首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell signaling is achieved predominantly by reversible phosphorylation-dephosphorylation reaction cascades. Up until now, circuits conferring adaptation have all required the presence of a cascade with some type of closed topology: negative-feedback loop with a buffering node, or incoherent feed-forward loop with a proportioner node. In this paper--using Goldbeter and Koshland-type expressions--we propose a differential equation model to describe a generic, open signaling cascade that elicits an adaptation response. This is accomplished by coupling N phosphorylation-dephosphorylation cycles unidirectionally, without any explicit feedback loops. Using this model, we show that as the length of the cascade grows, the steady states of the downstream cycles reach a limiting value. In other words, our model indicates that there are a minimum number of cycles required to achieve a maximum in sensitivity and amplitude in the response of a signaling cascade. We also describe for the first time that the phenomenon of ultrasensitivity can be further subdivided into three sub-regimes, separated by sharp stimulus threshold values: OFF, OFF-ON-OFF, and ON. In the OFF-ON-OFF regime, an interesting property emerges. In the presence of a basal amount of activity, the temporal evolution of early cycles yields damped peak responses. On the other hand, the downstream cycles switch rapidly to a higher activity state for an extended period of time, prior to settling to an OFF state (OFF-ON-OFF). This response arises from the changing dynamics between a feed-forward activation module and dephosphorylation reactions. In conclusion, our model gives the new perspective that open signaling cascades embedded in complex biochemical circuits may possess the ability to show a switch-like adaptation response, without the need for any explicit feedback circuitry.  相似文献   

2.
This paper has a dual purpose. First, we describe numerical methods for continuation and bifurcation analysis of steady state solutions and periodic solutions of systems of delay differential equations with an arbitrary number of fixed, discrete delays. Second, we demonstrate how these methods can be used to obtain insight into complex biological regulatory systems in which interactions occur with time delays: for this, we consider a system of two equations for the plasma glucose and insulin concentrations in a diabetic patient subject to a system of external assistance. The model has two delays: the technological delay of the external system, and the physiological delay of the patient's liver. We compute stability of the steady state solution as a function of two parameters, compare with analytical results and compute several branches of periodic solutions and their stability. These numerical results allow to infer two categories of diabetic patients for which the external system has different efficiency.  相似文献   

3.
4.
Modeling biochemical reactions by means of differential equations often results in systems with a large number of variables and parameters. As this might complicate the interpretation and generalization of the obtained results, it is often desirable to reduce the complexity of the model. One way to accomplish this is by replacing the detailed reaction mechanisms of certain modules in the model by a mathematical expression that qualitatively describes the dynamical behavior of these modules. Such an approach has been widely adopted for ultrasensitive responses, for which underlying reaction mechanisms are often replaced by a single Hill function. Also time delays are usually accounted for by using an explicit delay in delay differential equations. In contrast, however, S-shaped response curves, which by definition have multiple output values for certain input values and are often encountered in bistable systems, are not easily modeled in such an explicit way. Here, we extend the classical Hill function into a mathematical expression that can be used to describe both ultrasensitive and S-shaped responses. We show how three ubiquitous modules (ultrasensitive responses, S-shaped responses and time delays) can be combined in different configurations and explore the dynamics of these systems. As an example, we apply our strategy to set up a model of the cell cycle consisting of multiple bistable switches, which can incorporate events such as DNA damage and coupling to the circadian clock in a phenomenological way.  相似文献   

5.
This paper analytically explores the properties of simple differential-difference equations that represent dynamic processes with feedback dependent on prior states of the system. Systems with pure negative and positive feedback are examined, as well as those with mixed (positive/negative) feedback characteristics. Very complex time dependent behaviors may arise from these processes. Indeed, the same mechanism may, depending on system parameters and initial conditions, produce simple, regular, repetitive patterns and completely irregular random-like fluctuations.For the differential-delay equations considered here we prove the existence of: (i) stable and unstable limit cycles, where the stable cycles may have an arbitrary number of extrema per period; and (ii) chaos, meaning the presence of infinitely many periodic solutions of different period and of infinitely many irregular and mixing solutions.  相似文献   

6.
Levine J  Kueh HY  Mirny L 《Biophysical journal》2007,92(12):4473-4481
Covalent modification cycles (e.g., phosphorylation-dephosphorylation) underlie most cellular signaling and control processes. Low molecular copy number, arising from compartmental segregation and slow diffusion between compartments, potentially renders these cycles vulnerable to intrinsic chemical fluctuations. How can a cell operate reliably in the presence of this inherent stochasticity? How do changes in extrinsic parameters lead to variability of response? Can cells exploit these parameters to tune cycles to different ranges of stimuli? We study the dynamics of an isolated phosphorylation cycle. Our model shows that the cycle transmits information reliably if it is tuned to an optimal parameter range, despite intrinsic fluctuations and even for small input signal amplitudes. At the same time, the cycle is sensitive to changes in the concentration and activity of kinases and phosphatases. This sensitivity can lead to significant cell-to-cell response variability. It also provides a mechanism to tune the cycle to transmit signals in various amplitude ranges. Our results show that signaling cycles possess a surprising combination of robustness and tunability. This combination makes them ubiquitous in eukaryotic signaling, optimizing signaling in the presence of fluctuations using their inherent flexibility. On the other hand, cycles tuned to suppress intrinsic fluctuations can be vulnerable to changes in the number and activity of kinases and phosphatases. Such trade-offs in robustness to intrinsic and extrinsic fluctuations can influence the evolution of signaling cascades, making them the weakest links in cellular circuits.  相似文献   

7.
We propose a new mathematical model of erythropoiesis that takes a positive feedback of erythrocytes on progenitor apoptosis into account, and incorporates a negative feedback of erythrocytes on progenitor self-renewal. The resulting model is a system of age-structured equations that reduces to a system of delay differential equations where the delays account for progenitor compartment duration and cell cycle length. We compare this model with experimental data on an induced-anemia in mice that exhibit damped oscillations of the hematocrit before it returns to equilibrium. When we assume no self-renewal of progenitors, we obtain an inaccurate fitting of the model with experimental data. Adding self-renewal in the progenitor compartment gives better approximations, with the main features of experimental data correctly fitted. Our results indicate the importance of progenitor self-renewal in the modelling of erythropoiesis. Moreover, the model makes testable predictions on the lifespan of erythrocytes confronted to a severe anemia, and on the progenitors behavior.  相似文献   

8.
We propose a seven variable model with time delay in one of the variables for the cell cycle in higher eukaryotes. The model consists of four important phosphorylation-dephosphorylation (P-D) cycles that govern the cell cycle, namely Pre-MPF-MPF, Cdc25P-Cdc25, Wee1P-Wee1 and APCP-APC. Other variables are cyclin, free cyclin dependent kinase (Cdk) and mass. The mass acts as a G2/M checkpoint and the checkpoint is represented by a saddle node loop bifurcation. The key feature of the model is that a time lag has been introduced in the activation of anaphase promoting complex (APC) by maturation promoting factor (MPF). This is effected by treating MPF as a time-delayed variable in the activation step of APC. The time lag acts as a spindle checkpoint. Absence of time delay induces a bistability in our model. Time delay also brings about variability in G1 phase timings. The model also reproduces the mutant phenotype experiments on wee1 cells. Stochasticity has been introduced in the model to simulate the dependence of the cycle time on cell birth length. Mutant phenotypes in the stochastic model reproduce the experimental observations better than the deterministic model.  相似文献   

9.
Recently a state-space model with time delays for inferring gene regulatory networks was proposed. It was assumed that each regulation between two internal state variables had multiple time delays. This assumption caused underestimation of the model with many current gene expression datasets. In biological reality, one regulatory relationship may have just a single time delay, and not multiple time delays. This study employs Boolean variables to capture the existence of the time-delayed regulatory relationships in gene regulatory networks in terms of the state-space model. As the solution space of time delayed relationships is too large for an exhaustive search, a genetic algorithm (GA) is proposed to determine the optimal Boolean variables (the optimal time-delayed regulatory relationships). Coupled with the proposed GA, Bayesian information criterion (BIC) and probabilistic principle component analysis (PPCA) are employed to infer gene regulatory networks with time delays. Computational experiments are performed on two real gene expression datasets. The results show that the GA is effective at finding time-delayed regulatory relationships. Moreover, the inferred gene regulatory networks with time delays from the datasets improve the prediction accuracy and possess more of the expected properties of a real network, compared to a gene regulatory network without time delays.  相似文献   

10.
提出了一类含分布时滞的流行病模型,利用构造李亚普诺夫泛函的方法,得到了无病平衡点和地方病平衡点全局稳定性的结论,揭示了平均时滞对各类平衡点稳定性的影响。  相似文献   

11.
In this work we develop approximate aggregation techniques in the context of slow-fast linear population models governed by stochastic differential equations and apply the results to the treatment of populations with spatial heterogeneity. Approximate aggregation techniques allow one to transform a complex system involving many coupled variables and in which there are processes with different time scales, by a simpler reduced model with a fewer number of ‘global’ variables, in such a way that the dynamics of the former can be approximated by that of the latter. In our model we contemplate a linear fast deterministic process together with a linear slow process in which the parameters are affected by additive noise, and give conditions for the solutions corresponding to positive initial conditions to remain positive for all times. By letting the fast process reach equilibrium we build a reduced system with a lesser number of variables, and provide results relating the asymptotic behaviour of the first- and second-order moments of the population vector for the original and the reduced system. The general technique is illustrated by analysing a multiregional stochastic system in which dispersal is deterministic and the rate growth of the populations in each patch is affected by additive noise.  相似文献   

12.
Modeling the Hes1 oscillator.   总被引:1,自引:0,他引:1  
  相似文献   

13.
A number of mathematical models of the human respiratory control system have been developed since 1940 to study a wide range of features of this complex system. Among them, periodic breathing (including Cheyne-Stokes respiration and apneustic breathing) is a collection of regular but involuntary breathing patterns that have important medical implications. The hypothesis that periodic breathing is the result of delay in the feedback signals to the respiratory control system has been studied since the work of Grodins et al. in the early 1950's [12]. The purpose of this paper is to study the stability characteristics of a feedback control system of five differential equations with delays in both the state and control variables presented by Khoo et al. [17] in 1991 for modeling human respiration. The paper is divided in two parts. Part I studies a simplified mathematical model of two nonlinear state equations modeling arterial partial pressures of O2 and CO2 and a peripheral controller. Analysis was done on this model to illuminate the effect of delay on the stability. It shows that delay dependent stability is affected by the controller gain, compartmental volumes and the manner in which changes in the ventilation rate is produced (i.e., by deeper breathing or faster breathing). In addition, numerical simulations were performed to validate analytical results. Part II extends the model in Part I to include both peripheral and central controllers. This, however, necessitates the introduction of a third state equation modeling CO2 levels in the brain. In addition to analytical studies on delay dependent stability, it shows that the decreased cardiac output (and hence increased delay) resulting from the congestive heart condition can induce instability at certain control gain levels. These analytical results were also confirmed by numerical simulations.  相似文献   

14.
Physiological and psychological stresses cause anxiety disorders such as depression and post-traumatic stress disorder (PTSD) and induce drastic changes at a molecular level in the brain. To counteract this stress, the heat-shock protein (HSP) network plays a vital role in restoring the homeostasis of the system. To study the stress-induced dynamics of heat-shock network, we analyzed three modules of the HSP90 network-namely trimerization reactions, phosphorylation-dephosphorylation reactions, and the conversion of HSP90 from an open to a closed conformation-and constructed a corresponding nonlinear differential equation model based on mass action kinetics laws. The kinetic parameters of the model were obtained through global optimization, and sensitivity analyses revealed that the most sensitive parameters are the kinase and phosphatase that drive the phosphorylation-dephosphorylation reactions. Bifurcation analysis carried out with the estimated kinetic parameters of the model with stress as bifurcation parameter revealed the occurrence of "mushroom", a type of complex dynamics in which S-shaped and Z-shaped hysteretic bistable forms are present together. We mapped the molecular events responsible for generating the mushroom dynamics under stress and interpreted the occurrence of the S-shaped hysteresis to a normal level of stress, and the Z-shaped hysteresis to the HSP90 variations under acute and chronic stress in the fear conditioned system, and further, we hypothesized that this can be extended to stress-related disorders such as depression and PTSD in humans. Finally, we studied the effect of parameter variations on the mushroom dynamics to get insight about the role of phosphorylation-dephosphorylation parameters in HSP90 network in bringing about complex dynamics such as isolas, where the stable steady states in a bistable system are isolated and separated from each other and not connected by an unstable steady state.  相似文献   

15.
We consider a model for a network of phosphorylation-dephosphorylation cycles coupled through forward and backward regulatory interactions, such that a protein phosphorylated in a given cycle activates the phosphorylation of a protein by a kinase in the next cycle as well as the dephosphorylation of a protein by a phosphatase in a preceding cycle. The network is cyclically organized in such a way that the protein phosphorylated in the last cycle activates the kinase in the first cycle. We study the dynamics of the network in the presence of both forward and backward coupling, in conditions where a threshold exists in each cycle in the amount of protein phosphorylated as a function of the ratio of kinase to phosphatase maximum rates. We show that this system can display sustained (limit-cycle) oscillations in which each cycle in the pathway is successively turned on and off, in a sequence resembling the fall of a series of dominoes. The model thus provides an example of a biochemical system displaying the dynamics of dominoes and clocks (Murray & Kirschner, 1989). It also shows that a continuum of clock waveforms exists of which the fall of dominoes represents a limit. When the cycles in the network are linked through only forward (positive) coupling, bistability is observed, while in the presence of only backward (negative) coupling, the system can display multistability or oscillations, depending on the number of cycles in the network. Inhibition or activation of any kinase or phosphatase in the network immediately stops the oscillations by bringing the system into a stable steady state; oscillations resume when the initial value of the kinase or phosphatase rate is restored. The progression of the system on the limit cycle can thus be temporarily halted as long as an inhibitor is present, much as when a domino is held in place. These results suggest that the eukaryotic cell cycle, governed by a network of phosphorylation-dephosphorylation reactions in which the negative control of cyclin-dependent kinases plays a prominent role, behaves as a limit-cycle oscillator impeded in the presence of inhibitors. We contrast the case where the sequence of domino-like transitions constitutes the clock with the case where the sequence of transitions is passively coupled to a biochemical oscillator operating as an independent clock.  相似文献   

16.
A number of mathematical models of the human respiratory control system have been developed since 1940 to study a wide range of features of this complex system. Among them, periodic breathing (including Cheyne-Stokes respiration and apneustic breathing) is a collection of regular but involuntary breathing patterns that have important medical implications. The hypothesis that periodic breathing is the result of delay in the feedback signals to the respiratory control system has been studied since the work of Grodins et al. in the early 1950's [1]. The purpose of this paper is to study the stability characteristics of a feedback control system of five differential equations with delays in both the state and control variables presented by Khoo et al. [4] in 1991 for modeling human respiration. The paper is divided in two parts. Part I studies a simplified mathematical model of two nonlinear state equations modeling arterial partial pressures of O2 and CO2 and a peripheral controller. Analysis was done on this model to illuminate the effect of delay on the stability. It shows that delay dependent stability is affected by the controller gain, compartmental volumes and the manner in which changes in the ventilation rate is produced (i.e., by deeper breathing or faster breathing). In addition, numerical simulations were performed to validate analytical results. Part II extends the model in Part I to include both peripheral and central controllers. This, however, necessitates the introduction of a third state equation modeling CO2 levels in the brain. In addition to analytical studies on delay dependent stability, it shows that the decreased cardiac output (and hence increased delay) resulting from the congestive heart condition can induce instability at certain control gain levels. These analytical results were also confirmed by numerical simulations.  相似文献   

17.
In this paper, based on SIR and SEIR epidemic models with a general nonlinear incidence rate, we incorporate time delays into the ordinary differential equation models. In particular, we consider two delay differential equation models in which delays are caused (i) by the latency of the infection in a vector, and (ii) by the latent period in an infected host. By constructing suitable Lyapunov functionals and using the Lyapunov–LaSalle invariance principle, we prove the global stability of the endemic equilibrium and the disease-free equilibrium for time delays of any length in each model. Our results show that the global properties of equilibria also only depend on the basic reproductive number and that the latent period in a vector does not affect the stability, but the latent period in an infected host plays a positive role to control disease development.  相似文献   

18.
19.
J. Rochat 《BioControl》1997,42(1-2):201-213
A particular feature of aphid-parasitoid systems is the existence of a delay between parasitisation (sting) and the death of the host (i.e. mummification). This biological trait is generally not considered important for population stability, except if the delay is very long, and hence it is ignored in most population dynamics studies. However, many crops have relatively short durations, and these time delays may have important consequences and cannot be ignored in a dynamics model. In this study, we are looking for the key-factors that influence an aphidparasitoid system population dynamics during a cropping cycle. Specifically, a simple model based on ordinary and delay differential equations and including biologically meaningful parameters was developed for aphidparasitoid systems and used to examine: (1) effect of biological characteristics of both the aphid and the parasitoid on their dynamics, (2) the effect of parasitoid augmentation on the dynamics of the system (e.g.: date, number and importance of the releases of parasitoids), and (3) to compare observedAphis gossypii — Lysiphlebus testaceipes dynamics in a cucumber crop to the predictions of the model. Good fits between the model and the field data were obtained and suggest that this model may be a powerful tool for selecting species of parasitoid and strategies for their use in biological control augmentation programs for aphid pest management.  相似文献   

20.
This paper is an attempt to describe and analyze in formal terms a genetic circuit which is rather complex and reasonably well disentangled: the control of immunity in lambdoid bacteriophages. Known models are expressed as logic equations, which relate the stade of activity of genes to variables of three kinds: genetic variables which describe the genotype of the organism, environmental variables like temperature and memorization variables. The value of each memorization variable (presence or absence of a gene product) is related to the value of the corresponding function (operation or not of the gene) by two characteristic time delays, an «establishment delay and a «decay delay.From the equations, one can derive matrices which facilitate comparison between models by showing which stable states are predicted by each model. Implications of current models, which had apparently remained cryptic, have been realized and experimentally tested.From the matrices, one can derive graphs which show the pathways (sequences of states) consistent with each model. These graphs are frequently branched and in these cases one has to analyze which conditions determine that one pathway rather than another one, is followed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号