首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucocerebrosidase was purified from human placenta approximately 10,600-fold to apparent homogeneity with an overall yield of 37% using cholate extraction, ammonium sulfate fractionation, butanol delipidation, and a two-step high-performance hydrophobic and gel permeation column chromatography method. A Phenyl-5PW (21.5 X 150 mm) column was used in the first step. Approximately one litre of delipidated and dialysed extract containing 3.7 X 10(6) units of enzyme activity from 1 kg of placental tissue was processed by the column at a flow rate of 5 ml/min. Glucocerebrosidase was eluted using a linear cholate gradient (2-3%). There was a 50-fold purification and 89% recovery. The run was completed in about 7 h. In the second step, the concentrated enzyme preparation from the phenyl column was run through two Bio-Sil TSK 250 gel permeation columns (21.5 X 600 mm) connected in series at a flow rate of 1.5 ml/min. A symmetrical peak of glucocerebrosidase activity (Ve = 253 ml) which had constant specific activity (47,000 units/h/mg protein) was noted. There was a 17-fold purification and 80% recovery in this run which was completed in 4 h. Sodium dodecylsulfate-polyacrylamide gel electrophoresis and protein staining with silver compounds of the purified preparation revealed the presence of one band of Mr 68,000.  相似文献   

2.
Glucocerebrosidase was isolated from bovine brain by cholate extraction, ammonium sulfate fractionation, acid precipitation at pH 5.35, and hydrophobic chromatography. The purification is about 2400-fold with a specific activity of about 286,000 nmole/hr/mg protein. Molecular weight as determined by chromatography on Bio-Gel P-200 was 138,000. On SDS-polyacrylamide gel electrophoresis the enzyme protein resolved into two bands with apparent molecular weights of 63,000 and 56,000. These bands are cross-reactive to monospecific polyclonal antibody to homogeneous human placental glucocerebrosidase. The enzyme was found to be a complex glycoprotein based on its lectin binding specificity. Brain enzyme was found to be similar to placental glucocerebrosidase in its pH optima, heat stability at 52 degrees C, and substrate affinity. Enzyme kinetics were measured in the presence of conduritol-beta-epoxide, an irreversible inhibitor, and gluconolactone, a competitive inhibitor.  相似文献   

3.
Glucocerebrosidase was purified from human cultured dermal fibroblasts more than 2200-fold to apparent homogeneity using high performance Alkyl-Superose HR 5/5 hydrophobic interaction and Bio-Sil TSK-250 gel permeation column chromatography. Sodium dodecyl sulfate--polyacrylamide gel electrophoresis and protein staining of the catalytically active and concentrated enzyme fractions from the gel permeation columns revealed the presence of one band of Mr 64,000. The glucocerebrosidase preparation purified to homogeneity was digested with peptide N-glycosidase F that cleaves N-linked oligosaccharide structures from glycoproteins. The molecular weight of glucocerebrosidase after digestion with peptide N-glycosidase F was reduced to Mr 57,000, suggesting that the mature enzyme is a glycoprotein and that N-linked oligosaccharide constitutes a minimum of about 10% of the total molecular weight of the polypeptide. These findings are compatible with the hypothesis that glucocerebrosidase was initially synthesized as a precursor polypeptide which was subsequently glycosylated to become the mature enzyme.  相似文献   

4.
Purification and characterization of murine protoporphyrinogen oxidase   总被引:8,自引:0,他引:8  
H A Dailey  S W Karr 《Biochemistry》1987,26(10):2697-2701
The penultimate enzyme of the heme biosynthetic pathway, protoporphyrinogen oxidase (EC 1.3.3.4), has been purified to apparent homogeneity from mouse liver mitochondria. The purification involves solubilization from mitochondrial membranes with sodium cholate followed by ammonium sulfate fractionation and gel filtration on a Sepharose CL-6B column. The eluate is adjusted to 0.67 M (NH4)2SO4 and loaded onto a phenyl-Sepharose column. After salt washes, the enzyme is eluted with 0.5% sodium cholate and 0.5% Brij 35. The final step is high-pressure ion-exchange chromatography on a DEAE-5PW column. The purified protein has a molecular weight of approximately 65,000 by gel filtration chromatography on Sepharose CL-6B in the presence of 0.5% sodium cholate. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows a single band corresponding to a molecular weight of 65,000. The absorption spectrum of the purified enzyme shows no evidence of a chromophoric cofactor. Purified protoporphyrinogen oxidase has a Km for protoporphyrinogen IX of 5.6 microM with a Vmax of 2300 nmol mg-1 h-1. It utilizes meso- and hematoporphyrinogen at about 10% the level of protoporphyrinogen. The pH optimum is broad with a maximum at 7.1. There is no stimulation or inhibition by any tested divalent cations, and sulfhydryl reagents have no inhibitory effect on the purified enzyme.  相似文献   

5.
1. Glucocerebrosidase, extracted from human spleen lysosomal membrane by sodium cholate and recovered in a high speed centrifugation supernatant, aggregated following removal of the detergent. 2. Re-solubilization of the enzymatic activity from the aggregate was achieved by treatment with the non-ionic detergents Triton X-100 and Tween 20. The anionic detergents sodium cholate and sodium taurocholate and the cationic detergents cetyltrimethylammonium bromide and cetylpyridinium chloride were also effective. The solubilizing capacity of the anionic detergents was smaller than that of the nonionic detergents. Quantitative evaluation of the solubilizing capacity of the cationic detergents was not feasible because of their being potent inhibitors of glucocerebrosidase activity. 3. Treatment of the enzyme aggregate with acetone rendered it buffer-soluble. 4. In addition to the above cationic detergents some choline-containing and highly hydrophobic phospholipids were found to inhibit the glucocerebrosidase activity.  相似文献   

6.
The sodium- and chloride-coupled gamma-aminobutyric acid transporter from rat brain has been highly purified. Synaptic plasma membranes from rat brain were extracted with cholate in the presence of 10% ammonium sulfate. The soluble extract was incorporated into liposomes consisting of asolectin and crude brain lipids. Brain lipids markedly enhanced the transport activity. The resulting proteoliposomes catalyzed sodium- and chloride-coupled gamma-aminobutyric acid transport which, in the presence of internal potassium, was greatly (up to 20-fold) stimulated by valinomycin. Using this transport of the reconstituted system as an assay, the transporter was purified by the following steps. The cholate extract was fractionated by ammonium sulfate. The activity was not precipitated by 50% but could be precipitated by 70% ammonium sulfate. The cholate and ammonium sulfate were removed on a Sephadex G-50 column. Subsequently, the transporter was partially purified on DEAE-cellulose in a mixture of Triton X-100 and octyl glucoside. The active fractions were chromatographed on a hydroxylapatite column in the presence of Triton X-100. Although the increase in specific activity was only up to 100-fold, this was due to partial inactivation. The actual purification was at least 1000-fold. The purified transporter exhibited the same features of the synaptic plasma membrane vesicles, namely dependence on sodium and chloride, electrogenicity, and a similar affinity. The sodium dodecyl sulfate gel pattern indicated that a major protein ran as a 24-kDa band. This band may represent the gamma-aminobutyric acid transporter.  相似文献   

7.
1. Glucocerebrosidase, in association with a membrane-bound ;acid' beta-glucosidase, was separated from a soluble ;neutral' beta-glucosidase that had no activity towards glucocerebroside as substrate. 2. Glucocerebrosidase, as well as ;acid' beta-glucosidase activity depended upon the association of factor P (a heat-stable, soluble, acidic glycoprotein) with factor C (a heat-labile membrane-bound protein). 3. Factor C was solubilized under certain conditions. 4. Solubilized factor C, as well as membrane-bound factor C, could be alternatively stimulated by sodium taurocholate to give both glucocerebrosidase and ;acid' beta-glucosidase activities. 5. Membrane-bound factor C reacted optimally with factor P whereas solubilized factor C was preferentially stimulated by taurocholate. 6. Factor P-dependent glucocerebrosidase activity differed in kinetic properties from the taurocholate-stimulated enzyme activity. 7. The results are discussed in the light of (a) identity of glucocerebrosidase and ;acid' beta-glucosidase, (b) application in clinical diagnosis, (c) physiological significance of the enzyme system, and (d) polygenic inheritance in adult Gaucher's disease.  相似文献   

8.
Human placental NADPH-cytochrome P-450 reductase (EC 1.6.2.4) was purified to electrophoretic homogeneity in two chromatographic steps with a high retention of bioactivity. After solubilization with 1% sodium cholate in a protective medium containing 20% glycerol, 10 microM 4-androstene-3,17-dione, 1 mM dithiothreitol, and 0.2 mM EDTA, a 35-60% ammonium sulfate precipitate was prepared. The crude protein mixture was then applied to a 2',5'-ADP-Sepharose 4B affinity column, followed by high-performance anion-exchange chromatography (Pharmacia Mono-Q column). Two forms of the reductase were isolated. One was eluted at higher salt concentration and had a relative mass (Mr) of 79 kdaltons (kDa) as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high-performance gel permeation chromatography. A smaller size reductase with a Mr of 70 kDa, eluting at lower salt concentration, was also formed by trypsinolysis of the 79-kDa reductase. It must therefore be regarded as a proteolytic artifact. The absolute spectra in the visible region of the two reductases were identical with maxima at 376 and 452 nm, typical of a flavoprotein. They also had the same specific activity of 24.7 +/- 0.7 mumol/min per milligram protein towards cytochrome c. However, only the 79-kDa reductase showed aromatase-reconstitution activity. The homogeneity of these reductases was further confirmed by the appearance of a single peak when subjected to gradient, reversed-phase high-performance liquid chromatography. According to its amino acid composition, the 79-kDa reductase is a highly acidic and hydrophobic protein, composed of 695 residues.  相似文献   

9.
We have investigated several parameters of glucocerebrosidase in cultured skin fibroblasts from patients with various clinical phenotypes of Gaucher disease. In this study no strict correlation was found between the clinical manifestations of Gaucher disease and the parameters investigated in fibroblasts. These parameters included the specific activity of the enzyme in extracts towards natural lipid and artificial substrate in the presence of different activators; the enzymic activity per unit of glucocerebrosidase protein; the rate of synthesis of the enzyme and its stability; and the post-translational processing of the enzyme. In addition, the activity in situ of glucocerebrosidase in fibroblasts was investigated using a novel method by analysis of the catabolism of NBD-glucosylceramide in cells that were loaded with bovine serum albumin-lipid complexes. Again, no complete correlation with the clinical phenotype of patients was detectable. Glucocerebrosidase in fibroblasts from most non-neuronopathic (type 1) Gaucher disease patients differs in some aspects from enzyme in cells from patients with neurological forms (types 2 and 3). The stimulation by activator protein and phospholipid is clearly more pronounced in type 1 than in types 2 and 3; the enzymic activity per unit of glucocerebrosidase protein in type 1 is severely reduced in the presence of taurocholate and the amount of glucocerebrosidase appears (near) normal in contrast to the situation in types 2 and 3 Gaucher fibroblasts. However, this distinction was not always consistent; glucocerebrosidase in fibroblasts from some type 1 Gaucher patients, particularly some South African cases, was comparable in properties to enzyme in type 2 and 3 patients.  相似文献   

10.
Phospholipase C (heat-labile hemolysin) was purified from Pseudomonas aeruginosa culture supernatants to near homogeneity by ammonium sulfate precipitation followed by a novel application of DEAE-Sephacel chromatography. Enzymatic activity remained associated with DEAE-Sephacel even in the presence of 1 M NaCl, but was eluted with a linear gradient of 0 to 5% tetradecyltrimethylammonium bromide. Elution from DEAE-Sephacel was also obtained with 2% lysophosphatidylcholine, and to a lesser extent with 2% phosphorylcholine, but not at all with choline. The enzyme was highly active toward phospholipids possessing substituted ammonium groups (e.g., phosphatidycholine, lysophosphatidylcholine, and sphingomyelin); however, it had little if any activity toward phospholipids lacking substituted ammonium groups (e.g., phosphatidylethanolamine, phosphatidylserine, and phosphaditylglycerol). Collectively, these data suggest that phospholipase C from P. aeruginosa exhibits high affinity for substituted ammonium groups, but requires an additional hydrophobic moiety for optimum binding. The specific activity of the purified enzyme preparation increased 1,900-fold compared with that of culture supernatants. The molecular weight of the phospholipase C was estimated to be 78,000 by both sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Sephacryl S-200 column chromatography and was 76,000 by high-performance size exclusion chromatography. The isoelectric point was 5.5. Amino acid analysis showed that phospholipase C was rich in glycine, serine, threonine, aspartyl, glutamyl, and aromatic amino acids, but was cystine free.  相似文献   

11.
A reproducible and convenient method for assaying glucocerebrosidase activity using the natural substrates has been developed. From the insoluble pellet fraction of cultured skin fibroblast homogenates, released glucose was measured enzymically using hexokinase coupled with the glucose-6-phosphate dehydrogenase (G6PD) and nicotinamide adenine dinucleotide phosphate (NADP) system. Optimal enzyme assay conditions required both Triton X-100 and sodium taurocholate, pH 4.8. Glucocerebrosidase activities from three patients with type 1 Gaucher disease were 17.5%, 15.8%, and 11.2% of normal (normal = 198 +/- 14 nmol/hr per mg protein, n = 3). The first patient had normal beta-glucosidase activity with the artificial fluorogenic umbelliferone substrate. Interference with the accuracy of the glucose-dependent assay system by either glycolytic or gluconeogenic enzyme activites was not detected under these experimental conditions, and when substrates with long fatty-acid chain lengths (C = 22) were used, markedly decreased glucocerebrosidase activity occurred in both normal individuals and patients. The apparent Km's for the natural substrates were 0.56 +/- 0.05 mM for controls and 2.2-3.3 mM for Gaucher fibroblasts. These data further support the hypothesis that a structurally altered and catalytically deficient enzyme is synthesized in patients with type 1 Gaucher disease and illustrate the value of the natural substrate in investigating patients.  相似文献   

12.
Cyclodextrin glucanotransferase (CGTase) from Bacillus circulans ATCC 21783 was concentrated by ultrafiltration and subsequently purified by hydrophobic interaction chromatography on Octyl Sepharose 4 fast flow. The matrix was able to bind selectively to the enzyme at a very low ammonium sulfate concentration of 0.67 M and enzyme desorption was performed by decreasing gradient of the salt. The overall recovery was 80% with 689-fold purity. CGTases derived from four soil isolates and Toruzyme, the commercial preparation of CGTase, also bound to Octyl Sepharose under similar conditions at 0.67 M and eluted at 0.55-0.5 M of ammonium sulfate. Octyl Sepharose chromatography can thus be used as a platform approach for purification of CGTases from various bacterial sources. Long stretches of sequence predominated by hydrophobic amino acids are reportedly present in the starch binding domains of CGTases. Starch binding experiments indicated the binding of the enzymes to the octyl matrix through these domains.  相似文献   

13.
Hydrophobic interaction high performance liquid chromatography (HPLC) using TSKgel Phenyl-5PW was applicable to single-step purification of F(ab')2 fragments from pepsin digests of mouse monoclonal antibodies of IgG1 class. The digests were applied to the gel equilibrated with phosphate-buffered saline containing 1 M ammonium sulfate. F(ab')2 fragments were adsorbed onto the gel using the same buffer, and eluted by reducing the ammonium sulfate concentration to 0 M. The fraction containing F(ab')2 fragments was homogeneous (purity: higher than 98%) by both sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration HPLC. The recovery of the antigen binding site was 42-58%. The cycle time of the Phenyl-5PW HPLC was 45 min, and F(ab')2 of up to 2200 mg was purified in a cycle. This method could be useful especially for large scale purification of F(ab')2 fragments.  相似文献   

14.
The acid beta-glucosidase (D-glucosyl-N-acylsphingosine glucohydrolase, EC 3.2.1.45) from human placenta is inhibited by sulphated macromolecules such as Dextran sulphate or chondroitin sulphate. This inhibition is alleviated by compounds such as crude taurocholate or phospholipids, which are known activators of acid beta-glucosidase. Partially-purified human beta-glucosidase will bind to Dextran sulphate linked to Sepharose 4B and can be eluted with low concentrations of crude sodium taurocholate. This procedure gives a 10-15 fold purification with good yield and has been included in a scheme giving an approx. 4000-fold purification of placental beta-glucosidase. Evidence is presented which suggests that phospholipids bind to beta-glucosidase by both ionic and hydrophobic interactions. The inhibition of enzyme activity caused by sulphated compounds and non-ionic detergents may be attributed to interference with, respectively, the ionic and hydrophobic binding of phospholipid to the enzyme.  相似文献   

15.
Affinity separation of human plasma gelsolin on Affi-Gel Blue   总被引:1,自引:0,他引:1  
Human plasma gelsolin was specifically eluted with 1 mM adenosine 5'-triphosphate from an Affi-Gel Blue column. Since the ionic strength of sodium chloride required to elute the protein from the dye column was much higher than that of 1 mM adenosine 5'-triphosphate, the binding of plasma gelsolin with the dye-ligand appeared to be biospecific. Taking advantage of this affinity interaction, we have developed a revised purification method of human plasma gelsolin. The purification included ammonium sulfate precipitation, diethylaminoethyl-Sepharose chromatography, Affi-Gel Blue chromatography, and Phenyl-Sepharose chromatography. The method allowed a reproducible purification of the protein to apparent homogeneity, producing a 331-fold purification with a yield of 6%.  相似文献   

16.
A soluble inositolphospholipid-specific phospholipase C (PI-phospholipase C) has been purified 5,800-fold from the cytosolic fraction of calf thymocytes. The purification was achieved by sequential column chromatographies on DEAE-Sepharose CL-6B, heparin-Sepharose CL-6B, Sephacryl S-300, Mono S, and Superose 12, followed by column chromatography on Sephadex G-100 in the presence of 1% sodium cholate. The enzyme thus purified was found to be homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight of the enzyme was estimated to be 68 kDa by SDS-PAGE. The enzyme is specific for inositol phospholipids. Phosphatidylinositol and phosphatidylinositol 4,5-bisphosphate (PIP2) were hydrolyzed, but phosphatidylcholine and phosphatidylethanolamine were not affected by the enzyme. GTP gamma S-binding activity was detected in the enzyme fractions after all the purification steps, but not in the final enzyme preparation. The PI-phospholipase C and GTP gamma S-binding activities in the partially purified enzyme preparation could be separated by the column chromatography on Sephadex G-100 only in the presence of 1% sodium cholate. Thus, the soluble PI-phospholipase C has affinity to a GTP-binding protein. SDS-PAGE of the GTP-binding fractions eluted from the Sephadex G-100 column gave three visible bands of 54, 41, and 27 kDa polypeptide was specifically ADP-ribosylated by pertussis toxin. Furthermore, it was found that GTP and GTP gamma S (10 microM and 1 mM) could enhance the PIP2 hydrolysis activity of the partially purified enzyme in the presence of 3 mM EGTA, but the purified enzyme after separation from the GTP-binding activity was not affected by GTP and GTP gamma S. The soluble PI-phospholipase C of calf thymocytes may be not only physically but also functionally associated with a GTP-binding protein.  相似文献   

17.
An affinity column for the purification of thymidine kinase is described. The ligand in this column is a glycoprotein isolated from rat kidney. This glycoprotein inhibits phosphorylation of thymidine in cultured cells and in a cell-free assay system. With an affinity column containing the glycoprotein as a ligand, a 24-fold purification of thymidine kinase from an ammonium sulfate fraction of a crude tissue extract can be obtained. Thymidine kinase eluted from the affinity column migrates as one major band on polyacrylamide and as one diffuse major band on sodium dodecyl sulfate-polyacrylamide. The affinity column, with thymidine kinase bound to the inhibitor, can also be used as an assay system. When the glycoprotein is covalently attached to Sepharose, it retains its binding capacity for thymidine kinase but has apparently lost its ability to inhibit the enzyme. Thymidine kinase eluted from the affinity column is again sensitive to the glycoprotein. It seems to be a carbohydrate moiety of the glycoprotein that is responsible for the inhibition.  相似文献   

18.
Lipase from Candida cylindracea has been purified by ammonium sulfate precipitation, sodium deoxycholate treatment, ethanol-ether precipitation and chromatography on SE-Sephadex and Sephadex G-100 columns. The purification of the enzyme was 33.4-fold with a yeild of 18.0% on the basis of activity per weight of protein. The purified enzyme was homogeneous on ultracentrifugation and electrophoresis. Optimum pH for the hydrolysis of olive oil was 7.2 by the assay method using a polyvinylalcohol-emulsified system and 5.2 by the assay method using a shaken system without a macromolecular emulsifier. Optimum temperature was 45°C. The enzyme was stable up to 15°G and in the range of pH from 2.0 to 8.5. Sodium taurocholate showed either an activating or an inhibiting effect at pH 7.0, depending on the sodium taurocholate concentration and on the assay system.  相似文献   

19.
Sequential chromatography of human milk whey on concanavalin A—Sepharose 4B followed by cholate—Sepharose 4B yielded a bile salt-activated lipase with 150-fold purification. The lipase was not retained by concanavalin A—Sepharose 4B but was retained by the cholate—Sepharose 4B, from which it was eluted with 2% sodium cholate. The affinity chromatography procedure on cholate—Sepharose 4B was based on the specific structural requirement of the enzyme for a 7-hydroxyl group of bile salt. Sodium deoxycholate, which lacks the 7-hydroxyl group, was effective in removing the nonspecifically bound proteins without affecting the binding of the enzyme. Bile salt-activated lipase showed a single band on urea-sodium dodecyl sulfate—polyacrylamide gel electrophoresis with an apparent molecular weight of 125,000, and based on densitometric measurement accounted for 0.5–1.0% of the protein mass of human whole milk. A rabbit antiserum to the purified bile salt-activated lipase caused no inhibition of human milk lipoprotein lipase activity but completely inhibited bile salt-activated lipase activity.  相似文献   

20.
Cyclodextrin glucanotransferase (CGTase) from Bacillus circulans ATCC 21783 was concentrated by ultrafiltration and subsequently purified by hydrophobic interaction chromatography on Octyl Sepharose 4 fast flow. The matrix was able to bind selectively to the enzyme at a very low ammonium sulfate concentration of 0.67 M and enzyme desorption was performed by decreasing gradient of the salt. The overall recovery was 80% with 689-fold purity. CGTases derived from four soil isolates and Toruzyme, the commercial preparation of CGTase, also bound to Octyl Sepharose under similar conditions at 0.67 M and eluted at 0.55–0.5 M of ammonium sulfate. Octyl Sepharose chromatography can thus be used as a platform approach for purification of CGTases from various bacterial sources. Long stretches of sequence predominated by hydrophobic amino acids are reportedly present in the starch binding domains of CGTases. Starch binding experiments indicated the binding of the enzymes to the octyl matrix through these domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号