in groups PC5/10 and PC5/20, but was not different from control in groups PC5/5 and PC3 × 5/5. There was no correlation between preischemic glycogen levels and recovery of function during reperfusion. There was also no correlation between glycogen breakdown (or resynthesis) and recovery of function. Lactate accumulation during ischemia was lowest in group PC5/20 and highest in the group with three cycles of preconditioning (PC3 × 5/5). Lactate release during reperfusion was significantly higher in the groups with low recovery of power than in the groups with high recovery of power.In glucose-perfused rat heart recovery of function is independent from both pre- and postischemic myocardial glycogen content over a wide range of glycogen levels. The ability to utilize lactate during reperfusion is an indicator for postischemic return of contractile function. 相似文献
Chagas disease, which is caused by the intracellular protozoanTrypanosoma
cruzi, is a serious health problem in Latin America. The heart is one of
the major organs affected by this parasitic infection. The pathogenesis of tissue
remodelling, particularly regarding cardiomyocyte behaviour after parasite infection,
and the molecular mechanisms that occur immediately following parasite entry into
host cells are not yet completely understood. Previous studies have reported that the
establishment of parasitism is connected to the activation of the
phosphatidylinositol-3 kinase (PI3K), which controls important steps in cellular
metabolism by regulating the production of the second messenger
phosphatidylinositol-3,4,5-trisphosphate. Particularly, the tumour suppressor PTEN is
a negative regulator of PI3K signalling. However, mechanistic details of the
modulatory activity of PTEN on Chagas disease have not been elucidated. To address
this question, H9c2 cells were infected with T. cruzi Berenice 62
strain and the expression of a specific set of microRNAs (miRNAs) were investigated.
Our cellular model demonstrated that miRNA-190b is correlated to the decrease of
cellular viability rates by negatively modulating PTEN protein expression in
T. cruzi-infected cells. 相似文献
Fibrotic remodeling is an adverse consequence of immune response-driven phenotypic modulation of cardiac cells following myocardial infarction(Ml).MicroRNA-146b(miR-146b)is an active regulator of immunomodulation,but its function in the cardiac inflammatory cascade and its clinical implication in fibrotic remodeling following Ml remain largely unknown.Herein,miR-146b-5p was found to be upregulated in the infarcted myocardium of mice and the serum of myocardial ischemia patients.Gain-and loss-of-function experiments demonstrated that miR-146b-5p was a hypoxia-induced regulator that governed the pro-fibrotic phenotype transition of cardiac cells.Overexpression of miR-146b-5p activated fibroblast proliferation,migration,and fibroblast-to-myofibroblast transition,impaired endothelial cell function and stress survival,and disturbed macrophage paracrine signaling.Interestingly,the opposite effects were observed when miR-146b-5p expression was inhibited.Luciferase assays and rescue studies demonstrated that the miR-146b-5p target genes mediating the above phenotypic modulations included interleukin 1 receptor associated kinase 1(IRAKI)and carcinoembryonic antigen related cell adhesion molecule 1(CEACAM1).Local delivery of a miR-146b-5p antagomir significantly reduced fibrosis and cell death,and upregulated capillary and reparative macrophages in the infarcted myocardium to restore cardiac remodeling and function in both mouse and porcine Ml models.Local inhibition of miR-146b-5p may represent a novel therapeutic approach to treat cardiac fibrotic remodeling and dysfunction following Ml. 相似文献
Survival to hospital discharge after out-of-hospital cardiac arrest (OHCA) varies widely. This study describes short-term survival after OHCA in a region with an extensive care path and a follow-up of 1 year.
Methods
Consecutive patients ≥16 years admitted to the emergency department between April 2011 and December 2012 were included. In July 2014 a follow-up took place. Socio-demographic data, characteristics of the OHCA and interventions were described and associations with survival were determined.
Results
Two hundred forty-two patients were included (73 % male, median age 65 years). In 76 % the cardiac arrest was of cardiac origin and 52 % had a shockable rhythm. In 74 % the cardiac arrest was witnessed, 76 % received bystander cardiopulmonary resuscitation and in 39 % an automatic external defibrillator (AED) was used. Of the 168 hospitalised patients, 144 underwent therapeutic procedures. A total of 105 patients survived until hospital discharge. Younger age, cardiac arrest in public area, witnessed cardiac arrest, cardiac origin with a shockable rhythm, the use of an AED, shorter time until return of spontaneous circulation, Glasgow Coma Scale (GCS) ≥13 during transport and longer length of hospital stay were associated with survival. Of the 105 survivors 72 survived for at least 1 year after cardiac arrest and 6 patients died.
Conclusion
A survival rate of 43 % after OHCA is achievable. Witnessed cardiac arrest, cardiac cause of arrest, initial cardiac rhythm and GCS ≥13 were associated with higher survival. 相似文献
Although low-energy extracorporeal cardiac shock wave (ECSW) therapy represents an attractive non-invasive treatment option for ischaemic heart disease, the precise mechanisms of its action and influence on the cardiac tissue remain obscure. The goal of this study was to evaluate the effects of SW application on cardiac function and structure. Four-month-old Fisher 344 rats were subjected to ECSW therapy. Echocardiographic measurements of cardiac function were performed at baseline and at 1 and 3 months after treatment. Signs of inflammation, apoptosis and fibrosis were evaluated by immunohistochemistry in the control and treated hearts. ECSW application did not provoke arrhythmia or increase the troponin-I level. At all time points, the left ventricular ejection fraction and fractional shortening remained stable. Histological analysis revealed neither differences in the extracellular matrix collagen content nor the presence of fibrosis; similarly, there were no signs of inflammation. Moreover, a population of cardiac cells that responded eagerly to ECSW application in the adult heart was identified; c-kit-positive, Ki67-positive, orthochromatic cells, corresponding to cardiac primitive cells, were 2.65-fold more numerous in the treated myocardium. In conclusion, non-invasive ECSW therapy is a safe and effective way of activating cardiac stem cells and myocardial regeneration. Because many factors influence cellular turnover in the ischaemic myocardium during the course of ischaemic heart disease, cardiac remodelling, and heart failure progression, studies to identify the optimal treatment time are warranted. 相似文献
It has been suggested that propofol can modulate microglial activity and hence may have potential roles against neuroinflammation following brain ischemic insult. However, whether and how propofol can inhibit post‐cardiac arrest brain injury via inhibition of microglia activation remains unclear. A rat model of asphyxia cardiac arrest (CA) was created followed by cardiopulmonary resuscitation. CA induced marked microglial activation in the hippocampal CA1 region, revealed by increased OX42 and P2 class of purinoceptor 7 (P2X7R) expression, as well as p38 MAPK phosphorylation. Morris water maze showed that learning and memory deficits following CA could be inhibited or alleviated by pre‐treatment with the microglial inhibitor minocycline or propofol. Microglial activation was significantly suppressed likely via the P2X7R/p‐p38 pathway by propofol. Moreover, hippocampal neuronal injuries after CA were remarkably attenuated by propofol. In vitro experiment showed that propofol pre‐treatment inhibited ATP‐induced microglial activation and release of tumor necrosis factor‐α and interleukin‐1β. In addition, propofol protected neurons from injury when co‐culturing with ATP‐treated microglia. Our data suggest that propofol pre‐treatment inhibits CA‐induced microglial activation and neuronal injury in the hippocampus and ultimately improves cognitive function.
Percutenous catheter ablation of the accessory pathway in Wolff-Parkinson-White syndrome is a highly successful mode of therapy. Sudden cardiac arrest survivors associated with WPW syndrome should undergo radiofrequency catheter ablation. WPW syndrome associated with familial atrial fibrillation is a very rare condition. Herein, we describe a case who presented with sudden cardiac arrest secondary to WPW syndrome and familial atrial fibrillation and treated via radiofrequency catheter ablation. 相似文献
Transplantation of bone marrow-derived mesenchymal stem cells (MSCs) is safe and may improve cardiac function and structural remodelling in patients following myocardial infarction (MI). Cardiovascular cell differentiation and paracrine effects to promote endogenous cardiac regeneration, neovascularization, anti-inflammation, anti-apoptosis, anti-remodelling and cardiac contractility, may contribute to MSC-based cardiac repair following MI. However, current evidence indicates that the efficacy of MSC transplantation was unsatisfactory, due to the poor viability and massive death of the engrafted MSCs in the infarcted myocardium. MicroRNAs are short endogenous, conserved, non-coding RNAs and important regulators involved in numerous facets of cardiac pathophysiologic processes. There is an obvious involvement of microRNAs in almost every facet of putative repair mechanisms of MSC-based therapy in MI, such as stem cell differentiation, neovascularization, apoptosis, cardiac remodelling, cardiac contractility and arrhythmias, and others. It is proposed that therapeutic modulation of individual cardiovascular microRNA of MSCs, either mimicking or antagonizing microRNA actions, will hopefully enhance MSC therapeutic efficacy. In addition, MSCs may be manipulated to enhance functional microRNA expression or to inhibit aberrant microRNA levels in a paracrine manner. We hypothesize that microRNAs may be used as novel regulators in MSC-based therapy in MI and MSC transplantation by microRNA regulation may represent promising therapeutic strategy for MI patients in the future. 相似文献
This study was designed to examine the impact of insulin-like growth factor-1 (IGF-1) deficiency on abdominal aortic constriction (AAC)-induced cardiac geometric and functional changes with a focus on microRNA-1, 133a and 208, which are specially expressed in hearts and govern cardiac hypertrophy and stress-dependent cardiac growth. Liver-specific IGF-1-deficient (LID) and C57/BL6 mice were subject to AAC. Echocardiographic and cardiomyocyte function were assessed 4 wks later. Haematoxylin and eosin staining was used to monitor myocardial morphology. Western blot and real-time PCR were used to detect protein and miR expression, respectively. Neonatal rat cardiomyocytes (NRCMs) were transfected with miRs prior to IGF-1 exposure to initiate cell proliferation. Immunohistochemistry and [(3)H] Leucine incorporation were used to detect cell surface area and protein abundance. C57 mice subject to AAC displayed increased ventricular wall thickness, decreased left ventricular end diastolic and end systolic dimensions and elevated cardiomyocyte shortening capacity, all of which were attenuated in LID mice. In addition, IGF-1 deficiency mitigated AAC-induced increase in atrial natriuretic factor, GATA binding protein 4, glucose transporter 4 (GLUT4) and Akt phosphorylation. In contrast, neither AAC treatment nor IGF-1 deficiency affected glycogen synthase kinase 3b, mammalian target of rapamycin, the Glut-4 translocation mediator Akt substrate of 160 kD (AS160) and protein phosphatase. Levels of miR-1 and -133a (but not miR-208) were significantly attenuated by AAC in C57 but not LID mice. Transfection of miR-1 and -133a obliterated IGF-1-induced hypertrophic responses in NRCMs. Our data suggest that IGF-1 deficiency retards AAC-induced cardiac hypertrophic and contractile changes via alleviating down-regulation of miR-1 and miR-133a in response to left ventricular pressure overload. 相似文献
Purpose. Therapeutic mild hypothermia (TMH) is indicated for comatose survivors of an out-ofhospital cardiac arrest (OHCA) to improve general outcome. Although widely used, there are not many reports on its use on a critical care unit (CCU) or on the comparison of cooling methods. Methods. In a retrospective analysis covering January 2005 to December 2006, 75 consecutive comatose subjects post-OHCA due to ventricular fibrillation and nonventricular fibrillation rhythms (asystole/pulseless electrical activity) were studied in a single tertiary PCI centre. Subjects treated with conventional post-resuscitation care without TMH served as controls (n=26; Jan 2005–Sep 2005). Outcome from controls at hospital discharge was compared with subjects treated with TMH (n=49; Oct 2005–Dec 2006). During the study period, TMH was induced by either external (n=25; Oct 2005–Feb 2006) or endovascular (n=24; Mar 2006–Dec 2006) approach. Results. Besides more females in the control group, there were no major differences in baseline characteristics present between all groups. TMH improved survival (OR 0.36 [0.13–0.95], p<0.05) and neurological outcome (OR 0.23 [0.07–0.70], p<0.01). After subanalysis, TMH-improved outcome did not differ between the two cooling methods used. However, the times to reach TMH and normothermia were shorter with the endovascular approach. Conclusion. TMH induced on a CCU improves survival and neurological outcome after post-OHCA coma. TMH by endovascular approach was more feasible compared with external cooling, but the two cooling methods did not result in a different outcome. (Neth Heart J 2009;17:378–84.) 相似文献