首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The yeast peroxisomal (3R)-hydroxyacyl-CoA dehydrogenase/2-enoyl-CoA hydratase 2 (multifunctional enzyme type 2; MFE-2) has two N-terminal domains belonging to the short chain alcohol dehydrogenase/reductase superfamily. To investigate the physiological roles of these domains, here called A and B, Saccharomyces cerevisiae fox-2 cells (devoid of Sc MFE-2) were taken as a model system. Gly(16) and Gly(329) of the S. cerevisiae A and B domains, corresponding to Gly(16), which is mutated in the human MFE-2 deficiency, were mutated to serine and cloned into the yeast expression plasmid pYE352. In oleic acid medium, fox-2 cells transformed with pYE352:: ScMFE-2(aDelta) and pYE352::ScMFE-2(bDelta) grew slower than cells transformed with pYE352::ScMFE-2, whereas cells transformed with pYE352::ScMFE-2(aDeltabDelta) failed to grow. Candida tropicalis MFE-2 with a deleted hydratase 2 domain (Ct MFE- 2(h2Delta)) and mutational variants of the A and B domains (Ct MFE- 2(h2DeltaaDelta), Ct MFE- 2(h2DeltabDelta), and Ct MFE- 2(h2DeltaaDeltabDelta)) were overexpressed and characterized. All proteins were dimers with similar secondary structure elements. Both wild type domains were enzymatically active, with the B domain showing the highest activity with short chain and the A domain with medium and long chain (3R)-hydroxyacyl-CoA substrates. The data show that the dehydrogenase domains of yeast MFE-2 have different substrate specificities required to allow the yeast to propagate optimally on fatty acids as the carbon source.  相似文献   

2.
(3R)-hydroxyacyl-CoA dehydrogenase is part of multifunctional enzyme type 2 (MFE-2) of peroxisomal fatty acid beta-oxidation. The MFE-2 protein from yeasts contains in the same polypeptide chain two dehydrogenases (A and B), which possess difference in substrate specificity. The crystal structure of Candida tropicalis (3R)-hydroxyacyl-CoA dehydrogenase AB heterodimer, consisting of dehydrogenase A and B, determined at the resolution of 2.2A, shows overall similarity with the prototypic counterpart from rat, but also important differences that explain the substrate specificity differences observed. Docking studies suggest that dehydrogenase A binds the hydrophobic fatty acyl chain of a medium-chain-length ((3R)-OH-C10) substrate as bent into the binding pocket, whereas the short-chain substrates are dislocated by two mechanisms: (i) a short-chain-length 3-hydroxyacyl group ((3R)-OH-C4) does not reach the hydrophobic contacts needed for anchoring the substrate into the active site; and (ii) Leu44 in the loop above the NAD(+) cofactor attracts short-chain-length substrates away from the active site. Dehydrogenase B, which can use a (3R)-OH-C4 substrate, has a more shallow binding pocket and the substrate is correctly placed for catalysis. Based on the current structure, and together with the structure of the 2-enoyl-CoA hydratase 2 unit of yeast MFE-2 it becomes obvious that in yeast and mammalian MFE-2s, despite basically identical functional domains, the assembly of these domains into a mature, dimeric multifunctional enzyme is very different.  相似文献   

3.
All of the peroxisomal β-oxidation pathways characterized thus far house at least one MFE (multifunctional enzyme) catalysing two out of four reactions of the spiral. MFE type?2 proteins from various species display great variation in domain composition and predicted substrate preference. The gene CG3415 encodes for Drosophila melanogaster MFE-2 (DmMFE-2), complements the Saccharomyces cerevisiae MFE-2 deletion strain, and the recombinant protein displays both MFE-2 enzymatic activities in vitro. The resolved crystal structure is the first one for a full-length MFE-2 revealing the assembly of domains, and the data can also be transferred to structure-function studies for other MFE-2 proteins. The structure explains the necessity of dimerization. The lack of substrate channelling is proposed based on both the structural features, as well as by the fact that hydration and dehydrogenation activities of MFE-2, if produced as separate enzymes, are equally efficient in catalysis as the full-length MFE-2.  相似文献   

4.
过氧物酶体多功能酶 (包括Ⅰ型、Ⅱ型 ,简称MFE1、MFE2 )在哺乳类动物的脂类代谢中发挥其重要作用 .MFE1具有 2 烯酰CoA水合酶 1和 (3S) 羟脂酰CoA脱氢酶的活性 ,而MFE2具有 2 烯酰CoA水合酶 2和 (3R) 羟脂酰CoA脱氢酶的活性 ,两者均催化烯酰CoA在过氧物酶体β 氧化途径中的第 2步和第 3步反应 .MFE1与MFE2的氨基酸序列不具有任何同源性 ,并且它们的底物特异性也不相同 .比较哺乳类MFE1及酵母MFE2发现 ,哺乳类MFE2羧基末端带有由 12 5个残基组成的固醇载体蛋白 2 (简称SCP2 )结构域 ,其功能是未知的 .为了研究SCP2结构域在MFE2中的功能 ,将人MFE2、MFE2ΔSCP2 (删除MFE2中的SCP2 )、脱氢酶结构域、水合酶结构域以及SCP2结构域分别在E .coli中表达 ,并经纯化得到相应的重组蛋白 .通过测定 2 烯酰CoA水合酶 2和 (3R) 羟脂酰CoA脱氢酶对烯酰CoA的催化活性发现 ,带有SCP2结构域的重组蛋白的酶活力及催化效率高于删除SCP2的突变体蛋白 .实验结果表明 ,SCP2结构域可能通过增强MFE2与脂酰CoA的结合力 ,使得MFE2发挥最有效的催化活力  相似文献   

5.
腈水合酶激活子具有亚基自身交换伴随子或者金属离子伴随子的功能,能够辅助腈水合酶摄取金属离子,对于腈水合酶的活性表达必不可少。与腈水合酶自身相比,激活子的序列保守性低,研究其激活作用的特点,探索其结构与功能之间的关系,对于理解腈水合酶的成熟机制具有重要意义。将红球菌Rhodococcus rhodochrous J1低分子量型腈水合酶L-NHase分别与4种异源激活子组合共表达,测定异源激活子对L-NHase的激活作用,进一步对激活子进行序列分析和结构模拟,并研究关键结构域的功能。结果表明,4种异源激活子均能激活L-NHase,但激活后L-NHase的比酶活存在差异,激活子A对L-NHase的激活程度最高,激活后的L-NHase比酶活为出发酶的97.79%;激活子G对L-NHase的激活程度最低,激活后的L-NHase比酶活为出发酶的23.94%。激活子E和激活子G具有保守结构域TIGR03889,缺失其中部分序列会使两者的激活作用基本丧失。将激活子G的N端序列替换为激活子E的N端序列,并将激活子E的C端序列添加至激活子G的C端,能够使L-NHase的比酶活提高178.40%。激活子的激活作用具有普遍性和特异性,其保守结构域对激活作用至关重要,同时N端结构域和C端结构域也对激活作用产生重要影响。  相似文献   

6.
The tertiary structure of lipid-free apolipoprotein (apo) A-I in the monomeric state comprises two domains: a N-terminal alpha-helix bundle and a less organized C-terminal domain. This study examined how the N- and C-terminal segments of apoA-I (residues 1-43 and 223-243), which contain the most hydrophobic regions in the molecule and are located in opposite structural domains, contribute to the lipid-free conformation and lipid interaction. Measurements of circular dichroism in conjunction with tryptophan and 8-anilino-1-naphthalenesulfonic acid fluorescence data demonstrated that single (L230P) or triple (L230P/L233P/Y236P) proline insertions into the C-terminal alpha helix disrupted the organization of the C-terminal domain without affecting the stability of the N-terminal helix bundle. In contrast, proline insertion into the N terminus (Y18P) disrupted the bundle structure in the N-terminal domain, indicating that the alpha-helical segment in this region is part of the helix bundle. Calorimetric and gel-filtration measurements showed that disruption of the C-terminal alpha helix significantly reduced the enthalpy and free energy of binding of apoA-I to lipids, whereas disruption of the N-terminal alpha helix had only a small effect on lipid binding. Significantly, the presence of the Y18P mutation offset the negative effects of disruption/removal of the C-terminal helical domain on lipid binding, suggesting that the alpha helix around Y18 concealed a potential lipid-binding region in the N-terminal domain, which was exposed by the disruption of the helix-bundle structure. When these results are taken together, they indicate that the alpha-helical segment in the N terminus of apoA-I modulates the lipid-free structure and lipid interaction in concert with the C-terminal domain.  相似文献   

7.
The crystal structure of (3R)-hydroxyacyl-CoA dehydrogenase of rat peroxisomal multifunctional enzyme type 2 (MFE-2) was solved at 2.38 A resolution. The catalytic entity reveals an alpha/beta short chain alcohol dehydrogenase/reductase (SDR) fold and the conformation of the bound nicotinamide adenine dinucleotide (NAD(+)) found in other SDR enzymes. Of great interest is the separate COOH-terminal domain, which is not seen in other SDR structures. This domain completes the active site cavity of the neighboring monomer and extends dimeric interactions. Peroxisomal diseases that arise because of point mutations in the dehydrogenase-coding region of the MFE-2 gene can be mapped to changes in amino acids involved in NAD(+) binding and protein dimerization.  相似文献   

8.
Beta-oxidation of acyl-CoAs in mammalian peroxisomes can occur via either multifunctional enzyme type 1 (MFE-1) or type 2 (MFE-2), both of which catalyze the hydration of trans-2-enoyl-CoA and the dehydrogenation of 3-hydroxyacyl-CoA, but with opposite chiral specificity. Amino acid sequence alignment of the 2-enoyl-CoA hydratase 2 domain in human MFE-2 with other MFE-2s reveals conserved protic residues: Tyr-347, Glu-366, Asp-370, His-406, Glu-408, Tyr-410, Asp-490, Tyr-505, Asp-510, His-515, Asp-517, and His-532. To investigate their potential roles in catalysis, each residue was replaced by alanine in site-directed mutagenesis, and the resulting constructs were tested for complementation in a yeast. After additional screening, the wild type and noncomplementing E366A and D510A variants were expressed and characterized. The purified proteins have similar secondary structural elements, with the same subunit composition. The E366A variant had a k(cat)/K(m) value 100 times lower than that of the wild type MFE-2 at pH 5, whereas the D510A variant was inactive. Asp-510 was imbedded in a novel hydratase 2 motif found in the hydratase 2 proteins. The data show that the hydratase 2 reaction catalyzed by MFE-2 requires two protic residues, Glu-366 and Asp-510, suggesting that their catalytic role may be equivalent to that of the two catalytic residues of hydratase 1.  相似文献   

9.
Beta-oxidation of long-chain fatty acids and branched-chain fatty acids is carried out in mammalian peroxisomes by a multifunctional enzyme (MFE) or D-bifunctional protein, with separate domains for hydroxyacyl coenzyme A (CoA) dehydrogenase, enoyl-CoA hydratase, and steroid carrier protein SCP2. We have found that Dictyostelium has a gene, mfeA, encoding MFE1 with homology to the hydroxyacyl-CoA dehydrogenase and SCP2 domains. A separate gene, mfeB, encodes MFE2 with homology to the enoyl-CoA hydratase domain. When grown on a diet of bacteria, Dictyostelium cells in which mfeA is disrupted accumulate excess cyclopropane fatty acids and are unable to develop beyond early aggregation. Axenically grown mutant cells, however, developed into normal fruiting bodies composed of spores and stalk cells. Comparative analysis of whole-cell lipid compositions revealed that bacterially grown mutant cells accumulated cyclopropane fatty acids that remained throughout the developmental stages. Such a persistent accumulation was not detected in wild-type cells or axenically grown mutant cells. Bacterial phosphatidylethanolamine that contains abundant cyclopropane fatty acids inhibited the development of even axenically grown mutant cells, while dipalmitoyl phosphatidylethanolamine did not. These results suggest that MFE1 protects the cells from the increase of the harmful xenobiotic fatty acids incorporated from their diets and optimizes cellular lipid composition for proper development. Hence, we propose that this enzyme plays an irreplaceable role in the survival strategy of Dictyostelium cells to form spores for their efficient dispersal in nature.  相似文献   

10.
beta-Oxidation of amino acyl coenzyme A (acyl-CoA) species in mammalian peroxisomes can occur via either multifunctional enzyme type 1 (MFE-1) or type 2 (MFE-2), both of which catalyze the hydration of trans-2-enoyl-CoA and the dehydrogenation of 3-hydroxyacyl-CoA, but with opposite chiral specificity. MFE-2 has a modular organization of three domains. The function of the C-terminal domain of the mammalian MFE-2, which shows similarity with sterol carrier protein type 2 (SCP-2), is unclear. Here, the structure of the SCP-2-like domain comprising amino acid residues 618-736 of human MFE-2 (d Delta h Delta SCP-2L) was solved at 1.75 A resolution in complex with Triton X-100, an analog of a lipid molecule. This is the first reported structure of an MFE-2 domain. The d Delta h Delta SCP-2L has an alpha/beta-fold consisting of five beta-strands and five alpha-helices; the overall architecture resembles the rabbit and human SCP-2 structures. However, the structure of d Delta h Delta SCP-2L shows a hydrophobic tunnel that traverses the protein, which is occupied by an ordered Triton X-100 molecule. The tunnel is large enough to accommodate molecules such as straight-chain and branched-chain fatty acyl-CoAs and bile acid intermediates. Large empty apolar cavities are observed near the exit of the tunnel and between the helices C and D. In addition, the C-terminal peroxisomal targeting signal is ordered in the structure and solvent-exposed, which is not the case with unliganded rabbit SCP-2, supporting the hypothesis of a ligand-assisted targeting mechanism.  相似文献   

11.
E.coli aspartokinase II-homoserine dehydrogenase II is, as aspartokinase I-homoserine dehydrogenase I, composed of three globular domains: the N-terminal domain is endowed with kinase activity; the C-terminal domain carries the dehydrogenase activity. These two parts of the polypeptide chain are separated by a central inactive domain. Thus, the polypeptide chains of the two multifunctional proteins are homologous not only in their sequence but also in their triglobular domain structure.  相似文献   

12.
The plasmid pRN1 encodes for a multifunctional replication protein with primase, DNA polymerase and helicase activity. The minimal region required for primase activity encompasses amino-acid residues 40–370. While the N-terminal part of that minimal region (residues 47–247) folds into the prim/pol domain and bears the active site, the structure and function of the C-terminal part (residues 248–370) is unknown. Here we show that the C-terminal part of the minimal region folds into a compact domain with six helices and is stabilized by a disulfide bond. Three helices superimpose well with the C-terminal domain of the primase of the bacterial broad host range plasmid RSF1010. Structure-based site-directed mutagenesis shows that the C-terminal helix of the helix bundle domain is required for primase activity although it is distant to the active site in the crystallized conformation. Furthermore, we identified mutants of the C-terminal domain, which are defective in template binding, dinucleotide formation and conformation change prior to DNA extension.  相似文献   

13.
Annexins comprise a multigene family of Ca2+ and phospholipid- binding proteins. They consist of a conserved C-terminal or core domain that confers Ca2+-dependent phospholipid binding and an N-terminal domain that is variable in sequence and length and responsible for the specific properties of each annexin. Crystal structures of various annexin core domains have revealed a high degree of similarity. From these and other studies it is evident that the core domain harbors the calcium-binding sites that interact with the phospholipid headgroups. However, no structure has been reported of an annexin with a complete N-terminal domain. We have now solved the crystal structure of such a full-length annexin, annexin 1. Annexin 1 is active in membrane aggregation and its refined 1.8 A structure shows an alpha-helical N-terminal domain connected to the core domain by a flexible linker. It is surprising that the two alpha-helices present in the N-terminal domain of 41 residues interact intimately with the core domain, with the amphipathic helix 2-12 of the N-terminal domain replacing helix D of repeat III of the core. In turn, helix D is unwound into a flap now partially covering the N-terminal helix. Implications for membrane aggregation will be discussed and a model of aggregation based on the structure will be presented.  相似文献   

14.
A Zvi  R Hiller  J Anglister 《Biochemistry》1992,31(30):6972-6979
The 24 amino acid peptide RP135 corresponds in its amino acid sequence to the principal neutralizing determinant (PND) of the IIIB isolate of HIV-1. Although the sequence of the PND is highly variable, its central part, containing the sequence GPGR, is conserved in most HIV isolates. Using 2D NMR and CD spectroscopy, we have studied the conformation of RP135 and of two shorter versions: one (P547) that includes the GPGR sequence with the N-terminal part of the peptide and the other (P344) that includes GPGR and the C-terminal segment of RP135. In water, the C-terminal part of RP135 was found to exist in several transient turnlike conformations ("nascent helix"). A helical conformation was found to be stabilized by the addition of TFE. A transient turn was observed also in the GPGR sequence, both in water and in aqueous TFE solutions. While no nascent helix conformations could be observed in the N-terminal part of RP135 in water, a helical conformation was partially stabilized by the addition of TFE. The conformations of the two shorter versions of the peptide were similar to those of the corresponding parts of RP135, except that the transient turn in GPGR could not be detected in P547 dissolved in water. The turn in GPGR was previously predicted by Larosa et al. (1990) and was observed by Chandrasekhar et al. (1991) in the PND peptide of HIV-1MN (RP142), which shares only 56% identity with RP135. However, nascent helix conformations were not observed in aqueous solutions of RP142.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Human collagen alpha 3(VI) chain mRNA (approximately 10 kb) was cloned and shown by sequence analysis to encode a 25 residue signal peptide, a large N-terminal globule (1804 residues), a central triple helical segment (336 residues) and a C-terminal globule (803 residues). Some of the sequence was confirmed by Edman degradation of peptides. The N-terminal globular segment consists of nine consecutive 200 residue repeats (N1 to N9) showing internal homology and also significant identity (17-25%) to the A domains of von Willebrand Factor and similar domains present in some other proteins. Deletions were found in the N3 and N9 domains of several cDNA clones suggesting variation of these structures by alternative splicing. The C-terminal globule starts immediately after the triple helical segment with two domains C1 (184 residues) and C2 (248 residues) being similar to the N domains. They are followed by a proline rich, repetitive segment C3 of 122 residues, with similarity to some salivary proteins, and domain C4 (89 residues), which is similar to the type III repeats present in fibronectin and tenascin. The most C-terminal domain C5 (70 residues) shows 40-50% identity to a variety of serine protease inhibitors of the Kunitz type. The whole sequence contains 29 cysteines which are mainly clustered in short segments connecting domains N1, C1, C2 and the triple helix, and in the inhibitor domain. Five putative Arg-Gly-Asp cell-binding sequences are exclusively localized in the triple helical segment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Structural evolution of C-terminal domains in the p53 family   总被引:1,自引:0,他引:1  
Ou HD  Löhr F  Vogel V  Mäntele W  Dötsch V 《The EMBO journal》2007,26(14):3463-3473
The tetrameric state of p53, p63, and p73 has been considered one of the hallmarks of this protein family. While the DNA binding domain (DBD) is highly conserved among vertebrates and invertebrates, sequences C-terminal to the DBD are highly divergent. In particular, the oligomerization domain (OD) of the p53 forms of the model organisms Caenorhabditis elegans and Drosophila cannot be identified by sequence analysis. Here, we present the solution structures of their ODs and show that they both differ significantly from each other as well as from human p53. CEP-1 contains a composite domain of an OD and a sterile alpha motif (SAM) domain, and forms dimers instead of tetramers. The Dmp53 structure is characterized by an additional N-terminal beta-strand and a C-terminal helix. Truncation analysis in both domains reveals that the additional structural elements are necessary to stabilize the structure of the OD, suggesting a new function for the SAM domain. Furthermore, these structures show a potential path of evolution from an ancestral dimeric form over a tetrameric form, with additional stabilization elements, to the tetramerization domain of mammalian p53.  相似文献   

17.
SWIRM is an evolutionarily conserved domain involved in several chromatin-modifying complexes. Recently, the LSD1 protein, which bears a SWIRM domain, was found to be a demethylase for Lys4-methylated histone H3. Here, we report a solution structure of the SWIRM domain of human LSD1. It forms a compact fold composed of 6 alpha helices, in which a 20 amino acid long helix (alpha4) is surrounded by 5 other short helices. The SWIRM domain structure could be divided into the N-terminal part (alpha1-alpha3) and the C-terminal part (alpha4-alpha6), which are connected to each other by a salt bridge. While the N-terminal part forms a SWIRM-specific structure, the C-terminal part adopts a helix-turn-helix (HTH)-related fold. We discuss a model in which the SWIRM domain acts as an anchor site for a histone tail.  相似文献   

18.
2-Enoyl-CoA hydratase 2 is the middle part of the mammalian peroxisomal multifunctional enzyme type 2 (MFE-2), which is known to be important in the beta-oxidation of very-long-chain and alpha-methyl-branched fatty acids as well as in the synthesis of bile acids. Here, we present the crystal structure of the hydratase 2 from the human MFE-2 to 3A resolution. The three-dimensional structure resembles the recently solved crystal structure of hydratase 2 from the yeast, Candida tropicalis, MFE-2 having a two-domain subunit structure with a C-domain complete hot-dog fold housing the active site, and an N-domain incomplete hot-dog fold housing the cavity for the aliphatic acyl part of the substrate molecule. The ability of human hydratase 2 to utilize such bulky compounds which are not physiological substrates for the fungal ortholog, e.g. CoA esters of C26 fatty acids, pristanic acid and di/trihydroxycholestanoic acids, is explained by a large hydrophobic cavity formed upon the movements of the extremely mobile loops I-III in the N-domain. In the unliganded form of human hydratase 2, however, the loop I blocks the entrance of fatty enoyl-CoAs with chain-length >C8. Therefore, we expect that upon binding of substrates bulkier than C8, the loop I gives way, contemporaneously causing a secondary effect in the CoA-binding pocket and/or active site required for efficient hydration reaction. This structural feature would explain the inactivity of human hydratase 2 towards short-chain substrates. The solved structure is also used as a tool for analyzing the various inactivating mutations, identified among others in MFE-2-deficient patients. Since hydratase 2 is the last functional unit of mammalian MFE-2 whose structure has been solved, the organization of the functional units in the biologically active full-length enzyme is also discussed.  相似文献   

19.
20.
Ni L  Sun M  Yu H  Chokhawala H  Chen X  Fisher AJ 《Biochemistry》2006,45(7):2139-2148
Sialyltransferases catalyze reactions that transfer a sialic acid from CMP-sialic acid to an acceptor (a structure terminated with galactose, N-acetylgalactosamine, or sialic acid). They are key enzymes that catalyze the synthesis of sialic acid-containing oligosaccharides, polysaccharides, and glycoconjugates that play pivotal roles in many critical physiological and pathological processes. The structures of a truncated multifunctional Pasteurella multocida sialyltransferase (Delta24PmST1), in the absence and presence of CMP, have been determined by X-ray crystallography at 1.65 and 2.0 A resolutions, respectively. The Delta24PmST1 exists as a monomer in solution and in crystals. Different from the reported crystal structure of a bifunctional sialyltransferase CstII that has only one Rossmann domain, the overall structure of the Delta24PmST1 consists of two separate Rossmann nucleotide-binding domains. The Delta24PmST1 structure, thus, represents the first sialyltransferase structure that belongs to the glycosyltransferase-B (GT-B) structural group. Unlike all other known GT-B structures, however, there is no C-terminal extension that interacts with the N-terminal domain in the Delta24PmST1 structure. The CMP binding site is located in the deep cleft between the two Rossmann domains. Nevertheless, the CMP only forms interactions with residues in the C-terminal domain. The binding of CMP to the protein causes a large closure movement of the N-terminal Rossmann domain toward the C-terminal nucleotide-binding domain. Ser 143 of the N-terminal domain moves up to hydrogen-bond to Tyr 388 of the C-terminal domain. Both Ser 143 and Tyr 388 form hydrogen bonds to a water molecule, which in turn hydrogen-bonds to the terminal phosphate oxygen of CMP. These interactions may trigger the closure between the two domains. Additionally, a short helix near the active site seen in the apo structure becomes disordered upon binding to CMP. This helix may swing down upon binding to donor CMP-sialic acid to form the binding pocket for an acceptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号