首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen peroxide (H2O2) could induce oxidative damage at long distance from its generation site and it is also an important signalling molecule that induces some genes related to oxidative stress. Our objective was to study the plasma and blood cells capability to detoxify H2O2 after intense exercise and its correlation with oxidative damage. Blood samples were taken from nine professional cycling, participating in a mountain stage, under basal conditions and 3 h after the competition. Catalase and glutathione peroxidase activities decreased (40 and 50% respectively) in neutrophils after the cycling stage, while glutathione peroxidase increased (87%) in lymphocytes. Catalase protein levels and catalase specific activity maintained basal values after the stage in plasma. Catalase protein levels decreased (48%) in neutrophils and its specific activity increased up to plasma values after exercise. Myeloperoxidase (MPO) increased (39%) in neutrophils after the cycling stage. Exercise-induced hemolysis and lymphopenia inversely correlated with cellular markers of oxidative stress. Plasma malondialdehyde (MDA) directly correlated with neutrophil MPO activity and erythrocytes MDA. Intense exercise induces oxidative damage in blood cells as erythrocytes and lymphocytes, but not in neutrophils.  相似文献   

2.
Hydrogen peroxide (H2O2) could induce oxidative damage at long distance from its generation site and it is also an important signalling molecule that induces some genes related to oxidative stress. Our objective was to study the plasma and blood cells capability to detoxify H2O2 after intense exercise and its correlation with oxidative damage. Blood samples were taken from nine professional cycling, participating in a mountain stage, under basal conditions and 3 h after the competition. Catalase and glutathione peroxidase activities decreased (40 and 50% respectively) in neutrophils after the cycling stage, while glutathione peroxidase increased (87%) in lymphocytes. Catalase protein levels and catalase specific activity maintained basal values after the stage in plasma. Catalase protein levels decreased (48%) in neutrophils and its specific activity increased up to plasma values after exercise. Myeloperoxidase (MPO) increased (39%) in neutrophils after the cycling stage. Exercise-induced hemolysis and lymphopenia inversely correlated with cellular markers of oxidative stress. Plasma malondialdehyde (MDA) directly correlated with neutrophil MPO activity and erythrocytes MDA. Intense exercise induces oxidative damage in blood cells as erythrocytes and lymphocytes, but not in neutrophils.  相似文献   

3.
Deminice R  Jordao AA 《Amino acids》2012,43(2):709-715
The objective of this study was to evaluate the effect of creatine supplementation on muscle and plasma markers of oxidative stress after acute aerobic exercise. A total of 64 Wistar rats were divided into two groups: control group (n = 32) and creatine-supplemented group (n = 32). Creatine supplementation consisted of the addition of 2% creatine monohydrate to the diet. After 28 days, the rats performed an acute moderate aerobic exercise bout (1-h swimming with 4% of total body weight load). The animals were killed before (pre) and at 0, 2 and 6 h (n = 8) after acute exercise. As expected, plasma and total muscle creatine concentrations were significantly higher (P < 0.05) in the creatine-supplemented group compared to control. Acute exercise increased plasma thiobarbituric acid reactive species (TBARS) and total lipid hydroperoxide. The same was observed in the soleus and gastrocnemius muscles. Creatine supplementation decreased these markers in plasma (TBARS: pre 6%, 0 h 25%, 2 h 27% and 6 h 20%; plasma total lipid hydroperoxide: pre 38%, 0 h 24%, 2 h 12% and 6 h 20%, % decrease). Also, acute exercise decreased the GSH/GSSG ratio in soleus muscle, which was prevented by creatine supplementation (soleus: pre 8%, 0 h 29%, 2 h 30% and 6 h 44%, % prevention). The results show that creatine supplementation inhibits increased oxidative stress markers in plasma and muscle induced by acute exercise.  相似文献   

4.
Infrequent exercise, typically involving eccentric actions, has been shown to cause oxidative stress and to damage muscle tissue. High taurine levels are present in skeletal muscle and may play a role in cellular defences against free radical‐mediated damage. This study investigates the effects of taurine supplementation on oxidative stress biomarkers after eccentric exercise (EE). Twenty‐four male rats were divided into the following groups (n = 6): control; EE; EE plus taurine (EE + Taurine); EE plus saline (EE + Saline). Taurine was administered as a 1‐ml 300 mg kg?1 per body weight (BW) day?1 solution in water by gavage, for 15 consecutive days. Starting on the 14th day of supplementation, the animals were submitted to one 90‐min downhill run session and constant velocity of 1·0 km h?1. Forty‐eight hours after the exercise session, the animals were killed and the quadriceps muscles were surgically removed. Production of superoxide anion, creatine kinase (CK) levels, lipoperoxidation, carbonylation, total thiol content and antioxidant enzyme were analysed. Taurine supplementation was found to decrease superoxide radical production, CK, lipoperoxidation and carbonylation levels and increased total thiol content in skeletal muscle, but it did not affect antioxidant enzyme activity after EE. The present study suggests that taurine affects skeletal muscle contraction by decreasing oxidative stress, in association with decreased superoxide radical production. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Objectives: Physical exercise significantly impacts the biochemistry of the organism. Ubiquinone is a key component of the mitochondrial respiratory chain and ubiquinol, its reduced and active form, is an emerging molecule in sport nutrition. The aim of this study was to evaluate the effect of ubiquinol supplementation on biochemical and oxidative stress indexes after an intense bout of exercise.

Methods: 21 male young athletes (26?+?5 years of age) were randomized in two groups according to a double blind cross-over study, either supplemented with ubiquinol (200?mg/day) or placebo for 1 month. Blood was withdrawn before and after a single bout of intense exercise (40 min run at 85% maxHR). Physical performance, hematochemical parameters, ubiquinone/ubiquinol plasma content, intracellular reactive oxygen species (ROS) level, mitochondrial membrane depolarization, paraoxonase activity and oxidative DNA damage were analyzed.

Results: A single bout of intense exercise produced a significant increase in most hematochemical indexes, in particular CK and Mb while, on the contrary, normalized coenzyme Q10 plasma content decreased significantly in all subjects. Ubiquinol supplementation prevented exercise-induced CoQ deprivation and decrease in paraoxonase activity. Moreover at a cellular level, in peripheral blood mononuclear cells, ubiquinol supplementation was associated with a significant decrease in cytosolic ROS while mitochondrial membrane potential and oxidative DNA damage remained unchanged.

Discussion: Data highlights a very rapid dynamic of CoQ depletion following intense exercise underlying an increased demand by the organism. Ubiquinol supplementation minimized exercise-induced depletion and enhanced plasma and cellular antioxidant levels but it was not able to improve physical performance indexes or markers of muscular damage.  相似文献   

6.
This study investigated the onset of age-related changes in the myocardial antioxidant defense system (ADS) and the vulnerability of the myocardium to oxidative stress following exercise training. Few studies have investigated the influence of the most prevalent life-prolonging strategy physical exercise, on the age-dependent alterations in the myocardial antioxidant enzyme system of female rats at mid age and to determine whether exercise-induced ADS could attenuate lipid peroxidation. Two age groups young (3 months old) and mid age (12 months old) Wistar strain female albino rats were given chronic exercise training for a period of 12 weeks. We found a striking decrease (p < 0.01) in the activity levels of superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) in the myocardium of mid aged rats when compared to young rats by 36, 50 and 29%, respectively, suggesting the onset of age-dependent decrease in the myocardial ADS. A similar age-related decrease (p < 0.01) was observed in the reduced glutathione (GSH) content (36%). Despite the reduction in ADS, lipid peroxidation (LPO) (20%) was also decreased. In contrast, exercise training significantly elevated (p < 0.01) these antioxidant enzyme activities and the content of GSH. The increase in SOD and CAT activities were more pronounced in the mid aged rats when compared to younger rats, but increased the level of lipid peroxidation to higher levels in the mid-age group following the training regimen. The findings of the present study suggest that, although the activity levels of the myocardial antioxidant enzymes were elevated with the 12 weeks of exercise training, the changes were not sufficient enough in attenuating oxidative stress in the myocardium of female rats during this short period of exercise training.  相似文献   

7.
The purposes of this study were to 1) examine the immune and oxidative stress responses following high-intensity interval training (HIIT); 2) determine changes in antioxidant enzyme gene expression and enzyme activity in lymphocytes following HIIT; and 3) assess pre-HIIT, 3-h post-HIIT, and 24-h post-HIIT lymphocyte cell viability following hydrogen peroxide exposure in vitro. Eight recreationally active males completed three identical HIIT protocols. Blood samples were obtained at preexercise, immediately postexercise, 3 h postexercise, and 24 h postexercise. Total number of circulating leukocytes, lymphocytes, and neutrophils, as well as lymphocyte antioxidant enzyme activities, gene expression, cell viability (CV), and plasma thiobarbituric acid-reactive substance (TBARS) levels, were measured. Analytes were compared using a three (day) × four (time) ANOVA with repeated measures on both day and time. The a priori significance level for all analyses was P < 0.05. Significant increases in superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities were observed in lymphocytes following HIIT. No significant increases in lymphocyte SOD, CAT, or GPX gene expression were found. A significant increase in TBARS was found immediately post-HIIT on days 1 and 2. Lymphocyte CV in vitro significantly increased on days 2 and 3 compared with day 1. Additionally, there was a significant decrease in CV at 3 h compared with pre- and 24 h postexercise. These findings indicate lymphocytes respond to oxidative stress by increasing antioxidant enzyme activity. Additionally, HIIT causes oxidative stress but did not induce a significant postexercise lymphocytopenia. Analyses in vitro suggest that lymphocytes may become more resistant to subsequent episodes of oxidative stress. Furthermore, the analysis in vitro confirms that lymphocytes are more vulnerable to cytotoxic molecules during recovery from exercise.  相似文献   

8.
Abstract

The effect of supplementation with substances having antioxidant properties on the adaptive responses of human skin fibroblasts to UV-induced oxidative stress was studied in vitro. UVR was found to induce a substantial oxidative stress in fibroblasts, resulting in an increased release of superoxide anions and an increase in lipid peroxidation (shown by an elevated malonaldehyde content). Sub-lethal doses of UVR were also found to induce adaptive responses in the fibroblast antioxidant defences, with a transient rise in catalase and superoxide dismutase activities followed by a slower, large increase in cellular glutathione content. Supplementation of the fibroblasts with the antioxidants, Trolox (a water soluble analogue of α-tocopherol), ascorbic acid or β-carotene, had differential effects on these responses. Trolox supplementation reduced the UVR-induced cellular oxidative stress and adaptive response in a predictable concentration-dependant manner. This was in contrast to ascorbic acid which increased superoxide release from fibroblasts. At low doses, ascorbate supplements also reduced the magnitude of the adaptive increases in catalase and superoxide dismutase activities and increase in glutathione content. β-Carotene had a similar effect to ascorbic acid, reducing the extent of the adaptations to UVR at lower doses while simultaneously increasing superoxide release and malonaldehyde content. These in vitro data indicate that only the vitamin E analogue suppressed UVR-induced oxidative stress in a predictable manner and suggest that common dietary antioxidants may not be equally effective in reducing the potential deleterious effects of UVR-induced oxidative stress in skin.  相似文献   

9.
Sen, Chandan K., Mustafa Atalay, Jyrki Ågren,David E. Laaksonen, Sashwati Roy, and Osmo Hänninen. Fishoil and vitamin E supplementation in oxidative stress at rest and afterphysical exercise. J. Appl. Physiol.83(1): 189-195, 1997.Fish oil supplementation and physicalexercise may induce oxidative stress. We tested the effects of 8 wk of-tocopherol (vitamin E) and fish oil (FO) supplementation on resting and exercise-induced oxidative stress. Rats(n = 80) were divided into groupssupplemented with FO, FO and vitamin E (FOVE), soy oil (SO), and SO andvitamin E (SOVE), and for FOVE and SOVE they were dividedinto corresponding exercise groups (FOVE-Ex and SOVE-Ex). Lipidperoxidation [thiobarbituric acid-reacting substances(TBARS)] was 33% higher in FO compared with SO in the liver, butoxidative protein damage (carbonyl levels) remained similar in bothliver and red gastrocnemius muscle (RG). Vitamin E supplementation,compared with FO and SO, markedly decreased liver and RG TBARS, butliver TBARS remained 32% higher in FOVE vs. SOVE. Vitamin E alsomarkedly decreased liver and RG protein carbonyl levels, althoughlevels in FOVE and SOVE were similar. Exercise increased liver and RGTBARS and RG protein carbonyl levels markedly, with similar levels inFOVE-Ex and SOVE-Ex. FO increased lipid peroxidation but not proteinoxidation in a tissue-specific manner. Vitamin E markedly decreasedlipid peroxidation and protein oxidation in both FOVE and SOVE,although liver lipid peroxidation remained higher in FOVE. Despitehigher levels of hepatic lipid peroxidation at rest in FOVE comparedwith SOVE, liver appeared to be relatively less susceptible toexercise-induced oxidative stress in FOVE.

  相似文献   

10.
The effect of supplementation with substances having antioxidant properties on the adaptive responses of human skin fibroblasts to UV-induced oxidative stress was studied in vitro. UVR was found to induce a substantial oxidative stress in fibroblasts, resulting in an increased release of superoxide anions and an increase in lipid peroxidation (shown by an elevated malonaldehyde content). Sub-lethal doses of UVR were also found to induce adaptive responses in the fibroblast antioxidant defences, with a transient rise in catalase and superoxide dismutase activities followed by a slower, large increase in cellular glutathione content. Supplementation of the fibroblasts with the antioxidants, Trolox (a water soluble analogue of alpha-tocopherol), ascorbic acid or beta-carotene, had differential effects on these responses. Trolox supplementation reduced the UVR-induced cellular oxidative stress and adaptive response in a predictable concentration-dependent manner. This was in contrast to ascorbic acid which increased superoxide release from fibroblasts. At low doses, ascorbate supplements also reduced the magnitude of the adaptive increases in catalase and superoxide dismutase activities and increase in glutathione content. Beta-carotene had a similar effect to ascorbic acid, reducing the extent of the adaptations to UVR at lower doses while simultaneously increasing superoxide release and malonaldehyde content. These in vitro data indicate that only the vitamin E analogue suppressed UVR-induced oxidative stress in a predictable manner and suggest that common dietary antioxidants may not be equally effective in reducing the potential deleterious effects of UVR-induced oxidative stress in skin.  相似文献   

11.
This study was designed to measure the effect of iron supplementation on antioxidant status in iron-deficient anemia, including the time for hemoglobin normalization and at the time of filling of iron body stores. The extent of plasma lipid peroxidation was evaluated by measuring the levels of malondialdehyde and glutathione peroxidase (GSH-Px), and the activities of superoxide dismutase (SOD) and catalase in 63 patients with iron-deficiency anemia before and after 6 wk of iron supplementation and at the time when body iron stores are saturated. After 6 wk of iron supplementation, a significant decrease of oxidative stress was observed in the treated subjects relative to controls (p<0.05). No significant differences existed between treated patients at 6 wk and at the end of the study. The erythrocyte levels of catalase, SOD, and GSH-Px were significantly lower in treated patients relative to controls (p<0.05). These levels increased after 6 wk of supplementation (p<0.05) and showed no significant differences with those at the end of the study.  相似文献   

12.
Prophylactic supplementation of N-acetyl-cysteine (NAC) and epigallocatechin gallate (EGCG) was studied for physiological and cellular changes in skeletal muscle after eccentric muscle contractions. Thirty healthy, active males (20.0 ± 1.8 years, 160 ± 7.1 cm, 76.1 ± 17.0 kg) ingested for 14 days either 1,800 mg of NAC, 1,800 mg of EGCG, or 1,000 mg of fiber (glucomannan) placebo (PLC) in a double blind, prophylactic fashion. Subjects completed one eccentric exercise bout (100 repetitions at 30°/s) using the dominant knee extensors. Strength and soreness were assessed, and blood and muscle samples obtained before and 6, 24, 48, and 72 h with no muscle sample being collected at 72 h. Separate mixed factorial repeated measures ANOVA (P < 0.05) were used for all statistical analysis. All groups experienced significantly reduced peak torque production after 6 and 24 h, increased soreness at all time points from baseline [with even greater soreness levels 24 h after exercise in PLC when compared to EGCG and NAC (P < 0.05)], increased lactate dehydrogenase at 6 h, and increased creatine kinase 6, 24 and 48 h after exercise. No significant group × time interaction effects were found for serum cortisol, neutrophil counts, and the neutrophil:lymphocyte ratio; although, all values experienced significant changes 6 h after exercise (P < 0.05), but at no other time points. At 48 h after the exercise bout the Neu:Lym ratio in EGCG was significantly less than NAC (P < 0.05), whereas there was a trend (P = 0.08) for the EGCG values to be less when compared to PLC at this time point. Markers of intramuscular mitochondrial and cytosolic apoptosis were assessed (e.g., bax, bcl-2, cytochrome C, caspase-3 content/enzyme activity, and total DNA content). Significant increases (P < 0.05) in muscle levels of bax and bcl-2 were observed in all groups with no significant differences between groups, whereas no changes (P > 0.05) were reported for cytochrome C, caspase-3 content, caspase-3 enzyme activity, and total DNA. Caspase-3 enzyme activity was significantly greater in all groups 48 h after exercise when compared to baseline (P < 0.05) and 6 h (P < 0.05) after exercise. An eccentric bout of muscle contractions appears to significantly increase muscle damage, markers of mitochondrial apoptosis, apoptotic enzyme activity, and whole-blood cell markers of inflammation with no changes in oxidative stress. While soreness ratings were blunted in the two supplementation groups 24 h after exercise when compared to PLC values, more research is needed to determine the potential impact of EGCG and NAC supplementation on changes related to oxidative stress, apoptosis, and eccentric exercise.  相似文献   

13.
This study investigated the effects of antioxidant vitamin supplementation upon muscle contractile function following eccentric exercise and was performed double blind. Twenty-four physically active young subjects ingested either placebo (400 mg; n = 8), vitamin E (400 mg; n=8) or vitamin C (400 mg; n = 8) for 21 days prior to and for 7 days after performing 60 min of box-stepping exercise. Contractile function of the triceps surae was assessed by the measurement of maximal voluntary contraction (MVC) and the ratio of the force generated at 20 Hz and 50 Hz tetanic stimulation before and after eccentric exercise and for 7 days during recovery. Following eccentric exercise, MVC decreased to 75 (4) % [mean (SE); n = 24; P < 0.05] of the preexercise values and the 20/50 Hz ratio of tetanic tension from 0.76 (0.01) to 0.49 (0.03) [mean (SE); n = 24; P<0.05). Compared to the placebo group no significant changes in MVC were observed immediately post-exercise, though recovery of MVC in the first 24 h post-exercise was greater in the group supplemented with vitamin C. The decrease in 20/50 Hz ratio of tetanic tension was significantly less (P < 0.05) post-exercise and in the initial phase of recovery in subjects supplemented with vitamin C but not with vitamin E. These data suggest that prior vitamin C supplementation may exert a protective effect against eccentric exercise-induced muscle damage.  相似文献   

14.
The purpose of this study was to compare oxidative modification of blood proteins, lipids, DNA, and glutathione in the 24 hours following aerobic and anaerobic exercise using similar muscle groups. Ten cross-trained men (24.3 +/- 3.8 years, [mean +/- SEM]) performed in random order 30 minutes of continuous cycling at 70% of Vo(2)max and intermittent dumbbell squatting at 70% of 1 repetition maximum (1RM), separated by 1-2 weeks, in a crossover design. Blood samples taken before, and immediately, 1, 6, and 24 hours postexercise were analyzed for plasma protein carbonyls (PC), plasma malondialdehyde (MDA), and whole-blood total (TGSH), oxidized (GSSG), and reduced (GSH) glutathione. Blood samples taken before and 24 hours postexercise were analyzed for serum 8-hydroxy-2'-deoxyguanosine (8-OHdG). PC values were greater at 6 and 24 hours postexercise compared with pre-exercise for squatting, with greater PC values at 24 hours postexercise for squatting compared with cycling (0.634 +/- 0.053 vs. 0.359 +/- 0.018 nM.mg protein(-1)). There was no significant interaction or main effects for MDA or 8-OHdG. GSSG experienced a short-lived increase and GSH a transient decrease immediately following both exercise modes. These data suggest that 30 minutes of aerobic and anaerobic exercise performed by young, cross-trained men (a) can increase certain biomarkers of oxidative stress in blood, (b) differentially affect oxidative stress biomarkers, and (c) result in a different magnitude of oxidation based on the macromolecule studied. Practical applications: While protein and glutathione oxidation was increased following acute exercise as performed in this study, future research may investigate methods of reducing macromolecule oxidation, possibly through the use of antioxidant therapy.  相似文献   

15.
The interrelationship between physical exercise, antioxidant supplementation, oxidative stress and plasma levels of homocysteine (Hcy) has not been adequately examined. The purpose of this study was to examine the effect of 2 months of vitamin E supplementation (800 IU/day alpha-tocopherol) (E) or placebo (P) in 38 triathletes on plasma Hcy concentrations, antioxidant potential and oxidative stress. It was hypothesized that vitamin E supplementation would reduce plasma Hcy and oxidative stress markers compared to placebo. Blood samples were collected 1 day prior to the race, immediately postrace and 1.5 h postrace. Plasma alpha-tocopherol was 75% higher (P<.001) in E versus P prerace (24.1+/-1.1 and 13.8+/-1.1 micromol/L, respectively), and this group difference was maintained throughout the race. Cortisol was significantly increased in both E and P (P<.001), but there was no difference in the pattern of change. There were no significant time, group or interaction effects on plasma Hcy concentrations between E and P. Plasma F(2)-isoprostanes increased 181% versus 97% during the race in E versus P, and lipid hydroperoxides were significantly elevated (P=.009) 1.5 h postrace in E versus P. Plasma antioxidant potential was significantly higher 1.5 h postrace in E versus P (P=.039). This study indicates that prolonged large doses of alpha-tocopherol supplementation did not affect plasma Hcy concentrations and exhibited pro-oxidant characteristics in highly trained athletes during exhaustive exercise.  相似文献   

16.
The objective of this study was to elucidate the impact of physical activity during the growth period as well as on oxidative stress and antioxidative potential in adulthood. The experimental animals used were four-week old male Wistar rats, which were randomly divided into three groups. The exercise loads were as follows: control (CON), treadmill exercise (TE), and jumping exercise (JE). The exercise was performed at the same time of day, at a frequency of five days per week, for eight weeks. Derivatives of reactive oxygen metabolites (d-ROSs) and biological antioxidant potential (BAP) were measured during periods of rest prior to commencement of the experiment and after the experiment. Analysis was conducted using a Wilcoxon signed-rank test and Schaffer’s multiple comparison procedure and the significance level was set at p?相似文献   

17.
The purpose of this study was to ascertain whether vitamin C supplementation during chronic exercise training alters rat brain antioxidant content. Female Wistar albino rats were exercised on a treadmill for 30 min/day for 6.5 weeks and were administered daily intraperitoneal injections of vitamin C (20 mg/kg). After the training period, chronically exercised rats showed no significant changes in total brain thiobarbituric acid reactive substances (TBARS) levels. In contrast, rats supplemented with vitamin C during the training period showed significantly elevated brain TBARS levels. If such results were extrapolated to man, where vitamin supplementation is a common practice, this would indicate that vitamin C supplementation may not protect brain tissue against exercise-induced oxidative damage, in such circumstances, this water-soluble antioxidant behaves as a pro-oxidant. (Mol Cell Biochem xxx: 135–138, 2005)  相似文献   

18.
19.
Menopause is often accompanied with weight gain, metabolic lipid abnormalities, and oxidative stress. In this study, we investigated the combined effects of exercise and soy isoflavone supplementation on the lipid profiles and antioxidant capacities of ovariectomized rats. Twenty-five female Sprague-Dawley rats were divided into 5 groups: sham-operated, ovariectomized (OVX), OVX with exercise (OVX+EX), OVX with soy isoflavone supplementation (OVX+ISO), and OVX with both soy isoflavones and exercise (OVX+ISO+EX). After 12 weeks of intervention, antioxidant status was evaluated in collected blood samples by the ferric reducing ability of plasma (FRAP), glutathione (GSH) content, and sodium oxide dismutase (SOD) activity. DNA damage in the lymphocytes was determined using alkaline single-cell gel electrophoresis (the Comet assay). Although there were no significant differences in weight gain and food intake, weight gain was lower in OVX+EX, OVX+ISO, and OVX+ISO+EX than in OVX. OVX+EX, OVX+ISO, and OVX+ ISO+EX showed a significant decrease in total cholesterol, triglycerides, and LDL-cholesterol compared to OVX. The soy isoflavone supplemented group had significantly increased FRAP values and GSH contents in contrast to no changes in the exercised group, whereas exercise markedly increased SOD activity and H2O2-induced DNA tail length and tail moment. Exercise with soy isoflavone supplementation significantly increased FRAP values and had no difference on SOD activity, including DNA damage. These results demonstrate that a combined treatment of moderate exercise and soy isoflavone supplementation could exert a beneficial effect on weight control and lipid profiles, and offer protection from exercise-induced oxidative stress in postmenopausal women.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号