首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The G-banding technique was performed on aneuploid karyotypes from gill tissue of the Pacific oyster, Crassostrea gigas, to assess whether chromosome losses could be explained by differential chromosomal susceptibility and to clarify the negative correlation between aneuploidy and growth rate previously reported in different populations of this oyster. The study of 95 G-banded aneuploid karyotypes showed that only 4 of the 10 chromosome pairs (viz. 1, 5, 9, and 10) of C. gigas were affected by the loss of one homologous chromosome. Pairs 1, 9, and 10, which were lost in 56, 33, and 44% of cases, respectively, may be considered to be differentially affected. Hypotheses on this differential chromosomal susceptibility are discussed.  相似文献   

2.
Study of aneuploidy in spats of Ostreidae (Bivalvia). Chromosomes of cells from gill tissue of juveniles (5–10 mm) from four different populations of Ostrea edulis and five different populations of Crassostrea gigas were examined in order to study aneuploidy and its significance. Mitotic chromosome counts were made for a sample of spats in each population. Cells with the normal diploid complement (2n=20) and with aneuploid complements (2n different from 20) were scored. The total percentage of aneuploid cells in the studied populations of the two species varies from 9% to 34%. Individual patterns of aneuploidy were examined in three populations of Crassostrea gigas. Some animals showed only normal diploid cells, others having both normal and aneuploid cells in variable proportions. The relationship between aneuploidy and growth rate was studied in experimental spats. Mitotic chromosome counts were made on individuals from two groups of animals: the first group was collected at a precise date at a control size of 8 mm, the second group reaching the same size of 8 mm only one month later. The percentage of animals showing aneuploid cells is much greater in the second group. There is a relationship between occurrence of aneuploid cells and growth rate. The karyotypes of 18 aneuploid sets of Ostrea edulis from different spats were analyzed. Chromosome loss was observed only in the submetacentric chromosome pairs. This loss of chromosomes could have an effect on the percentage of homozygotes observed in electrophoregrams. Thus, the percentage of homozygotes would be higher in juveniles showing the greatest number of aneuploid cells. An excess of homozygosity (=heterozygote deficiency) has been reported at a number of enzyme loci in over two dozen bivalve species (including Ostrea and Crassostrea). We suggest the hypothesis that this excess of homozygosity could be related to the occurrence of aneuploid cells. The relationship between aneuploidy and growth rate may prove to be a genetic factor of importance for oyster culturing.  相似文献   

3.
Reliable banding techniques are a major necessity for genetic research in oysters. In this study, we carried out the cytogenetic characterization of four oyster species (family Ostreidae) using restriction endonuclease treatments. Chromosomes were treated with three different restriction enzymes, stained with Giemsa, and examined for banding patterns. The following species were studied: Crassostrea gigas (2n = 20; total number of bands with ApaI, 74; HaeIII, 61; PstI, 76), Crassostrea angulata (2n = 20; ApaI, 62; HaeIII, 61; PstI, 55) (subfamily Crassostreinae), Ostrea edulis (2n = 20; ApaI, 82; HaeIII, 59; PstI, 66), and Ostrea conchaphila (2n = 20; ApaI, 68; HaeIII, 62; PstI, 69) (subfamily Ostreinae). Treatment of samples with ApaI, HaeIII, and PstI produced specific banding patterns, which demonstrates the potential of these enzymes for chromosome banding in oysters. This is of special interest, since it has been recently shown in mammalian chromosomes that restriction enzyme banding is compatible with fluorescence in situ hybridization. This study therefore provides a fundamental step in genome mapping of oysters, since chromosome banding with restriction enzymes facilitates physical gene mapping in these important aquaculture species. The analysis of the banded karyotypes revealed a greater similarity within the genera of Crassostrea and Ostrea than between them.  相似文献   

4.
5.
The mechanisms of aneuploidy induction in human oogenesis mainly involve nondisjunction arising during the first and second meiotic divisions. Nondisjunction equally affects both whole chromosomes and chromatids, in the latter case it is facilitated by "predivision" or precocious centromere division. Karyotyping and CGH studies show an excess of hypohaploidy, which is confirmed in studies of preimplantation embryos, providing evidence in favour of anaphase lag as a mechanism. Preferential involvement of the smaller autosomes has been clearly shown but the largest chromosomes are also abnormal in many cases. Overall, the rate of chromosomal imbalance in oocytes from women aged between 30 and 35 has been estimated at 11% from recent karyotyping data but accruing CGH results suggest that the true figure should be considerably higher. Clear evidence has been obtained in favour of germinal or gonadal mosaicism as a predisposing factor. Constitutional aneuploidy in embryos is most frequent for chromosomes 22, 16, 21 and 15; least frequently involved are chromosomes 14, X and Y, and 6. However, embryos of women under 37 are far more likely to be affected by mosaic aneuploidy, which is present in over 50% of 3-day-old embryos. There are two main types, diploid/aneuploid and chaotic mosaics. Chaotic mosaics arise independently of maternal age and may be related to centrosome anomalies and hence of male origin. Aneuploid mosaics most commonly arise by chromosome loss, followed by chromosome gain and least frequently by mitotic nondisjunction. All may be related to maternal age as well as to lack of specific gene products in the embryo. Partial aneuploidy as a result of chromosome breakage affects a minimum of 10% of embryos.  相似文献   

6.
Summary In PHA-cultured lymphocytes, about 8% of metaphases from 32 women were aneuploid compared to 4% of metaphases from 35 men. A significant part of this aneuploidy was characterized by sex chromosome involvement: in women, the loss or gain of X chromosomes; in men, the gain of X chromosomes and the loss or gain of Y chromosomes. The incidence of this aneuploidy was positively age-related for both sexes. Premature division of the X-chromosome centromere was closely associated with X-chromosome aneuploidy in women and men, and appeared to be the mechanism of nondisjunction causing this aneuploidy. Premature centromere division (PCD) indicated a dysfunction of the X-chromosome centromere with aging, and this dysfunction was the basic cause of age-related aneuploidy. A similar mechanism of nondisjunction may operate for the Y chromosome of men, but could not be clearly demonstrated because of the low incidence of Y-chromosome aneuploidy.The balance of the aneuploidy was characterized by chromosome loss and the involvement of all chromosome groups. It was consistent with chromosome loss from metaphase cells damaged during preparation for cytogenetic examination.  相似文献   

7.
Mitotic defects leading to aneuploidy have been recognized as a hallmark of tumor cells for over 100 years. Current data indicate that ∼85% of human cancers have missegregated chromosomes to become aneuploid. Some maintain a stable aneuploid karyotype, while others consistently missegregate chromosomes over multiple divisions due to chromosomal instability (CIN). Both aneuploidy and CIN serve as markers of poor prognosis in diverse human cancers. Despite this, aneuploidy is generally incompatible with viability during development, and some aneuploid karyotypes cause a proliferative disadvantage in somatic cells. In vivo, the intentional introduction of aneuploidy can promote tumors, suppress them, or do neither. Here, we summarize current knowledge of the effects of aneuploidy and CIN on proliferation and cell death in nontransformed cells, as well as on tumor promotion, suppression, and prognosis.  相似文献   

8.

Key message

We report a repertoire of diverse aneuploids harbored by a newly synthesized segmental allotetraploid rice population with fully sequenced sub-genomes and demonstrate their retention features and phenotypic consequences.

Abstract

Aneuploidy, defined as unequal numbers of different chromosomes, is a large-effect genetic variant and may produce diverse cellular and organismal phenotypes. Polyploids are more permissive to chromosomal content imbalance than their diploid and haploid counterparts, and therefore, may enable more in-depth investigation of the phenotypic consequences of aneuploidy. Based on whole-genome resequencing, we identify that ca. 40% of the 312 selfed individual plants sampled from an early generation rice segmental allotetraploid population are constitutive aneuploids harboring 55 distinct aneuploid karyotypes. We document that gain of a chromosome is more prevalent than loss of a chromosome, and the 12 rice chromosomes have distinct tendencies to be in an aneuploid state. These properties of aneuploidy are constrained by multiple factors including the number of genes residing on the chromosome and predicted functional connectivity with other chromosomes. Two broad categories of aneuploidy-associated phenotypes are recognized: those shared by different aneuploids, and those associated with aneuploidy of a specific chromosome. A repertoire of diverse aneuploids in the context of a segmental allotetraploid rice genome with fully sequenced sub-genomes provides a tractable resource to explore the roles of aneuploidy in nascent polyploid genome evolution and helps to decipher the mechanisms conferring karyotypic stabilization on the path to polyploid speciation and towards artificial construction of novel polyploid crops.
  相似文献   

9.
We reviewed the frequency and distribution of disomy in spermatozoa obtained by multicolor-FISH analysis on decondensed sperm nuclei in (a) healthy men, (b) fathers of aneuploid offspring of paternal origin and (c) individuals with Klinefelter syndrome and XYY males. In series of healthy men, disomy per autosome is approximately 0.1% but may range from 0.03 (chromosome 8) to 0.47 (chromosome 22). The great majority of authors find that chromosome 21 (0.18%) and the sex chromosomes (0.27%) have significantly elevated frequencies of disomy although these findings are not universal. The total disomy in FISH studies is 2.26% and the estimated aneuploidy (2× disomy) is 4.5%, more than double that seen in sperm karyotypes (1.8%). Increased disomy levels of low orders of magnitude have been reported in spermatozoa of some normal men (stable variants) and in men who have fathered children with Down, Turner and Klinefelter syndromes. These findings suggest that men with a moderately elevated aneuploidy rate may be at a higher risk of fathering paternally derived aneuploid pregnancies. Among lifestyle factors, smoking, alcohol and caffeine have been studied extensively but the compounding effects of the 3 are difficult to separate because they are common lifestyle behaviors. Increases in sex chromosome abnormalities, some autosomal disomies, and in the number of diploid spermatozoa are general features in 47,XXY and 47,XYY males. Aneuploidy of the sex chromosomes is more frequent than aneuploidy of any of the autosomes not only in normal control individuals, but also in patients with sex chromosome abnormalities and fathers of paternally derived Klinefelter, Turner and Down syndromes.  相似文献   

10.
The influence of chromosome variability on the production of euploid spermatozoa was investigated in a suitable biological model, the Akodon molinae system. This consists of individuals whose chromosome constitution is 2n = 42, 2n = 43, or 2n = 44. The only difference between these three karyotypes occurs through a Robertsonian rearrangement combined with two pericentric inversions. Thus, the animals with 2n = 42 (simple homozygotes or SH) have two large metacentric chromosomes number 1; animals with 2n = 43 (heterozygotes or Ht) have a chromosome 1 and two subterminal chromosomes la and lb homologues of the long and short arms of the chromosome 1, respectively; animals with 2n = 44 (double homozygotes or DH) have a pair of la and a pair of lb chromosomes. The gametic euploidy frequency correlated with each chromosome constitution was evaluated on the basis of the DNA content of spermatozoa, which was determined microdensitometrically after the Feulgen reaction, taking into account the site of the spermatozoa along the male genital tract. A comparative assessment of gametic aneuploidy frequency in caput epididymis versus vas deferens demonstrated (1) a falloff in euploid production in passing from the 2n = 42 to the 2n = 44 chromosome forms, alongside a high degree of intragroup variability, and (2) a lower aneuploidy frequency in the vas deferens than in caput epididymis in all the forms considered. These two features, taken together with similar results in the mouse chromosome variability system, suggest that a selection mechanism is operative against aneuploid spermatozoa in the epididymis. This finding is of interest in a wider perspective, since it might turn out to be valid for many mammals.  相似文献   

11.
Despite its widespread existence, the adaptive role of aneuploidy (the abnormal state of having an unequal number of different chromosomes) has been a subject of debate. Cellular aneuploidy has been associated with enhanced resistance to stress, whereas on the organismal level it is detrimental to multicellular species. Certain aneuploid karyotypes are deleterious for specific environments, but karyotype diversity in a population potentiates adaptive evolution. To reconcile these paradoxical observations, this review distinguishes the role of aneuploidy in cellular versus organismal evolution. Further, it proposes a population genetics perspective to examine the behavior of aneuploidy on a populational versus individual level. By altering the copy number of a significant portion of the genome, aneuploidy introduces large phenotypic leaps that enable small cell populations to explore a wide phenotypic landscape, from which adaptive traits can be selected. The production of chromosome number variation can be further increased by stress- or mutation-induced chromosomal instability, fueling rapid cellular adaptation.  相似文献   

12.
The human sperm/hamster egg fusion technique has been used to analyse 6,821 human sperm chromosome complements from 98 men to determine if all chromosomes are equally likely to be involved in aneuploid events or if some chromosomes are particularly susceptible to nondisjunction. The frequency of hypohaploidy and hyperhaploidy was compared among different chromosome groups and individual chromosomes. In general, hypohaploid sperm complements were more frequent than hyperhaploid complements. The distribution of chromosome loss in the hypohaploid complements indicated that significantly fewer of the large chromosomes and significantly more of the small chromosomes were lost, suggesting that technical loss predominantly affects small chromosomes. Among the autosomes, the observed frequency of hyperhaploid sperm equalled the expected frequency (assuming an equal frequency of nondisjunction for all chromosomes) for all chromosome groups. Among individual autosomes, only chromosome 9 showed an increased frequency of hyperhaploidy. The sex chromosomes also showed a significant increase in the frequency of hyperhaploidy. These results are consistent with studies of spontaneous abortions and liveborns demonstrating that aneuploidy for the sex chromosomes is caused by paternal meiotic error more commonly than aneuploidy for the autosomes.  相似文献   

13.
Hoechst 33258 (bis-benzimidazole) and 5-azacytidine (5-AC) cause decondensation of the pericentric heterochromatin in mouse and aberrations in the sequence of centromere separation apparently by different mechanisms. We treated the male Indian muntjac cells (2n=7), which do not undergo decondensation of the pericentric heterochromatin, to study if these chemicals would result in induction of aneuploidy limited to the Y(2) chromosome. This paper reports that both agents result in aneuploidy primarily limited to one chromosome, the Y(2). It is likely that other chromosomes are not tolerated in aneuploid condition because every chromosome carries some household genes including those essential for mitotic progression. The loss/gain of the Y(2) chromosome is tolerated because it is the smallest chromosome and is almost entirely composed of constitutive heterochromatin. Since Indian muntjac has only three pairs of large chromosomes comprising its basic genome, which can be clearly viewed under high dry objective, these cells are very suitable for the preliminary analysis of aneuploidy-inducing ability of various chemicals.  相似文献   

14.
Rosenbusch B 《Hereditas》2004,141(2):97-105
Human oocytes failing to fertilize during assisted reproduction are an important source of information for assessing incidence and causal mechanisms of maternal aneuploidy. This review describes the techniques of conventional oocyte chromosome analysis and evaluates the results of 59 studies comprising a total of>10,000 female gametes. The mean rate of aneuploidy (hypohaploidy + hyperhaploidy) amounts to approximately 20%, but this incidence is reduced as soon as possible artifacts introduced by the fixation technique are taken into consideration. It is therefore concluded that a realistic value for numerical abnormalities arising during first meiotic division lies between 12 and 15%. All chromosome groups are affected by aneuploidy but the actually observed frequencies exceed the expected frequencies in groups D, E, and G. Two aneuploidy-causing mechanisms have been identified in human oocytes: nondisjunction, resulting in the loss or gain of whole chromosomes, and predivision, resulting in the loss or gain of single chromatids. A brief analysis including only aneuploid complements with one extra or missing chromosome/chromatid shows a slight increase in predivision (52.9%) compared with nondisjunction (47.1%). Finally, suggestions for future studies are given since, for instance, the presentation of results and the use of cytogenetic nomenclature have not been uniform.  相似文献   

15.
Aneuploid cancers exhibit a wide spectrum of clinical aggressiveness, possibly because of varying chromosome compositions. To test this, karyotypes from the diploid CCD-34Lu fibroblast and the aneuploid A549 and SUIT-2 cancer lines underwent fluorescence in situ hybridization (FISH) and DAPI counterstaining. The number of DAPI-stained and FISH-identified chromosomes, 1-22, X,Y, as well as structural abnormalities, were counted and compared using the chi(2), Mann-Whitney rank sum test and the Levene's equality of variance. Virtually all of the evaluable diploid CCD-34Lu karyotypes had 46 chromosomes with two normal-appearing homologues. The aneuploid chromosome numbers per karyotype were highly variable, averaging 62 and 72 for the A549 and SUIT-2 lines, respectively. However, the A549 chromosome numbers were more narrowly distributed than the SUIT-2 karyotype chromosome numbers. Furthermore, 25% of the A549 chromosomes had structural abnormalities compared to only 7% of the SUIT-2 chromosomes. The chromosomal compositions of the aneuploid A549 and SUIT-2 cancer lines are widely divergent, suggesting that diverse genetic alterations, rather than chance, may govern the chromosome makeups of aneuploid cancers.  相似文献   

16.
One thousand human sperm and hamster egg haploid karyotypes were analyzed at the pronuclear stage after in vitro penetration. The frequency of abnormalities in human sperm was 8.5%, with 5.2% aneuploidy and 3.3% structural abnormalities. The hamster egg complements had an abnormality rate of 3.8%, with 3.3% aneuploidy and 0.5% structural abnormalities. In both human and hamster complements, chromosome abnormalities were observed in all chromosome groups, demonstrating that all chromosomes are susceptible to nondisjunction, not just acrocentric or small chromosomes. There is an intriguing difference between the frequency of hyperhaploid and hypohaploid complements in human sperm and hamster eggs. In the human complements, 2.4% were hyperhaploid and 2.7% hypohaploid. This is very close to the theoretical 1 to 1 ratio expected from nondisjunction. The hamster egg complements had more hypohaploid (2.2%) than hyperhaploid (0.9%) complements, despite identical treatment. Higher rates of hypohaploidy are generally ascribed to artificial loss of chromosomes, but may in fact reflect a predisposition of oocytes to anaphase lag during meiosis. The frequency of abnormalities (both numerical and structural) is higher in human complements than in hamster. This may reflect an innate propensity for meiotic chromosome abnormalities in humans or may result from greater exposure of humans to mutagenic agents.  相似文献   

17.
Summary Investigations have been carried out on karyotype change in both callus and suspension cell cultures of Haplopappus gracilis (2n=4). It has been found that polyploidization arises directly in culture to give up to six times the normal diploid chromosome number in some cultures. In polyploid cultures, both chromosome loss and chromosome rearrangements occur to give rise to aneuploid karyotypes displaying chromosomes which differ in morphology from the diploid set. Whole or partial chromosome loss has been observed in the form of lagging chromosomes and chromosome bridges at anaphase, and micronuclei, ring chromosomes and chromosome fragments at other stages in mitosis. C-banded preparations have confirmed the occurrence of chromosomal rearrangements. Comparative investigations suggest that (i) more polyploidy occurs in callus cultures than in suspension cell cultures, and (ii) the presence of cytokinin (kinetin) in the culture medium may reduce the extent of karyotype change.  相似文献   

18.
Aneuploidy and chromosome instability (CIN) are hallmarks of the vast majority of solid tumors. However, the origins of aneuploid cells are unknown. The aim of this study is to improve our understanding of how aneuploidy and/or CIN arise and of karyotype evolution in cancer cells. By using fluorescence in situ hybridization (FISH) on cells after long-term live cell imaging, we demonstrated that most (> 90%) of the newly generated aneuploid cells resulted from multipolar divisions. Multipolar division occurred in mononucleated and binucleated parental cells, resulting in variation of chromosome compositions in daughter cells. These karyotypes can have the same chromosome number as their mother clone or lack a copy of certain chromosomes. Interestingly, daughter cells that lost a chromosome were observed to survive and form clones with shorter cell cycle duration. In our model of cancer cell evolution, the rapid proliferation of daughter cells from multipolar mitosis promotes colonal evolution in colorectal cancer cells.  相似文献   

19.
Cancers have a clonal origin, yet their chromosomes and genes are non-clonal or heterogeneous due to an inherent genomic instability. However, the cause of this genomic instability is still debated. One theory postulates that mutations in genes that are involved in DNA repair and in chromosome segregation are the primary causes of this instability. But there are neither consistent correlations nor is there functional proof for the mutation theory. Here we propose aneuploidy, an abnormal number of chromosomes, as the primary cause of the genomic instability of neoplastic and preneoplastic cells. Aneuploidy destabilizes the karyotype and thus the species, independent of mutation, because it corrupts highly conserved teams of proteins that segregate, synthesize and repair chromosomes. Likewise it destabilizes genes. The theory explains 12 of 12 specific features of genomic instability: (1) Mutagenic and non-mutagenic carcinogens induce genomic instability via aneuploidy. (2) Aneuploidy coincides and segregates with preneoplastic and neoplastic genomic instability. (3) Phenotypes of genomically unstable cells change and even revert at high rates, compared to those of diploid cells, via aneuploidy-catalyzed chromosome rearrangements. (4) Idiosyncratic features of cancers, like immortality and drug-resistance, derive from subspecies within the 'polyphyletic' diversity of individual cancers. (5) Instability is proportional to the degree of aneuploidy. (6) Multilateral chromosomal and genetic instabilities typically coincide, because aneuploidy corrupts multiple targets simultaneously. (7) Gene mutation is common, but neither consistent nor clonal in cancer cells as predicted by the aneuploidy theory. (8) Cancers fall into a near-diploid (2 N) class of low instability, a near 1.5 N class of high instability, or a near 3 N class of very high instability, because aneuploid fitness is maximized either by minimally unstable karyotypes or by maximally unstable, but adaptable karyotypes. (9) Dominant phenotypes, because of aneuploid genotypes. (10) Uncertain developmental phenotypes of Down and other aneuploidy syndromes, because supply-sensitive, diploid programs are destabilized by products from aneuploid genes supplied at abnormal concentrations; the maternal age-bias for Down's would reflect age-dependent defects of the spindle apparatus of oocytes. (11) Non-selective phenotypes, e.g., metastasis, because of linkage with selective phenotypes on the same chromosomes. (12) The target, induction of genomic instability, is several 1000-fold bigger than gene mutation, because it is entire chromosomes. The mutation theory explains only a few of these features. We conclude that the transition of stable diploid to unstable aneuploid cell species is the primary cause of preneoplastic and neoplastic genomic instability and of cancer, and that mutations are secondary.  相似文献   

20.
Is there selection against aneuploid sperm during spermatogenesis and fertilization? To address this question, we used male mice doubly heterozygous for the Robertsonian (Rb) translocations Rb(6. 16)24Lub and Rb(16.17)7Bnr, which produce high levels of sperm aneuploid for chromosome 16, the mouse counterpart of human chromosome 21. The frequencies of aneuploid male gametes before and after fertilization were compared by analyzing approximately 500 meiosis II spermatocytes and approximately 500 first-cleavage zygotes using fluorescence in situ hybridization with a DNA painting probe mixture containing three biotin-labeled probes specific for chromosomes 8, 16, and 17 plus a digoxigenin-labeled probe specific for chromosome Y. Hyperhaploidy for chromosome 16 occurred in 20.0% of spermatocytes and in 21.8% of zygotes. Hypohaploidy for chromosome 16 occurred in 17.0% and 16.7% of spermatocytes and zygotes, respectively. In addition, there was no preferential association between chromosome 16 aneuploidy and either of the sex chromosomes, nor was there an elevation in aneuploidy for chromosomes not involved in the Rb translocations. These findings provide direct evidence that there is no selection against aneuploid sperm during spermiogenesis, fertilization, and the first cell cycle of zygotic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号