首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Circular dichroism of histone-bound regions in chromatin.   总被引:4,自引:0,他引:4  
Native, NaCl-treated, trypsin-treated, and polylysine-bound nucleohistones were studied in 2.5 × 10?4 M EDTA, pH 8.0, using circular dichroism (CD) and thermal denaturation. Removal of histone I by 0.6 M NaCl has a much smaller effect on both Δε220 and Δε278 than the removal of other histones. This indicates that histone I has less helical content and less conformational effect on the DNA in nucleohistone. By extrapolating to 100% binding by histones other than I, the positive CD band near 275 nm is close to zero. Comparison is also made between the effects of binding by the more basic and the less basic halves of histones by trypsin-digestion and polylysine-binding experiments. Trypsin digestion of nucleohistone reduces melting band IV at 82°C much more than melting band III at 72°C. However, the CD changes of Δε278 and Δε220 induced by trypsin digestion are small, unless melting band III is also reduced by the use of a higher trypsin level. This implies that the less basic halves of histones, which stabilize DNA to 72°C (melting band III), have more helical structure and are more responsible for conformational change in DNA than are the more basic halves, which stabilize DNA to 82°C (melting band IV). Polylysine binding to nucleohistone diminishes melting band III but has no effect on melting band IV. This binding affects only slightly the Δε220 of nucleohistone, indicating that polylysine interferes very little with the structure of the less basic halves of bound histones. The implications of these studies with respect to chromatin structure are discussed.  相似文献   

2.
Urea effect on conformation and thermal stabilities in nucleohistone and NaCl-treated partially dehistonized nucleohistones has been studied by circular dichroism (CD) and thermal denaturation. Urea imposes a CD change at 278mm of DNA base pairs in native and NaCl-treated nucleohistones which can be decomposed into two parts: a decrease in Δε278 for histone-free base pairs and an increase for histone-bound base pairs. The reduction by urea of Δε220 of bound histones is approximately proportional to the increase of Δε278 of histone-bound base pairs. Urea also lowers the melting temperatures of base pairs both free and bound by histones. The presence of urea indeed destroys the secondary structure of bound histones, causing changes in the conformation and thermal stabilities of histone-bound base pairs in nucleohistone. Such a urea perturbation on nucleohistone conformation is reversible.  相似文献   

3.
Thermal denaturation of nucleohistones--effects of formaldehyde reaction   总被引:6,自引:0,他引:6  
H J Li 《Biopolymers》1972,11(4):835-847
Thermal denaturation of native or partially dehistonized nucleohistones shows two melting bands at 66 and 81° in 2.5 × 10?4 M EDTA, pH 8.0. These correspond to the melting of DNA segments bound by the less basic and the more basic half-molecules of histones, respectively. These two melting bands combine into a broad melting band from around 70 to 85° when these nucleohistones are pre-treated with formaldehyde. A formaldehyde reaction which fixes histones on DNA by covalent bonds account for the effect. Formaldehyde fixation also increases the melting temperature of some free DNA segments from around 42 to around 55°. This is interpreted as a result of closed or rigid boundaries between free DNA and formaldehyde-reacted histone-bound DNA segments. MgCl2 dissociates histones from DNA more effectively and leaves longer free DNA segments than does NaCl. Thermal denaturation of a formaldehyde-reacted nucleoprotein thus provides an effective tool for comparing the relative size of free DNA regions on nucleoproteins. The effect of reversible binding of ligands on helix-coil transition of DNA is descussed and found not adequate for thermal denaturation of nucleohistones.  相似文献   

4.
R M Santella  H J Li 《Biochemistry》1975,14(16):3604-3611
A random copolymer of 58% L-lysine and 42% L-phenylalanine, poly(Lys58Phe42), was used as a model protein for studying the role of phenylalanine residues in protein-DNA interaction. Complexes between this copolypeptide and DNA, made by direct mixing, were studied by absorbance, circular dichroism (CD), fluorescence, and thermal denaturation. Complex formation results in an increase in absorbance, and an enhancement, red-shift, and broadening of phenylalanine fluorescence. The fluorescence enhancement is opposite to the quenching observed when a tyrosine copolypeptide is bound to DNA (R. M. Santella and H.J. Li (1974), Biopolymers 13, 1909). The positive CD band of DNA near 275 nm is reduced and red-shifted by the binding of the phenylalanine copolypeptide to a greater extent than by the tyrosine copolypeptide. Thermal denaturation of the complexes in 2.5 times 10(-4) M EDTA (pH 8.0) shows three characteristic melting bands. For complexes with calf thymus DNA, free base pairs melt at Tm,I (47-49 degrees) and copolypeptide-bound base pairs show two melting bands (Tm,II at 73-75 degrees, and Tm,III at 88 -90 degrees). Similar thermal denaturation results have been observed for complexes with Micrococcus luteus DNA. The fluorecence intensity of the complexes is greatly increased when the temperature is raised to the Tm,II region. In addition to fluorescence measurements, the effects of increasing temperature on absorption and CD spectra of the complexes were also studied. Stacking interaction between the phenylalanine chromophore and DNA bases, either partial or full intercalation, is implicated by the experimental results. Several mechanisms are proposed to describe the reaction between the copolypeptide and DNA, and thermal denaturation of the complex.  相似文献   

5.
A method of large-scale preparation of the histone F1-DNA complex by removing all other proteins from calf thymus nucleohistone was established. This involved gel filtration of nucleohistone through a column containing a band of sodium dodecyl sulfate. The F1-DNA complex obtained had the original amount of F1 and no other. The F1-DNA complex exhibited distinct two-step melting on thermal denaturation. The first step was apparently attributable to naked DNA regions and the second step, about 30 deg. C higher than the first step, to the regions covered with F1. Buoyant density experiments with the complex after fixation with formalin revealed that F1 was distributed fairly evenly over DNA fragments of an average molecular weight of about 4 × 106. Electron microscopic examination of the complex after various degrees of denaturation with formalin indicated that the longest stretch of unbound DNA was about 0·3 μm.  相似文献   

6.
H J Li  C Chang  M Weiskopf  B Brand  A Rotter 《Biopolymers》1974,13(4):649-667
Thermal denaturation and renaturation of directly mixed and reconstituted polylysine–DNA, directly mixed polylysine–nucleohistone complexes, and NaCl-treated nucleohistones in 2.5 × 10?4 M EDTA, pH 8.0 have been studied. At the same input ratio of polylysine to DNA, the percent of renaturation of free base pairs in a directly mixed polylysine–DNA complex is higher than that in a reconstituted complex. For a directly mixed complex, the renaturation of free base pairs is proportional to the fraction of DNA bound by polylysine or inversely proportional to the sizes of free DNA loops. A of large amount of renaturation of free base pairs has also been observed for 0.6 M and 1.6 M NaCl-treated nucleohistones. The binding of polylysine to nucleohistone enhances the renaturation of histone-bound base pairs. The percent of renaturation of polylysine–bound base pairs is high and is approximately independent of the extent of binding on DNA by polylysine. This is true in polylysine–DNA complexes prepared either by reconstitution or by directly mixing. It also applies for polylysine–nucleohistone complexes. The model where polylysine-bound base pairs collapse at Tm′ with two complementary strands still bound by polylysine is favored over the model where polylysine is dissociated from DNA during melting. The low renaturation of histone-bound base pairs in nucleo-histone indicates that either histones do not hold two complementary strands of DNA tightly or that histones are fully or partially dissociated from DNA when the nucleo-histone is fully denatured.  相似文献   

7.
Studies on the thermal denaturation of nucleohistones   总被引:7,自引:0,他引:7  
The thermal denaturation profiles of nucleohistone from calf thymus, sea urchin sperm and sea cucumber male gonad, are studied and compared under a variety of conditions. These include melting in the presence of either one of the following agents: urea, methanol, divalent cations or excess histones. The influence of ionic strength, pH, formaldehyde treatment and partial denaturation is also studied. Particular attention is given to the factors which influence the bimodal appearance of the profiles. The melting curves of the three materials used are qualitatively similar under all conditions, although they show quantitative differences. The histone:DNA ratio appears to be the most important parameter to define the denaturation properties of a given nucleohistone preparation. It is shown that redistribution of histones may determine the melting profile, since during denaturation histones can migrate from locally denatured regions towards those regions which contain native DNA. It is also shown that there are regions of phosphate negative charges of DNA not protected by histone. These regions can be protected against denaturation either by additional histones or by certain divalent cations. The results are interpreted in terms of the various models possible for the distribution of histones on DNA in native nucleohistone. Their biological significance is also discussed.  相似文献   

8.
The effects of varying amounts of cAMP receptor protein (CRP) in the presence and absence of cAMP on the melting and differential melting curves of a 301-bp fragment containing the lac control region in 5 mM Na+ have been investigated. The native 301-bp fragment consists of three cooperatively melting thermalites. At 5 mM Na+, thermalite I (155 bp) has a Tm of 66.4 degrees C and the melting transitions of thermalites II (81 bp) and III (65 bp) are superimposed with a Tm of 61.9 degrees C. The specific DNA target site for CRP and the lac promotor are located within thermalite II. CRP alone exerts no specific effects on the melting of the 301-bp fragment, non-specific DNA binding of CRP resulting in a progressive stabilization of the double-stranded DNA by increasing the number of base pairs melting at a higher Tm in a non-cooperative transition. The cAMP-CRP complex, however, exerts a specific effect with a region of approximately 36 bp, comprising the specific CRP binding site and a neighbouring region of DNA, being stabilized. The appearance of this new cooperatively melting region, known as thermalite IV, is associated with a corresponding decrease in the area of thermalites II/III. The Tm of thermalite IV is 64.4 degrees C, 2.5 degrees C higher than that of thermalites II/III. With two or more cAMP-CRP complexes bound per 301-bp fragment, the stabilization also affects the remaining 110 bp now making up thermalites II/III whose Tm is increased by 1 degrees C to 62.9 degrees C. The implications of these findings for various models of the mode of action of the cAMP-CRP complex are discussed.  相似文献   

9.
Subunit arrangement in beef heart complex III   总被引:6,自引:0,他引:6  
Beef heart mitochondrial complex III was separated into 12 polypeptide bands representing 11 different subunits by using the electrophoresis conditions described by Sch?gger et al. [(1986) Methods Enzymol. 126, 224-237]. Eight of the 12 polypeptide bands were identified from their NH2-terminal sequences as obtained by electroblotting directly from the NaDodSO4-polyacrylamide gel onto a solid support. The topology of the subunits in complex III was explored by three different approaches. (1) Protease digestion experiments of submitochrondrial particles in the presence and absence of detergent showed that subunits II and VI are on the M side of the inner membrane and subunits V and XI on the C side. (2) Labeling experiments with the membrane-intercalated probes [125I]TID and arylazidoPE indicated that cytochrome b is the predominant bilayer embedded subunit of complex III, while the non-heme iron protein appears to be peripherally located. (3) Cross-linking studies with carbodiimides and homobifunctional cleavable reagents demonstrated that near-neighbor pairs include subunits I+II, II+VI, III+VI, IV+V, V+X, and reagents demonstrated that near-neighbor pairs include subunits I+II, II+VI, III+VI, IV+V, V+X, and VI+VII. The cytochrome c binding site was found to include subunits IV, VIII, and X. The combined data are used to provide an updated model for the topology of beef heart complex III.  相似文献   

10.
11.
Raman spectra have been observed of nucleosome core particles (I) prepared from chicken erythrocyte chromatin, its isolated 146 bp DNA (II), and its isolated histone octamer (H2A+H2B+H3+H4)2 (III). By examining the difference Raman spectra, (I)-(II), (I)-(III), and (I)-(II)-(III), several pieces of information have been obtained on the conformation of the DNA moiety, the conformation of the histone moiety, and the DNA-histone interaction in the nucleosome core particles. In the nucleosome core particles, about 15 bp (A.T rich) portions of the whole 146 bp DNA are considered to take an A-form conformation. These are considered to correspond to its bent portions which appear at intervals of 10 bp.  相似文献   

12.
The glycine-arginine-rich histone, f2al (IV) (102 amino acids), from calf thymus was cleaved at residue 84 with cyanogen bromide. Complexes containing homologous DNA and each f2al fragment were reconstituted by means of Gdn-HC1 gradient dialysis. The circular dichroic (CD) spectra of these complexes were all examined in 0.14 M NaC1. The CD spectra of the DNA-f2al fragment complexes did not differ appreciably from that of DNA alone in the wavelength region above 240 nm. However, intact f2al-DNA complexes yield CD spectra which differ significantly (enhanced, blue-shifted, 273-nm band) from that of native DNA (Shih and Fasman, 1971). The small C-terminal fragment (85-102) was bound weakly to DNA under the conditions used. However, the large basic N-terminal fragment (1-83) was bound as well to DNA as was whole f2al, but produced no CD distortion. The conformation of the N-terminal fragment, unlike intact f2al, was not changed upon increasing the ionic strength to 0.14 M NaF. These results complement previous studies on f2al and its N-terminal CNBr fragment (Ziccardi and Schumaker, 1973).Thermal denaturation of the complexes in 2.5 X 10(-4) M EDTA was monitored simultaneously by changes in the absorption and CD spectra. All complexes showed a thermal transition at 45 degrees (Tml), attributable to the melting of free, double-stranded DNA. In addition, f2al-DNA and N fragment-DNA complexes displayed melting phenomena at 88 and 78 degrees (Tm2), respectively, caused by the denaturation of the histone-bound DNA. This difference in Tm2 constitutes further evidence that loss of the 18-amino-acid carboxyl end segment of f2al prohibits the unique type of interaction which occurs between DNA and the intact histone.  相似文献   

13.
Reconstituted nucleohistones were obtained by mixing in given conditions acid extracted histones and eukaryotic DNA. The histone/DNA ratio (w/w) was in the range 0.35 - 0.95. With the four histones (H2A2B) we have been able to obtain subunits (nucleosomes or upsilon-bodies). The variation of cirsular dichroism signal with temperature at 280 nm was measured to follow structural changes of the DNA inside the complex. The true change of ellipticity (see article) of histone-bound DNA regions, is similar for reconstituted nucleohistone and H1-depleted chromatin, and is therefore a physical probe of the presence of nucleosomes.  相似文献   

14.
A Richter  M Kapitza 《FEBS letters》1991,294(1-2):125-128
Histone H1 inhibits the catalytic activity of topoisomerase I in vitro. The relaxation activity of the enzyme is partially inhibited at a molar ratio of one histone H1 molecule per 40 base pairs (bp) of DNA and completely inhibited at a molar ratio of one histone H1 molecule per 10 base pairs of DNA. Increasing the amount of enzyme at a constant histone H1 to DNA ratio antagonizes the inhibition. This indicates that topoisomerase I and histone H1 compete for binding sites on the substrate DNA molecules. Consistent with this we show on the sequence level that histone H1 inhibits the cleavage reaction of topoisomerase I on linear DNA fragments.  相似文献   

15.
The nature of binding of Ru(phen) 2+ (I), Ru(bipy) 2+ (II), Ru(terpy) 2+ (III) (phen = 1,10-phenanthroline, bipy 3 = 2,2'-bipyridyl, 3 terpy = 2,2'2," - 2 terpyridyl) to DNA, poly[d(G-C)] and poly[d(A-T)] has been compared by absorption, fluorescence, DNA melting and DNA unwinding techniques. I binds intercalatively to DNA in low ionic strength solutions. Topoisomerisation shows that it unwinds DNA by 22 degrees +/- 1 per residue and that it thermally stabilizes poly[d(A-T)] in a manner closely resembling ethidium. Poly[d(A-T)] induces greater spectral changes on I than poly[d(G-C)] and a preference for A-T rich regions is indicated. I binding is very sensitive to Mg2+ concentration. In contrast to I the binding of II and III appears to be mainly electrostatic in nature, and causes no unwinding. There is no evidence for the binding of the neutral Ru(phen)2 (CN)2 or Ru(bipy)2 (CN)2 complexes. DNA is cleaved, upon visible irradiation of aerated solutions, in the presence of either I or II.  相似文献   

16.
Histone proteins are involved in compaction of DNA and the protection of cells from oxygen toxicity. However, several studies have demonstrated that the metal-binding histone reacts with H(2)O(2), leading to oxidative damage to a nucleobase. We investigated whether histone can accelerate oxidative DNA damage, using a minimal model for the N-terminal tail of histone H4, CH(3)CO-AKRHRK-CONH(2), which has a metal-binding site. This histone peptide enhanced DNA damage induced by H(2)O(2) and Cu(II), especially at cytosine residues, and induced additional DNA cleavage at the 5'-guanine of GGG sequences. The peptide also enhanced the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine and ESR spin-trapping signal from H(2)O(2) and Cu(II). Cyclic redox reactions involving histone-bound Cu(II) and H(2)O(2), may give rise to multiple production of radicals leading to multiple hits in DNA. It is noteworthy that the histone H4 peptide with specific sequence AKRHRK can cause DNA damage rather than protection under metal-overloaded condition.  相似文献   

17.
Physical properties of inner histone-DNA complexes.   总被引:6,自引:6,他引:0       下载免费PDF全文
Chicken-erythrocyte inner histone tetramer has been complexed with several natural and synthetic DNA duplexes by salt-gradient dialysis at various protein/DNA ratios. The resulting complexes, in low-ionic-strength buffer, have been examined by electron microscopy, circular dichroism, and thermal denaturation. Electron microscopy reveals nucleosomes (nu bodies) randomly arranged along DNA fibers, including poly(dA-dT)-poly(dA-dT), poly(dI-dC)-poly(dI-dC), but not poly(dA)-poly(dT). Circular dichroism studies showed prominent histone alpha-helix and "suppression" of nucleic acid ellipticity (lambda less than 240 nm). Thermal denaturation experiments revealed Tm behavior comparable to that of H1- (or H5-) depleted chromatin. Tm III and Tm IV increased linearly with G + C%(natural DNAs), but were virtually independent of the histone/DNA ratio; therefore, the melting of nucleosomes along a DNA chain is insensitive to adjacent "spacer" DNA lengths. This suggests that Tm III and Tm IV arise from the melting of different domains of DNA associated with the core nu body.  相似文献   

18.
gp32 I is a protein with a molecular weight of 27 000. It is obtained by limited hydrolysis of T4 gene 32 coded protein, which is one of the DNA melting proteins. gp32 I itself appears to be also a melting protein. It denatures poly[d(A-T)].poly[d(A-T)] and T4 DNA at temperatures far (50-60 degrees C) below their regular melting temperatures. Under similar conditions gp32 I will denature poly[d(A-T).poly[d(A-T)] at temperatures approximately 12 degrees C lower than those measured for the intact gp32 denaturation. For T4 DNA gp32 shows no melting behavior while gp32 I shows considerable denaturation (i.e., hyperchromicity) even at 1 degree C. In this paper the denaturation of poly[d(A-T)].poly[d(A-T)] and T4 DNA by gp32 I is studied by means of circular dichroism. It appears that gp32 I forms a complex with poly[d(A-T)]. The conformation of the polynucleotide in the complex is equal to that of one strand of the double-stranded polymer in 6 M LiCl. In the gp32 I DNA complex formed upon denaturation of T4 DNA, the single-stranded DNA molecule has the same conformation as one strand of the double-strand T4 DNA molecule in the C-DNA conformation.  相似文献   

19.
The DNA of aseptically grown protocorms of a Cymbidium hybrid and in vitro developed leaves, as well as DNA of leaves and flower buds of Cymbidium ceres from the greenhouse, was analysed by analytical ultracentrifugation and thermal denaturation. Upon ultracentrifugation a satellite DNA with a buoyant density of 1.682 g/cm-3 appears as a shoulder on the main band (density 1.694 g/cm-3). Thermal denaturation reveals an inhomogeneous main peak with the major component melting at 84 degrees C and a separate peak melting at 75 degrees C. This is the first demonstration of a satellite DNA in a monocot, and one of the rare examples of a major A + T-rich DNA fraction in a plant.  相似文献   

20.
A number of optical and electro-optical measurements showed that the binding of dibutylproflavine to calf thymus DNA and nucleohistone in 1 mM NaCl could be resolved on the basis of two external and orientated bound species, whose binding parameters have been determined by a spectrophotometric method.The absorption and the electric dichroism properties were found to show up additivity of contributions from the two bound species. The orientation of the long axis of the strongly bound molecules of species I appeared close to the inclination of the DNA grooves, while that of species II differed by about ten degrees.A spatial proximity of the two binding sites was suggested by the dependence of the circular dichroism signals, the fluorescence quantum yield and the emission anisotropy on the degree of binding. The mobility of the first bound dibutylproflavine molecules was similar to that of the intercalated proflavine molecules, but lower in nucleohistone as compared to DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号