首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kiss RS  You Z  Genest J  Behm DJ  Giaid A 《Peptides》2011,32(5):956-963
Urotensin II (UII) is a vasoactive peptide with pleotropic activity. Interestingly, UII levels are elevated in hyperlipidemic patients, and UII induces lipase activity in some species. However, the exact role UII plays in cholesterol homeostasis remains to be elucidated. UII knockout (UII KO) mice were generated and a plasma lipoprotein profile, and hepatocytes and macrophages cholesterol uptake, storage and synthesis was determined. UII KO had a decreased LDL cholesterol profile and liver steatosis compared to wildtype mice (WT). UII KO macrophages demonstrated enhanced ACAT activity and LDL uptake in the short term (up to 4 h), of which more LDL-delivered exogenously derived cholesterol was incorporated into cholesteryl ester (CE) than the WT macrophages. UII KO macrophages generated more than two times the amount of de novo endogenously synthesized cholesterol, and of this cholesterol more than two times the relative amount was esterified to CE. In comparison, results in hepatocytes demonstrated that far more exogenously derived cholesterol was incorporated into CE in the WT cells, generating almost ten times the amount of CE than UII KO. WT cells synthesize de novo almost ten times the amount of cholesterol than UIIKO, and of that cholesterol, almost two times the amount of CE in WT than UII KO hepatocytes. In addition, more ApoB lipoproteins were secreted from WT than UII KO hepatocytes. These results demonstrate a fundamental difference between macrophages and hepatocytes in terms of cholesterol homeostasis, and suggest an important role for UII in modulating cholesterol regulation.  相似文献   

2.
This review summarizes the current knowledge of endolysosomal and cytoplasmic lipid storage in macrophages induced by oxidized LDL (Ox-LDL), enzymatically degraded LDL (E-LDL) and other atherogenic lipoprotein modifications, and their relation to the adapter protein 3 (AP-3) dependent ABCA1 and ABCG1 cellular lipid efflux pathways. We compare endolysosomal lipid storage caused either through drug induced phospholipidosis, inheritable endolysosomal and cytosolic lipid storage disorders and Ox-LDL or E-LDL induced phagosomal uptake and cytosolic lipid droplet storage in macrophages. Ox-LDL is resistant to rapid endolysosomal hydrolysis and is trapped within the endolysosomal compartment generating lamellar bodies which resemble the characteristics of phospholipidosis. Various inherited lysosomal storage diseases including sphingolipidosis, glycosphingolipidosis and cholesterylester storage diseases also present a phospholipidosis phenotype. In contrast E-LDL resembling coreless unesterified cholesterol enriched LDL-particles, with a multilamellar, liposome-like structure, lead to rapid phagosomal degradation and cytosolic lipid droplet accumulation. As a consequence the uptake of E-LDL through type I and type II phagocytosis leads to increased lipid droplet formation and moderate upregulation of ABCA1 and ABCG1 while uptake of Ox-LDL leads to a rapid expansion of the lysosomal compartment and a pronounced upregulation of the ABCA1/ABCG1/AP-3 lipid efflux pathway.  相似文献   

3.
EHD1 is a member of the mammalian C-terminal Eps15 homology domain (EH) containing protein family, and regulates the recycling of various receptors from the endocytic recycling compartment to the plasma membrane. The EH domain of EHD1 binds to proteins containing either an Asn-Pro-Phe or Asp-Pro-Phe motif, and plays an important role in the subcellular localization and function of EHD1. Thus far, the structures of five N-terminal EH domains from other proteins have been solved, but to date, the structure of the EH domains from the four C-terminal EHD family paralogs remains unknown. In this study, we have assigned the 133 C-terminal residues of EHD1, which includes the EH domain, and solved its solution structure. While the overall structure resembles that of the second of the three N-terminal Eps15 EH domains, potentially significant differences in surface charge and the structure of the tripeptide-binding pocket are discussed.  相似文献   

4.
Cholesterol is an essential substance involved in many functions, such as maintaining cell membranes, manufacturing vitamin D on surface of the skin, producing hormones, and possibly helping cell connections in the brain. When cholesterol levels rise in the blood, they can, however, have dangerous consequences. In particular, cholesterol has generated considerable notoriety for its causative role in atherosclerosis, the leading cause of death in developed countries around the world. Homeostasis of cholesterol is centered on the metabolism of lipoproteins, which mediate transport of the lipid to and from tissues. As a synopsis of the major events and proteins that manage lipoprotein homeostasis, this review contributes to the substantial attention that has recently been directed to this area. Despite intense scrutiny, the majority of phenotypic variation in total cholesterol and related traits eludes explanation by current genetic knowledge. This is somewhat disappointing considering heritability estimates have established these traits as highly genetic. Thus, the continued search for candidate genes, mutations, and mechanisms is vital to our understanding of heart disease at the molecular level. Furthermore, as marker development continues to predict risk of vascular illness, this knowledge has the potential to revolutionize treatment of this leading human disease.  相似文献   

5.
The evolutionarily conserved Eps15 homology domain (EHD)/receptor-mediated endocytosis (RME)-1 family of C-terminal EH domain proteins has recently come under intense scrutiny because of its importance in intracellular membrane transport, especially with regard to the recycling of receptors from endosomes to the plasma membrane. Recent studies have shed new light on the mode by which these adenosine triphosphatases function on endosomal membranes in mammals and Caenorhabditis elegans. This review highlights our current understanding of the physiological roles of these proteins in vivo, discussing conserved features as well as emerging functional differences between individual mammalian paralogs. In addition, these findings are discussed in light of the identification of novel EHD/RME-1 protein and lipid interactions and new structural data for proteins in this family, indicating intriguing similarities to the Dynamin superfamily of large guanosine triphosphatases.  相似文献   

6.
Cideb, a member of CIDE family proteins, has emerged as an important regulator in the development of obesity and diabetes by controlling fatty acid synthesis and VLDL secretion in hepatocytes. Here, we investigated the role of Cideb in cholesterol biosynthesis, uptake and storage in the liver by using Cideb-null mice as a model system. Cideb-null mice and wild-type mice were treated with normal diet (ND) or high cholesterol diet (HCD) for one month. The metabolic parameters of cholesterol metabolism and expression profiles of genes in cholesterol biosynthesis and storage were measured. Cideb-null mice had lower levels of plasma cholesterol and LDL when fed with both ND and HCD and increased rate of cholesterol absorption. Furthermore, the liver of Cideb-null mice has lower rates of cholesterol biosynthesis and reduced expression levels of sterol response element-binding protein (SREBP) cleavage-activation protein (SCAP), and lower levels of nuclear form of SREBP2 and its downstream target genes in cholesterol biosynthesis pathway under a normal diet treatment. On the contrary, hepatic cholesterol biosynthesis rate between wild-type and Cideb-null mice was similar after high cholesterol diet treatment. Interestingly, hepatic cholesterol storage in the liver of Cideb-null mice was significantly increased due to its increased LDL receptor (LDLR) and acyl-CoA cholesterol acyltransferase (ACAT) expression. Finally, we observed drastically reduced cholesterol levels in the heart of Cideb-null mice fed with a high cholesterol diet. Overall, our data suggest that Cideb is a novel regulator in controlling cholesterol homeostasis in the liver. Therefore, Cideb could serve as an important therapeutical target for the treatment of atherosclerosis and cardiovascular diseases.  相似文献   

7.
Cellular cholesterol homeostasis is maintained by Scap, an endoplasmic reticulum (ER) protein with eight transmembrane helices. In cholesterol-depleted cells, Scap transports sterol regulatory element-binding proteins (SREBPs) to the Golgi, where the active fragment of SREBP is liberated by proteases so that it can activate genes for cholesterol synthesis. When ER cholesterol increases, Scap binds cholesterol, and this changes the conformation of cytosolic Loop 6, which contains the binding site for COPII proteins. The altered conformation precludes COPII binding, abrogating movement to the Golgi. Consequently, cholesterol synthesis declines. Here, we identify the cholesterol-binding site on Scap as Loop 1, a 245-amino acid sequence that projects into the ER lumen. Recombinant Loop 1 binds sterols with a specificity identical to that of the entire Scap membrane domain. When tyrosine 234 in Loop 1 is mutated to alanine, Loop 6 assumes the cholesterol-bound conformation, even in sterol-depleted cells. As a result, full-length Scap(Y234A) cannot mediate SREBP processing in transfected cells. These results indicate that luminal Loop 1 of Scap controls the conformation of cytosolic Loop 6, thereby determining whether cells produce cholesterol.  相似文献   

8.
Excess accumulation of intracellular lipids leads to various diseases. Lipid droplets (LDs) are ubiquitous cellular organelles for lipid storage. LDs are hydrolyzed via cytosolic lipases (lipolysis) and also degraded in lysosomes through autophagy; namely, lipophagy. A recent study has shown the size-dependent selection of LDs by the two major catabolic pathways (lipolysis and lipophagy), and thus experimental systems that can manipulate the size of LDs are now needed. The ceramide analogue N-(1-hydroxy-3-morpholino-1-phenylpropan-2-yl)decanamide (PDMP) affects the structures and functions of lysosomes/late endosomes and the endoplasmic reticulum (ER), and alters cholesterol homeostasis. We previously reported that PDMP induces autophagy via the inhibition of mTORC1. In the present study, we found that PDMP induced the accumulation of LDs, especially that of large LDs, in mouse fibroblast (L cells). Surprisingly, the LD accumulation was relieved by PDMP in L cells deficient in lysosome-associated membrane protein-2 (LAMP-2), which is reportedly important for lipophagy. An electron microscopy analysis demonstrated that the LAMP-2 deficiency caused enlarged autophagosomes/autolysosomes in L cells, which may promote the sequestration and degradation of the PDMP-dependent large LDs. Accordingly, PDMP will be useful to explore the mechanism of LD degradation, by inducing large LDs.  相似文献   

9.
T cell polarization and redistribution of cellular components are critical to processes such as activation, migration, and potentially HIV infection. Here, we investigate the effects of CD4 engagement on the redistribution and localization of chemokine receptors, CXCR4 and CCR5, adhesion molecules, and lipid raft components including cholesterol, GM1, and glycosyl-phosphatidylinositol (GPI)-anchored proteins. We demonstrate that anti-CD4-coated beads (alpha CD4-B) rapidly induce co-capping of chemokine receptors as well as GPI-anchored proteins and adhesion molecules with membrane cholesterol and lipid rafts on human T cell lines and primary T cells to the area of bead-cell contact. This process was dependent on the presence of cellular cholesterol, cytoskeletal reorganization, and lck signaling. Lck-deficient JCaM 1.6 cells failed to cap CXCR4 or lipid rafts to alpha CD4-B. Biochemical analysis reveals that CXCR4 and LFA-1 are recruited to lipid rafts upon CD4 but not CD45 engagement. Furthermore, we also demonstrate T cell capping of both lipid rafts and chemokine receptors at sites of contact with HIV-infected cells, despite the binding of an HIV inhibitory mAb to CXCR4. We conclude that cell surface rearrangements in response to CD4 engagement may serve as a means to enhance cell-to-cell signaling at the immunological synapse and modulate chemokine responsiveness, as well as facilitate HIV entry and expansion by synaptic transmission.  相似文献   

10.
In adipocytes, lipid droplet (LD) size reflects a balance of triglyceride synthesis (lipogenesis) and hydrolysis (lipolysis). Perilipin A (Peri A) is the most abundant phosphoprotein on the surface of adipocyte LDs and has a crucial role in lipid storage and lipolysis. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are the major rate-determining enzymes for lipolysis in adipocytes. Each of these proteins (Peri A, ATGL, and HSL) has been demonstrated to regulate lipid storage and release in the adipocyte. However, in the absence of protein kinase A (PKA) stimulation (basal state), the lipases (ATGL and HSL) are located mainly in the cytoplasm, and their contribution to basal rates of lipolysis and influence on LD size are poorly understood. In this study, we utilize an adenoviral system to knockdown or overexpress ATGL and HSL in an engineered model system of adipocytes in the presence or absence of Peri A. We are able to demonstrate in our experimental model system that in the basal state, LD size, triglyceride storage, and fatty acid release are mainly influenced by the expression of ATGL. These results demonstrate for the first time the relative contributions of ATGL, HSL, and Peri A on determination of LD size in the absence of PKA stimulation.  相似文献   

11.
Excess lipid storage in adipose tissue results in the development of obesity and other metabolic disorders including diabetes,fatty liver and cardiovascular diseases.The lipid droplet(LD)is an important subcellular organelle responsible for lipid storage.We previously observed that Fsp27,a member of the CIDE family proteins,is localized to LD-contact sites and promotes atypical LD fusion and growth.Cidea,a close homolog of Fsp27,is expressed at high levels in brown adipose tissue.However,the exact role of Cidea in promoting LD fusion and lipid storage in adipose tissue remains unknown.Here,we expressed Cidea in Fsp27-knockdown adipocytes and observed that Cidea has similar activity to Fsp27 in promoting lipid storage and LD fusion and growth.Next,we generated Cidea and Fsp27 double-deficient mice and observed that these animals had drastically reduced adipose tissue mass and a strong lean phenotype.In addition,Cidea/Fsp27 double-deficient mice had improved insulin sensitivity and were intolerant to cold.Furthermore,we observed that the brown and white adipose tissues of Cidea/Fsp27double-deficient mice had significantly reduced lipid storage and contained smaller LDs compared to those of Cidea or Fsp27single deficient mice.Overall,these data reveal an important role of Cidea in controlling lipid droplet fusion,lipid storage in brown and white adipose tissue,and the development of obesity.  相似文献   

12.
Obesity and related metabolic disorders constitute one of the most pressing heath concerns worldwide. Increased adiposity is linked to autophagy upregulation in adipose tissues. However, it is unknown how autophagy is upregulated and contributes to aberrant adiposity. Here we show a FoxO1-autophagy-FSP27 axis that regulates adipogenesis and lipid droplet (LD) growth in adipocytes. Adipocyte differentiation was associated with upregulation of autophagy and fat specific protein 27 (FSP27), a key regulator of adipocyte maturation and expansion by promoting LD formation and growth. However, FoxO1 specific inhibitor AS1842856 potently suppressed autophagy, FSP27 expression, and adipocyte differentiation. In terminally differentiated adipocytes, AS1842856 significantly reduced FSP27 level and LD size, which was recapitulated by autophagy inhibitors (bafilomycin-A1 and leupeptin, BL). Similarly, AS1842856 and BL dampened autophagy activity and FSP27 expression in explant cultures of white adipose tissue. To our knowledge, this is the first study addressing FoxO1 in the regulation of adipose autophagy, shedding light on the mechanism of increased autophagy and adiposity in obese individuals. Given that adipogenesis and adipocyte expansion contribute to aberrant adiposity, targeting the FoxO1-autophagy-FSP27 axis may lead to new anti-obesity options.  相似文献   

13.
Ge X  Yin L  Ma H  Li T  Chiang JY  Zhang Y 《Journal of lipid research》2011,52(8):1561-1568
Aldo-keto reductase 1B7 (AKR1B7) is proposed to play a role in detoxification of by-products of lipid peroxidation. In this article, we show that activation of the nuclear receptor farnesoid X receptor (FXR) induces AKR1B7 expression in the liver and intestine, and reduces the levels of malondialdehyde (MDA), the end product of lipid peroxidation, in the intestine but not in the liver. To determine whether AKR1B7 regulates MDA levels in vivo, we overexpressed AKR1B7 in the liver. Overexpression of AKR1B7 in the liver had no effect on hepatic or plasma MDA levels. Interestingly, hepatic expression of AKR1B7 significantly lowered plasma glucose levels in both wild-type and diabetic db/db mice, which was associated with reduced hepatic gluconeogenesis. Hepatic expression of AKR1B7 also significantly lowered hepatic triglyceride and cholesterol levels in db/db mice. These data reveal a novel function for AKR1B7 in lipid and glucose metabolism and suggest that AKR1B7 may not play a role in detoxification of lipid peroxides in the liver. AKR1B7 may be a therapeutic target for treatment of fatty liver disease associated with diabetes mellitus.  相似文献   

14.
The PAT family of lipid droplet proteins includes 5 members in mammals: perilipin, adipose differentiation-related protein (ADRP), tail-interacting protein of 47 kDa (TIP47), S3–12, and OXPAT. Members of this family are also present in evolutionarily distant organisms, including insects, slime molds and fungi. All PAT proteins share sequence similarity and the ability to bind intracellular lipid droplets, either constitutively or in response to metabolic stimuli, such as increased lipid flux into or out of lipid droplets. Positioned at the lipid droplet surface, PAT proteins manage access of other proteins (lipases) to the lipid esters within the lipid droplet core and can interact with cellular machinery important for lipid droplet biogenesis. Genetic variations in the gene for the best-characterized of the mammalian PAT proteins, perilipin, have been associated with metabolic phenotypes, including type 2 diabetes mellitus and obesity. In this review, we discuss how the PAT proteins regulate cellular lipid metabolism both in mammals and in model organisms.  相似文献   

15.
The number of proteins known to be associated with lipid droplets (LDs) is increasing. However, the reported distribution of a given protein in the LDs was, in some cases, found not reproduced by other groups. We report here that the choice of the fixation and permeabilization method is important in order to observe LD proteins using immunofluorescence microscopy. Formaldehyde fixation followed by treatment with Triton X-100, one of the most frequently used protocols for the immunolabeling of cultured cells, was not appropriate to label adipocyte differentiation-related protein (ADRP), TIP47, or Rab18 in LDs. Formaldehyde fixation followed by treatment with digitonin or saponin, allowed the visualization of all these proteins in LDs. When cells were fixed with glutaraldehyde, permeabilization by Triton X-100 could also be used for ADRP. These observations suggest that LD proteins are likely to be solubilized by some detergents, and strong cross-linkage to the surrounding protein matrix or mild permeabilization is necessary for their retention on the LD surface. The authors Yuki Ohsaki and Takashi Maeda have contributed equally to this work.  相似文献   

16.
The Wnt pathway, which controls crucial steps of the development and differentiation programs, has been proposed to influence lipid storage and homeostasis. In this paper, using an unbiased strategy based on high-content genome-wide RNAi screens that monitored lipid distribution and amounts, we find that Wnt3a regulates cellular cholesterol. We show that Wnt3a stimulates the production of lipid droplets and that this stimulation strictly depends on endocytosed, LDL-derived cholesterol and on functional early and late endosomes. We also show that Wnt signaling itself controls cholesterol endocytosis and flux along the endosomal pathway, which in turn modulates cellular lipid homeostasis. These results underscore the importance of endosome functions for LD formation and reveal a previously unknown regulatory mechanism of the cellular programs controlling lipid storage and endosome transport under the control of Wnt signaling.  相似文献   

17.
Cells store lipids as a reservoir of metabolic energy and membrane component precursors in organelles called lipid droplets (LDs). LD formation occurs in the endoplasmic reticulum (ER) at LD assembly complexes (LDAC), consisting of an oligomeric core of seipin and accessory proteins. LDACs determine the sites of LD formation and are required for this process to occur normally. Seipin oligomers form a cage-like structure in the membrane that may serve to facilitate the phase transition of neutral lipids in the membrane to form an oil droplet within the LDAC. Modeling suggests that, as the LD grows, seipin anchors it to the ER bilayer and conformational shifts of seipin transmembrane segments open the LDAC dome toward the cytoplasm, enabling the emerging LD to egress from the ER.  相似文献   

18.
Endocytic processes are mediated by multiple protein-protein interacting modules and regulated by phosphorylation and dephosphorylation. The Eps15 homology domain containing protein 1 (EHD1) has been implicated in regulating recycling of proteins, internalized both in clathrin-dependent and clathrin-independent endocytic pathways, from the recycling compartment to the plasma membrane. EHD1 was found in a complex with clathrin, adaptor protein complex-2 (AP-2) and insulin-like growth factor-1 receptor (IGF-1R), and was shown to interact with Rabenosyn-5, SNAP29, EHBP1 (EH domain binding protein 1) and syndapin I and II. In this study, we show that EHD1, like the other human EHDs, undergoes serine-phosphorylation. Our results also indicate that EHD1 is a serum-inducible serine-phosphoprotein and that PKC (protein kinase C) is one of its kinases. In addition, we show that inhibitors of clathrin-mediated endocytosis decrease EHD1 phosphorylation, while inhibitors of caveolinmediated endocytosis do not affect EHD1 phosphorylation. The results of experiments in which inhibitors of endocytosis were employed strongly suggest that EHD1 phosphorylation occurs between early endosomes and the endocytic recycling compartment.  相似文献   

19.
Recycling to the plasma membrane is delayed in EHD1 knockout mice   总被引:2,自引:1,他引:1  
EHD1 is a member of the EHD family that contains four mammalian homologs. Among the invertebrate orthologs are a single Drosophila and Caenorhabditis elegans proteins and two plant members. They all contain three modules, a N-terminal domain that contains nucleotide-binding motifs, a central coiled-coil domain involved in oligomerization and a C-terminal region that harbors the EH domain. Studies in C. elegans and EHD1 depletion by RNA interference in human cells have demonstrated that it regulates recycling of membrane proteins. We addressed the physiological role of EHD1 through its inactivation in the mouse. Ehd1 knockout mice were indistinguishable from normal mice, had a normal life span and showed no histological abnormalities. Analysis of transferrin uptake in Ehd1(-/-) embryonic fibroblasts demonstrated delayed recycling to the plasma membrane with accumulation of transferrin in the endocytic recycling compartment. Our results corroborate the established role of EHD1 in the exit of membrane proteins from recycling endosomes in vivo in a mouse model.  相似文献   

20.
Triglycerides (TG) stored in lipid droplets (LDs) are the main energy reserve in all animals. The mechanism by which animals mobilize TG is complex and not fully understood. Several proteins surrounding the LDs have been implicated in TG homeostasis such as mammalian perilipin A and insect lipid storage proteins (Lsd). Most of the knowledge on LD-associated proteins comes from studies using cells or LDs leaving biochemical properties of these proteins uncharacterized. Here we describe the purification of recombinant Lsd1 and its reconstitution with lipids to form lipoprotein complexes suitable for functional and structural studies. Lsd1 in the lipid bound state is a predominately α-helical protein. Using lipoprotein complexes containing triolein it is shown that PKA mediated phosphorylation of Lsd1 promoted a 1.7-fold activation of the main fat body lipase demonstrating the direct link between Lsd1 phosphorylation and activation of lipolysis. Serine 20 was identified as the Lsd1-phosphorylation site triggering this effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号