首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When mice are injected with dexamethasone, cortical thymocytes are deleted through programmed cell death (PCD). We have used this in vivo model system to investigate the kinetics of PCD and cell proliferation in relation to polyamine metabolism for 16 h after injection of dexamethasone. As a marker for PCD, we used the appearance of a sub-G(1)peak in the DNA histogram. When a sub-G(1)peak appeared at 4 h after dexamethasone treatment, the activity of the polyamine catabolic enzyme spermidine/spermine N(1)-acetyltransferase (SSAT) was significantly increased and the activity of the polyamine biosynthetic enzyme S-adenosylmethionine decarboxylase (AdoMetDC) was significantly decreased compared to the activities found in the thymi of control mice. Despite the significant changes in the activities of SSAT and AdoMetDC, the only change in the polyamine pool during the experimental period was that of putrescine. Presumably the complexity of this in vivo system masks changes in the spermidine and spermine pools that were expected in relation to the increased SSAT activity and decreased AdoMetDC activity.  相似文献   

2.
The effects of CGP 48664 and DFMO, selective inhibitors of the key enzymes of polyamine biosynthesis, namely, ofS-adenosylmethionine decarboxylase (AdoMetDC) and ornithine decarboxylase (ODC), were investigated on growth, polyamine metabolism, and DNA methylation in the Caco-2 cell line. Both inhibitors caused growth inhibition and affected similarly the initial expression of the differentiation marker sucrase. In the presence of the AdoMetDC inhibitor, ODC activity and the intracellular pool of putrescine were enhanced, whereas the spermidine and spermine pools were decreased. In the presence of the ODC inhibitor, the AdoMetDC activity was enhanced and the intracellular pools of putrescine and spermidine were decreased. With both compounds, the degree of global DNA methylation was increased. Spermine and spermidine (but not putrescine) selectively inhibited cytosine–DNA methyltransferase activity. Our observations suggest that spermidine (and to a lesser extent spermine) controls DNA methylation and may represent a crucial step in the regulation of Caco-2 cell growth and differentiation.  相似文献   

3.
Polyamine auxotrophs of Saccharomyces cerevisiae.   总被引:6,自引:0,他引:6       下载免费PDF全文
Strains of yeast have been constructed that are unable to synthesize ornithine and are thereby deficient in polyamine biosynthesis. These strains were used to develop a protocol for isolation of mutants blocked directly in polyamine synthesis. There were seven mutants isolated that lack ornithine decarboxylase activity; these strains exhibited greatly decreased pool levels of putrescine, spermidine, and spermine when grown in the absence of polyamines. Three of the mutants lack S-adenosylmethionine decarboxylase activity; polyamine limitation of a representative mutant resulted in an accumulation of putrescine and a decrease in spermidine and spermine. When the mutants were cultured in the absence of polyamines, a continuously declining growth rate was observed.  相似文献   

4.
Spermine and spermidine, natural polyamines, suppress lymphocyte function-associated antigen 1 (LFA-1) expression and its associated cellular functions through mechanisms that remain unknown. Inhibition of ornithine decarboxylase, which is required for polyamine synthesis, in Jurkat cells by 3 mM D,L-alpha-difluoromethylornithine hydrochloride (DFMO) significantly decreased spermine and spermidine concentrations and was associated with decreased DNA methyltransferase (Dnmt) activity, enhanced demethylation of the LFA-1 gene (ITGAL) promoter area, and increased CD11a expression. Supplementation with extracellular spermine (500 µM) of cells pretreated with DFMO significantly increased polyamine concentrations, increased Dnmt activity, enhanced methylation of the ITGAL promoter, and decreased CD11a expression. It has been shown that changes in intracellular polyamine concentrations affect activities of -adenosyl-L-methionine-decaroboxylase, and, as a result, affect concentrations of the methyl group donor, S-adenosylmethionine (SAM), and of the competitive Dnmt inhibitor, decarboxylated SAM. Additional treatments designed to increase the amount of SAM and decrease the amount of decarboxylated SAM–such as treatment with methylglyoxal bis-guanylhydrazone (an inhibitor of S-adenosyl-L-methionine-decaroboxylase) and SAM supplementation–successfully decreased CD11a expression. Western blot analyses revealed that neither DFMO nor spermine supplementation affected the amount of active Ras-proximate-1, a member of the Ras superfamily of small GTPases and a key protein for regulation of CD11a expression. The results of this study suggest that polyamine-induced suppression of LFA-1 expression occurs via enhanced methylation of ITGAL.  相似文献   

5.
The mammary cells in virgin mice are essentially non-proliferative, but they can be induced to undergo DNA synthesis in vitro in the presence of insulin. Time course studies on polyamine biosynthesis and DNA synthesis showed that insulin elicits sequential stimulation of the activity of the polyamine biosynthetic enzymes, ornithine decarboxylase, S-adenosyl-L-methionine decarboxylase (SAMDC) and spermidine synthase, and an increase in the concentration of spermidine prior to the augmentation of DNA synthesis. At 48 to 72 hours of culture when DNA synthesis is maximal, the concentration of spermidine increased 2? to 3-fold, whereas the level of spermine remained unchanged. Addition of methyl glyoxal bis(guanylhydrazone) (5—10 μM), a potent inhibitor of SAMDC, to the medium at the onset of culture resulted in inhibition of spermidine formation and DNA synthesis, but when added at 24 hours or 48 hours of culture, the inhibitory effect on DNA synthesis was greatly reduced. The drug, however, produced little inhibition of RNA and protein synthesis. Inhibition of DNA synthesis by the drug can be reversed by addition of spermidine or other polyamines such as putrescine, cadaverine and spermine to the culture. Spermidine is, however, the only polyamine that is effective at physiological concentrations (100~150 pmoles/mg tissue). These results suggest a possibility that spermidine may play a key role in the regulation of mammary cell proliferation.  相似文献   

6.
Agmatine has been proposed as the physiological ligand for the imidazoline receptors. It is not known whether it is also involved in the homoeostasis of intracellular polyamine content. To show whether this is the case, we have studied the effect of agmatine on rat liver cells, under both periportal and perivenous conditions. It is shown that agmatine modulates intracellular polyamine content through its effect on the synthesis of the limiting enzyme of the interconversion pathway, spermidine/spermine acetyltransferase (SSAT). Increased SSAT activity is accompanied by depletion of spermidine and spermine, and accumulation of putrescine and N1-acetylspermidine. Immunoblotting with a specific polyclonal antiserum confirms the induction. At the same time S-adenosylmethionine decarboxylase activity is significantly increased, while ornithine decarboxylase (ODC) activity and the rate of spermidine uptake are reduced. This is not due to an effect on ODC antizyme, which is not significantly changed. All these modifications are observed in HTC cells also, where they are accompanied by a decrease in proliferation rate. SSAT is also induced by low oxygen tension which mimics perivenous conditions. The effect is synergic with that promoted by agmatine.  相似文献   

7.
DFMO reduced mycelial growth of the ectomycorrhizal fungus Paxillus involutus . This was accompanied by reduced activities of ornithine decarboxylase, S-adenosylmethionine decarboxylase and diamine oxidase, and unchanged polyamine oxidase activity. Although DFMO treatment did not alter putrescine or spermidine concentrations significantly, spermine concentration was substantially reduced.  相似文献   

8.
For elucidation of polyamine localization and biosynthesis in various cell types of rat retina, the putrescine, spermidine, and spermine contents as well as the ornithine decarboxylase and S-adenosylmethionine decarboxylase activities have been measured in retinal cell layers obtained by the selective cytotoxic action of iodoacetate on photoreceptor cells and of monosodium glutamate on higher-order retinal neurons. A notable depletion only in spermine content was associated with loss of the visual cell layer. Total ornithine decarboxylase and S-adenosylmethionine decarboxylase activities per retina were significantly lower in all chemically fractionated tissue, but loss of the photoreceptor layer produced the greatest decrease. The specific activities of these enzymes did not show marked changes in rat retinas deprived of inner neurons. The data support the suggestions that polyamine synthesis, storage, and catabolism have different distributions in the retinal layers and that the spermine levels and the high value of the spermine/spermidine molar ratio might depend essentially on the proportion of rods to cones.  相似文献   

9.
Polyamines are small cationic molecules necessary for growth and differentiation in all cells. Although mammalian cells have been studied extensively, particularly as targets of polyamine antagonists, i.e. antitumor agents, polyamine metabolism has also been studied as a potential drug target in microorganisms. Since little is known concerning polyamine metabolism in the microsporidia, we investigated it in Encephalitozoon cuniculi, a microspordian associated with disseminated infections in humans. Organisms were grown in RK-13 cells and harvested using Percoll gradients. Electron microscopy indicated that the fractions banding at 1.051-1.059/g/ml in a microgradient procedure, and 1.102-1.119/g/ml in a scaled-up procedure were nearly homogenous, consisting of pre-emergent (immature) spores which showed large arrays of ribosomes near polar filament coils. Intact purified pre-emergent spores incubated with [1H] ornithine and methionine synthesized putrescine, spermidine, and spermine, while [14C]spermine was converted to spermidine and putrescine. Polyamine production from ornithine was inhibitable by DL-alpha-difluoromethylornithine (DFMO) but not by DL-alpha-difluoromethylarginine (DFMA). Cell-free extracts from mature spores released into the growth media had ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (AdoMetdc), and spermidine/spermine N1-acetyltransferase (SSAT) activities. ODC activity was inhibited by DFMO, but not by DFMA. AdoMetdc was putrescine-stimulated and inhibited by methylglyoxal-bis(guanylhydrazone); arginine decarboxylase activity could not be detected. It is apparent from these studies that Encephalitozoon cuniculi pre-emergent spores have a eukaryotic-type polyamine biosynthetic pathway and can interconvert exogenous polyamines. Pre-emergent spores were metabolically active with respect to polyamine synthesis and interconversion, while intact mature spores harvested from culture supernatants had little metabolic activity.  相似文献   

10.
Polyamine metabolism and cancer   总被引:7,自引:0,他引:7  
Polyamines are aliphatic cations present in all cells. In normal cells, polyamine levels are intricately controlled by biosynthetic and catabolic enzymes. The biosynthetic enzymes are ornithine decarboxylase, S-adenosylmethionine decarboxylase, spermidine synthase, and spermine synthase. The catabolic enzymes include spermidine/spermine acetyltransferase, flavin containing polyamine oxidase, copper containing diamine oxidase, and possibly other amine oxidases. Multiple abnormalities in the control of polyamine metabolism and uptake might be responsible for increased levels of polyamines in cancer cells as compared to that of normal cells. This review is designed to look at the current research in polyamine biosynthesis, catabolism, and transport pathways, enumerate the functions of polyamines, and assess the potential for using polyamine metabolism or function as targets for cancer therapy.  相似文献   

11.
Concentrations of spermidine, spermine and putrescine have been measured in rat diaphragm muscle after unilateral nerve section. The concentration of putrescine increased approx. 10-fold 2 days after nerve section, that of spermidine about 3-fold by day 3, whereas an increase in the concentration of spermine was only observed after 7-10 days. It was not possible to show enhanced uptake of either exogenous putrescine or spermidine by the isolated tissue during the hypertrophy. Consistent with the accumulation of putrescine, activity of ornithine decarboxylase increased within 1 day of nerve section, was maximally elevated by the second day and then declined. Synthesis of spermidine from [14C]putrescine and either methionine or S-adenosylmethionine bt diaphragm cytosol rose within 1 day of nerve section, but by day 3 had returned to normal or below normal values. Activity of adenosylmethionine decarboxylase similarly increased within 1 day of nerve section, but by day 3 had declined to below normal values. Activity of methionine adenosyltransferase was elevated throughout the period studied. The concentration of S-adenosylmethionine was likewise enhanced during hypertrophy. Administration of methylglyoxal bis(guanylhydrazone) produced a marked increase in adenosylmethionine decarboxylase activity and a large increase in putrescine concentration, but did not prevent the rise in spermidine concentration produced by denervation. Possible regulatory mechanisms of polyamine metabolism consistent with the observations are discussed.  相似文献   

12.
Polyamine Changes in Reversible Cerebral Ischemia   总被引:4,自引:4,他引:0  
Putrescine, spermidine, and spermine levels were measured in the cortex, caudoputamen, and hippocampus of rats during 30 min of severe forebrain ischemia (induced by occlusion of both carotid and vertebral arteries) and subsequent recirculation. During ischemia, polyamine levels did not change significantly. During postischemic recirculation, however, putrescine levels dramatically increased whereas those of spermine and spermidine did not change, with the exception of the severely damaged caudoputamen, where the concentration declined after 24 h. The increase of putrescine is explained by postischemic activation of ornithine decarboxylase and inhibition of S-adenosylmethionine decarboxylase. It is suggested that the accumulation of putrescine during postischemic recirculation may be responsible for the delayed neuronal death occurring after ischemia.  相似文献   

13.
The effects of nerve growth factor on polyamine metabolism in PC12 cells   总被引:1,自引:0,他引:1  
Nerve growth factor treatment produces a large increase in the activity of ornithine decarboxylase and a moderate decrease in the activity of S-adenosylmethionine decarboxylase in PC12 cells. These changes are reflected weakly, if at all, in the levels of putrescine, spermidine, and spermine in the cells. The rates of polyamine synthesis are increased somewhat more than the overall levels, but still are not comparable in extent to the increase in the ornithine decarboxylase activity. Inhibitors of ornithine decarboxylase and S-adenosylmethionine decarboxylase have their expected effects on the induction of ornithine decarboxylase and on the activities of both enzymes. Neither inhibitor alone, nor a combination of inhibitors, altered the rate or extent of nerve growth factor-induced neurite outgrowth in the cells.  相似文献   

14.
Effects of S-adenosyl-1,8-diamino-3-thiooctane on polyamine metabolism   总被引:3,自引:0,他引:3  
A E Pegg  K C Tang  J K Coward 《Biochemistry》1982,21(20):5082-5089
Exposure of mammalian cells (transformed mouse fibroblasts or rat hepatoma cells) to S-adenosyl-1,8-diamino-3-thiooctane produced profound changes in the intracellular polyamine content. Putrescine was increased and spermidine was decreased, consistent with the inhibition of spermidine synthase by this compound, which is a potent and specific "transition-state analogue inhibitor" of the isolated enzyme in vitro. The spermine content of the cells was increased by exposure to this drug presumably since spermine synthase was able to use a greater proportion of the available decarboxylated S-adenosylmethionine when spermidine synthase was inhibited. The decarboxylated S-adenosylmethionine content rose substantially because the activity of S-adenosylmethionine decarboxylase was increased in response to the decline in spermidine. These results indicate that S-adenosyl-1,8-diamino-3-thiooctane is taken up by mammalian cells and is an effective inhibitor of spermidine synthase in vivo and that S-adenosylmethionine decarboxylase is regulated by the content of spermidine, but not of spermine. The growth of SV-3T3 cells was substantially reduced in the presence of S-adenosyl-1,8-diamino-3-thiooctane at concentrations of 50 microM or greater. Such inhibition was reversed by the addition of spermidine but not by putrescine. When SV-3T3 cells were exposed to 5 mM alpha-(difluoromethyl)ornithine and 50 microM S-adenosyl-1,8-diamino-3-thiooctane, the content of all polyamines was reduced. Putrescine and spermidine declined by more than 90% and spermine by 80%. Such cells grew very slowly unless spermidine was added.  相似文献   

15.
Polyamine-biosynthesis activity is known to be negatively regulated by intracellular polyamine pools. Accordingly, treatment of cultured L1210 cells with 10 microM-spermine rapidly and significantly lowered ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMetDC) activities in a sequential manner. By contrast, treatment for 48 h with 10 microM of the unsaturated spermine analogue 6-spermyne lowered AdoMetDC activity, but not ODC activity. An initial decrease in ODC activity at 2 h was attributed to a transient increase in free intracellular spermidine and spermine brought about through their displacement by the analogue. Thereafter, ODC activity recovered steadily to control values as 6-spermyne pools increased and spermidine and spermine pools decreased owing to analogue suppression of AdoMetDC activity. The apparent ability of 6-spermyne to regulate AdoMetDC, but not ODC, activity suggests an interesting structure-function correlation and demonstrates that the typical co-regulation of these enzyme activities can be dissociated. This, in turn, may reflect the existence of independent regulatory binding sites for the two enzymes.  相似文献   

16.
The effect of spermidine and spermine on the translation of the mRNAs for ornithine decarboxylase and S-adenosylmethionine decarboxylase was studied using a reticulocyte lysate system and specific antisera to precipitate these proteins. It was found that the synthesis of these key enzymes in the biosynthesis of polyamines was much more strongly inhibited by the addition of polyamines than was either total protein synthesis or the synthesis of albumin. Translation of the mRNA for S-adenosylmethionine decarboxylase was maximal in a lysate which had been substantially freed from polyamines by gel filtration. Addition of 80 microM spermine had no significant effect on total protein synthesis and stimulated albumin synthesis but reduced the production of S-adenosylmethionine decarboxylase by 76%. Similarly, addition of 0.8 mM spermidine reduced the synthesis of S-adenosylmethionine decarboxylase by 82% while albumin and total protein synthesis were similar to that found in the gel-filtered lysate. Translation of ornithine decarboxylase mRNA was greater in the gel-filtered lysate than in the control lysate but synthesis of ornithine decarboxylase was stimulated slightly by low concentrations of polyamines and was maximal at 0.2 mM spermidine or 20 microM spermine. Higher concentrations were strongly inhibitory with a 70% reduction occurring at 0.8 mM spermidine or 150 microM spermine. Further experiments in which both polyamines were added together confirmed that the synthesis of ornithine and S-adenosylmethionine decarboxylases were much more sensitive to inhibition by polyamines than protein synthesis as a whole. These results indicate that an important part of the regulation of polyamine biosynthesis by polyamines is due to a direct inhibitory effect of the polyamines on the translation of mRNA for these biosynthetic enzymes.  相似文献   

17.
18.
Ornithine decarboxylase (ODC) is feedback regulated by polyamines. ODC antizyme mediates this process by forming a complex with ODC and enhancing its degradation. It has been reported that polyamines induce ODC antizyme and inhibit ODC activity. Since exogenous polyamines can be converted to each other after they are taken up into cells, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone) (DEGBG), to block the synthesis of spermidine and spermine from putrescine and investigated the specific roles of individual polyamines in the regulation of ODC in intestinal epithelial crypt (IEC-6) cells. We found that putrescine, spermidine, and spermine inhibited ODC activity stimulated by serum to 85, 46, and 0% of control, respectively, in the presence of DEGBG. ODC activity increased in DEGBG-treated cells, despite high intracellular putrescine levels. Although exogenous spermidine and spermine reduced ODC activity of DEGBG-treated cells close to control levels, spermine was more effective than spermidine. Exogenous putrescine was much less effective in inducing antizyme than spermidine or spermine. High putrescine levels in DEGBG-treated cells did not induce ODC antizyme when intracellular spermidine and spermine levels were low. The decay of ODC activity and reduction of ODC protein levels were not accompanied by induction of antizyme in the presence of DEGBG. Our results indicate that spermine is the most, and putrescine the least, effective polyamine in regulating ODC activity, and upregulation of antizyme is not required for the degradation of ODC protein.  相似文献   

19.
A composite cytomegalovirus-immediate early gene enhancer/chicken β-actin promoter (CAG) was utilized to generate transgenic mice that overexpress human spermidine synthase (SpdS) to determine the impact of elevated spermidine synthase activity on murine development and physiology. CAG-SpdS mice were viable and fertile and tissue SpdS activity was increased up to ninefold. This increased SpdS activity did not result in a dramatic elevation of spermidine or spermine levels but did lead to a 1.5- to 2-fold reduction in tissue spermine:spermidine ratio in heart, muscle and liver tissues with the highest levels of SpdS activity. This new mouse model enabled simultaneous overexpression of SpdS and other polyamine biosynthetic enzymes by combining transgenic animals. The combined overexpression of both SpdS and spermine synthase (SpmS) in CAG-SpdS/CAG-SpmS bitransgenic mice did not impair viability or lead to overt developmental abnormalities but instead normalized the elevated tissue spermine:spermidine ratios of CAG-SpmS mice. The CAG-SpdS mice were bred to MHC-AdoMetDC mice with a >100-fold increase in cardiac S-adenosylmethionine decarboxylase (AdoMetDC) activity to determine if elevated dcAdoMet would facilitate greater spermidine accumulation in mice with SpdS overexpression. CAG-SpdS/MHC-AdoMetDC bitransgenic animals were produced at the expected frequency and exhibited cardiac polyamine levels comparable to MHC-AdoMetDC littermates. Taken together these results indicate that SpdS levels are not rate limiting in vivo for polyamine biosynthesis and are unlikely to exert significant regulatory effects on cellular polyamine content and function.  相似文献   

20.
The biological activity of selenium is known to depend on its chemical form. In this study, eight forms of selenium that differed in oxidation state or degree of methylation were studied for their acute effects on the activities of ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMet DC) and on the concentrations of the polyamines putrescine, spermidine, and spermine in the liver. The polyamine pathway was studied because it is involved in the control of cell growth and in the cell's response to trophic, carcinogenic, and toxic stimuli, activities that selenium has been reported to affect. Female Sprague Dawley rats were administered 12 mumol Se/kg body weight via intraperitoneal injection and were sacrificed six hours later. Injection of sodium selenate, sodium selenite, selenomethionine, Se-methylselenocysteine, selenobetaine, and selenobetaine methyl ester resulted in significant increases in liver selenium, whereas injection of dimethylselenoxide and trimethylselenonium chloride did not. ODC activity and AdoMet DC activity were induced by those selenium compounds that also increased liver selenium content, but the magnitude of enzyme induction by those compounds was not correlated with the hepatic concentration of total selenium determined fluorometrically. Furthermore, the induction of ODC activity by the various forms of selenium did not result in concomitant increases in putrescine, spermidine, and spermine except in the case of selenite. Given that alterations in the metabolism of selenium are induced when the level of tissue selenium is elevated and that the relative abundance of various selenometabolites can be affected by the point of entry of selenium into intermediary metabolism, these data suggest that the changes that were observed in enzyme activities and polyamine levels are likely to be associated with the accumulation of a specific metabolite of selenium. The relevance of these findings to elucidation of the biological activities attributable to various forms of selenium is under investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号