首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P. Boer  J.H.H. Thijssen 《Steroids》1977,30(2):203-211
A single intravenous injection of 14C-cortisol and 3H-aldosterone was given to four male uraemic patients on haemodialysis (HD) treatment. The excretion of radioactivity was measured during two weeks in urine, HD fluid and faeces. In two patients, who were injected just before dialysis, large amounts of radioactivity were eliminated in the HD fluid (38 % and 56 % for 3H, 45 % and 57 % for 14C) and minor amounts were found in the urine (< 5 %); in the faeces respectively 32 % and 30 % of 3H and 18 % and 26 % of 14C were excreted. Two patients who were injected immediately after dialysis (and who also had a somewhat better kidney function) excreted larger amounts of radioactivity in the urine (10 % and 24 % for 3H, 13 % and 41 % for 14C) and in the faeces (44 % and 62 % for 3H, 29 % and 37 % for14C), while in the HD fluid respectively 18 % and 4 % of 3H and 30 % and 12 % of 14C was eliminated. The plasma radioactivity just before and just after dialysis showed a very good correlation (r = 0.96 to 0.99, p < 0.001) with the radioactivity eliminated in the first and last hour of HD treatment. Between HD treatments, the radioactivity in plasma did not change or decreased only very little. This finding suggests that metabolites of Cortisol and aldosterone to be excreted in the faeces, are very quickly removed from the circulation.  相似文献   

2.
1. Rats were given N-triphenyl[(14)C]methylmorpholine, triphenyl[(14)C]carbinol, N-triphenylmethyl[G-(3)H]morpholine or [G-(3)H]morpholine as single oral doses; the routes of excretion were examined. 2. Dogs were given single oral doses of N-triphenyl[(14)C]methylmorpholine. 3. (14)C-labelled metabolites were excreted mainly in the faeces in both rats and dogs; no (14)CO(2) was expired and less than 3% remained in the carcass and skin after 96hr. 4. (3)H-labelled metabolites were excreted rapidly in urine; part of the label was found in the expired gases and over 10% remained in the carcass and skin after 96hr. 5. Differences in excretion pattern between the sexes were noticed in rats but not in dogs. 6. N-Triphenylmethylmorpholine was rapidly hydrolysed to form triphenylcarbinol and morpholine in the stomach; morpholine was absorbed rapidly and excreted largely unchanged, though some was degraded, since some of the (3)H was found in water. 7. Triphenylcarbinol was absorbed only slowly and was oxidized to p-hydroxyphenyldiphenylcarbinol. 8. Both triphenylcarbinol and its p-hydroxy derivative were found in urine, bile and faeces in the free form and conjugated with glucuronic acid. The proportion of conjugates was higher in rat bile than in faeces. 9. Traces of o-hydroxyphenyldiphenylcarbinol and m-hydroxyphenyldiphenylcarbinol were detected as metabolites both free and conjugated.  相似文献   

3.
The distribution kinetics and oxidative metabolism of [4-C14] corticosterone (B) and 11-deoxy-[1,2-3H] corticosterone (DOC) were compared in C57BL/6 (B6) and BALB/c (C) mice. Statistically important differences in the distribution of [14C]B and [3H]DOC occurred that were independent of strain, while other differences were strain dependent. Intestinal excretion of metabolites of B and DOC was greater in B6 mice than in C mice, and kidney excretion was greater in C mice than B6 mice. In both C and B6 mice, 3H was cleared from liver faster than 14C, with no strain differences. DOC metabolite levels exceeded B metabolite levels in small intestine and gall bladder of both strains. In most other organs, B metabolites exceeded DOC metabolites. Time average strain differences in accumulation of B and its metabolites favoring B6 were found in pancreas, brain, lung, heart, muscles, adrenals, spleen, mesentery and small intestine. Except for the organs of excretion, no strain differences were found for [3H]DOC metabolites. Sixty minutes after steroid administration, 45% of B metabolites and a third of DOC metabolites were 20-hydroxy-21-oic acids. In the intestine, accumulation of acids derived from either B or DOC was greater for B6 than C strain mice, reflecting the greater proportion of total steroid excreted in the B6 strain.  相似文献   

4.
The conversion of [4 14C]corticosterone[( 14C]B) and 11-deoxy-[1,2-3H]corticosterone [( 3H]DOC) to steroidal carboxylic acids was studied in the BALB/c mouse. There was rapid and preferential excretion of [3H]DOC metabolites into the gastrointestinal tract. Excretion of 14C through the kidney was higher than 3H excretion. Within minutes of intraperitoneal injection, levels of 3H and 14C in most organs reached their maximal levels and subsequently decreased in an exponential pattern. The majority of the organs took up 14C to a greater extent than 3H. Using tissue blood ratio of tracer (T/B) as criterion, it was found that liver, gall bladder, intestine, and kidney concentrated 3H and 14C-labeled steroid from blood. T/B for 3H exceeded that for 14C in the gastrointestinal tract. Abdominal fat preferentially took up [3H]DOC tracer, whereas [14C]B tracer was not taken up by this tissue. T/B was less than 1 for 3H and 14C in heart, thymus, spleen, brain, skeletal muscle and skin. In these organs uptake of B and its metabolites was greater than that of DOC and its metabolites. In liver, [14C]B and [3H]DOC were converted to carboxylic acid metabolites which accumulated in the intestine. The most abundant acid was 11 beta,20 alpha-dihydroxy-3-oxo-pregn-4-en-21-oic acid from B. The acid metabolites of DOC were not identified. For both steroids, acids were major metabolic end-products.  相似文献   

5.
The metabolism of [4-14C]estrone (E1) was examined in liver and kidney microsomes of adult castrated male and ovariectomized female hamsters and rats and in neonatal and immature hamster renal microsomes. In castrated male hamster liver microsomes, E1 was metabolized extensively to six major metabolites; 15 beta-hydroxyestrone, 7 alpha-hydroxyestrone, 6 alpha-hydroxyestrone, 6 beta-hydroxyestrone, 2-hydroxyestrone, and delta(9,11)-dehydroestrone, and a nonpolar fraction. Six minor metabolites of E1 were also detected. In contrast, kidney microsomes derived from castrated male hamsters metabolized E1 to mainly 17 beta-estradiol, 2- and 4-hydroxyestrone, 6 alpha-hydroxyestrone, 6 beta-hydroxyestrone and one monohydroxyestradiol metabolite. However, 16 alpha-hydroxyestrone was not detected. A variable, but low amount of estriol was also found. Interestingly, the quantity of 2-hydroxyestrone found in kidney microsomes of the hamster represented 26% of the total amount of metabolites formed, whereas in liver microsomes, only 9% of the overall metabolism resulted in the formation of 2-hydroxyestrone. The ability of kidney microsomes of female ovariectomized hamsters and two different rat strains to metabolize E1 was 5.9- and 9.4-fold lower, respectively, compared to renal microsomes of male castrated hamsters. The onset of oxidative metabolism in newborn hamster kidneys during development was also assessed. The results indicate that the oxidative metabolism of [14C]E1 in renal microsomes of newborn hamsters was 20-fold less than in kidney microsomes of adult hamsters. While catechol E1 metabolites were essentially negligible in hamster kidneys of these ages, it was evident that the conversion of E1 to estradiol via 17 beta-hydroxysteroid dehydrogenase resembles levels seen in the adult animals. Between the age of one and two months, the male hamster kidney exhibited the capacity to metabolize E1 at levels seen in fully mature adult hamsters.  相似文献   

6.
Urinary and fecal estrogen excretion were studied in male rats fed a non-fiber wheat starch diet (dietary fiber less than 1%; NF group; n = 4), a low-fiber wheat flour diet (dietary fiber 2%; LF group; n = 4) or a high-fiber wheat bran diet (dietary fiber 11.6%; HF group; n = 3). Short-term effects of the experimental diet on estrogen excretion were studied after i.v. injection of 5 microCi (0.185 MBq) of [14C]estradiol-17 beta (E2) into the tail vein of the rats fed the diets for 2 days. After 3 weeks on the experimental diets, the long-term effects were studied after injection of 5 microCi of [14C]E2 and 10 microCi of [3H]estrone-3-glucuronide (E1-gluc). The diet was found to affect estrogen excretion. The short-term effect indicated that rats fed the HF diet excreted a relatively large amount of labeled compounds in the feces during the first day after injection, while rats fed the NF or the LF diets excreted about half that amount over the same period. On the other hand, urinary excretion of labeled compounds was significantly higher in the NF and LF rats. The long-term effect resulted in steeper slopes (P less than 0.05) of the fecal excretion profiles of rats fed the HF diet as compared with rats fed the NF and LF diets, indicating an accelerated fecal excretion of labeled compounds in the HF rats. The kinetic profiles of 14C and 3H radioactivity in blood plasma indicated a fast decrease (t1/2 of less than 2 min) for both [14C]E2 and [3H]E1-gluc. It was concluded that, owing to the short-term effect of wheat bran intake, during the first 24 h after i.v. administration relatively large amounts of radioactively labeled compounds are excreted in feces of rats fed the HF diet. In contrast, excretion is lower in urine of these rats. When the microflora is adapted to the experimental diet the wheat bran diet still results in an accelerated fecal excretion of labeled compounds, which might be attributed to an interruption of the enterohepatic circulation of estrogens. This might result in lowered plasma and/or tissue estrogen levels and hence a decreased exposure of estrogen-sensitive tissue to estrogens, which might decrease risk on mammary (breast) cancer development.  相似文献   

7.
Stress enhances the production of corticosteroids by the adrenal cortex, resulting in the increased excretion of their metabolites in urine and faeces. An intraperitoneal injection of radioactive corticosterone was applied to adult, male Sprague-Dawley rats to monitor the route and delay of excreted metabolites in urine and faeces. Peak concentrations appeared in urine after 3.2 +/- 1.9 h and in faeces after 16.7 +/- 4.3 h. Altogether about 20% of the recovered metabolites were found in urine and about 80% in faeces. Using high-performance liquid chromatography (HPLC), several peaks of radioactive metabolites were found. Some metabolites were detected by enzyme immunoassay (EIA) using two different antibodies (corticosterone, 11beta-OH-aetiocholanolone). There was a marked diurnal variation with low levels of faecal corticosterone metabolites in the evening and higher values in the morning. This diurnal variation was influenced neither by the intraperitoneal injection of isotonic saline nor by ACTH. However, the administration of dexamethasone eliminated the morning peak for 2 days.  相似文献   

8.
A mixture of 3H-testosteron (T) and 14C-4-androstene-3, 17-dione (A) was injected intravenously into 2 (I and II) rhesus monkeys (Macaca mulatta). A third monkey (III) was injected with 3H-T only. Urine and bile samples were collected at intervals for 6 hours following the injection. The excretion, conjugation and aglycone metabolites of the steroids injected were studied using these samples. Of the injected dose, animal I (male) excreted 32% 3H and 23% 14C in the bile and 30% 3H and 21% 14C in the urine in 6 hours. Animal II (female), however, had a comparatively higher biliary excretion (66% 3H, 40% 14 C), but a urinary excretion (18% 3H, 13% 14C) comparable to that of animals I and III. The averages in the bile of the 3 animals were: unconjugated compounds 3%, glucosiduronates 78%, sulfates 9%, sulfoglucosiduronates 5% and disulfates 3%; and in urine, 5% unconjugated, 92% glucosiduronates and 3% sulfates. The aglycones obtained following hydrolysis were separated gy chromatography on Lipidex 5000, further purified by thin layer and paper chromatography and identified by co-crystallization. The major matabolites from 3H-T were androsterone and 5beta-androstane-3alpha,17beta-diol, whereas that from 14C-A was androsterone. Other metabolites identified were: etiocholanolone (3beta-hydroxy-5-beta-androstan-17-one); T, epitestosterone (epi-T), (17alpha-hydroxy-4-androsten-3-one); epiandrosterone (3-beta-hydroxy-5alpha-androstan-17-one) and 5alpha-androstane-3alpha, 17beta-diol. The results indicate that while androgen metabolism in the rhesus monkey is similar to that of the baboon and human in conjugate and metabolite formation, the rate of excretion was significantly different, resembline more closely that of the baboon than the human.  相似文献   

9.
Using 3-(3′,5′-dichlorophenyl)-5,5-dimethyloxazolidine-2,4-dione labeled with 14C or 3H, absorption, excretion, and tissue distribution in male Wistar rats were studied, and metabolites excreted were identified. At the dosage rates of 100, 300, 1000 and 3000 mg/kg, the maximum excretion of orally administered radioactivity occurred within 24 hr. Increase in the dosage rate was paralleled by decrease in the proportion of urinary elimination. Essentially all the radioactivity was excreted in 2 weeks. DDOD level was generally low in most tissues. Adipose tissue contained higher radioactivity compared with others. Most of the urinary metabolites identified were characterized by hydroxylation at the 4′ position of the benzene ring moiety, and hydrolytic or oxidative modification of the oxazolidine ring portion.  相似文献   

10.
After incubation of [4-14C]oestrone (E1) with kidney cortex slices of minipigs, [4-14C]oestradiol-17 beta (E2) and small amounts of a polar metabolite were detected in the ether-soluble fraction. E1, E2 and polar metabolites were found in the protein-bound fraction. The water-soluble fraction contained E1-3-glucuronide (80% of total glucuronides), E2-3-glucuronide and trace amounts of the 3-monoglucuronide of oestriol (E3). When E2 was used as substrate, the main product formed was E1; it was detected in both the ether-soluble and protein-bound fractions. E1-3-Glucuronide was the main metabolite in the water-soluble fraction, which also contained some E2-3-Glucuronide. In male minipigs, the mast, the rate of conversion of E1 and E2 as well as the formation of glucuronides were significantly greater in fertile females than in infertile females. Whereas no sex difference was observed in the metabolism of oestrogens in kidneys of infertile minipigs, the rate of oxidoreduction and glucuronidation was more pronounced in fertile female animals than in the corresponding males. The present results suggest that, in the kidneys of minipigs, the ratio of E1 to E2 is shifted towards the former; furthermore, by a comparatively rapid metabolism of the oestrogenic hormone, the renal tissue contributes to the maintenance of hormonal equilibrium.  相似文献   

11.
The absorption, metabolism and excretion of [14C] metanil yellow was studied in rats. Following administration of a single oral dose of 5 mg dye (7.6 microCi)/kg body weight, 80.5% of the dose was excreted in the urine and faeces within 96 hr, with the majority being accounted for in the faeces. Liver, kidney, spleen and testis retained no count whereas 13.6% of the radioactivity was retained by gastrointestinal tract. Analysis of urine and faeces detected two azo-reduction metabolites of metanil yellow which were characterized by TLC and IR, NMR and mass spectroscopic studies as metanilic acid and p-aminodiphenylamine.  相似文献   

12.
The main eliminative route for [14C]vinyl chloride after oral, i.v. or i.p. administration to rats is pulmonary; both unchanged vinyl chloride and vinyl chloride-related CO2 are excreted by that route and the other [14C] metabolites via the kidneys. After intragastric administration, pulmonary output of unchanged vinyl chloride is proportional to the logarithm of reciprocal dose. Excretion patterns after i.v. and i.p. injections are predictable from the characteristics of excretion following oral administration. Pulmonary excretion of unchanged vinyl chloride after oral dosing is complete within 3-4 h, but pulmonary elimination of CO2 and renal excretion of metabolites occupies 3 days. In comparison, 99% of a small i.v. dose is excreted unchanged within 1 h of injection; 80% within 2 min. The rate of elimination of a single oral doses of [14C]vinyl chloride is uninfluenced by up to 60 days' chronic dosing with the unlabelled substance. The distribution volume of vinyl chloride as displayed by whole-animal autoradiography agrees with deductions from excretion data. Small localization of 14C in the para-auricular region of appropriate sections occurs in sectioned tubules, belonging possibly to the Zymbal glands. Biotransformation of vinyl chloride into S-(2-chloroethyl) cysteine and N-acetyl-S-(2-chloroethyl) cysteine occurs through addition of cysteine, and biotransformation into: (i) chloroacetic acid, thiodiglycollic acid and glutamic acid, and (ii) into formaldehyde (methionine, serine), CO2 and urea is explicable in terms of an associative reaction with molecular O2 involving a singlet oxygen bonded transition state in dynamic equilibrium with a cyclic peroxide ground state. There is no evidence for chloroethylene oxide formation.Thiodiglycollic acid is the major metabolite of chloroacetic acid in rats; more than 60% of the dose. The interaction of vinyl chloride and of its primary metabolites with the intermediates of mammalian metabolism is discussed in relation to the oncogenicity of that substance.  相似文献   

13.
Formation of bile acids from sitosterol in bile-fistulated female Wistar rats was studied with use of 4-14C-labeled sitosterol and sitosterol labeled with 3H in specific positions. The major part (about 75%) of the 14C radioactivity recovered as bile acids in bile after intravenous administration of [4-14C]sitosterol was found to be considerably more polar than cholic acid, and only trace amounts of radioactivity had chromatographic properties similar to those of cholic acid and chenodeoxycholic acid. It was shown that polar metabolites were formed by intermediate oxidation of the 3 beta-hydroxyl group (loss of 3H from 3 alpha-3H-labeled sitosterol) and that the most polar fraction did not contain a hydroxyl group at C7 (retention of 3H in 7 alpha,7 beta-3H2-labeled sitosterol). Furthermore, the polar metabolites had lost at least the terminal 6 or 7 carbon atoms of the side chain (loss of 3H from 22,23-3H2- and 24,28-3H2-labeled sitosterol). Experiments with 3H-labeled 7 alpha-hydroxysitosterol and 4-14C-labeled 26-hydroxysitosterol showed that none of these compounds was an efficient precursor to the polar metabolites. By analysis of purified most polar products of [4-14C] sitosterol by radio-gas chromatography and the same products of 7 alpha,7 beta-[2H2]sitosterol by combined gas chromatography-mass spectrometry, two major metabolites could be identified as C21 bile acids. One metabolite had three hydroxyl groups (3 alpha, 15, and unknown), and one had two hydroxyl groups (3 alpha, 15) and one keto group. Considerably less C21 bile acids were formed from [4-14C]sitosterol in male than in female Wistar rats. The C21 bile acids formed in male rats did not contain a 15-hydroxyl group. Conversion of a [4-14C]sitosterol into C21 bile acids did also occur in adrenalectomized and ovariectomized rats, indicating that endocrine tissues are not involved. Experiments with isolated perfused liver gave direct evidence that the overall conversion of sitosterol into C21 bile acids occurs in this organ. Intravenously injected 7 alpha,7 beta-3H-labeled campesterol gave a product pattern identical to that of 4-14C-labeled sitosterol. Possible mechanisms for hepatic conversion of sitosterol and campesterol into C21 bile acids are discussed.  相似文献   

14.
[(14)C]Streptozotocin was synthesized specifically labelled at three positions in the molecule. The biological activity of synthetic streptozotocin was characterised by studies in vivo of its diabetogenic activity and its dose-response curves. After this characterization the excretion pattern of all three labelled forms of streptozotocin was studied. With [1-(14)C]streptozotocin and [2'-(14)C]streptozotocin the injected radioactivity was excreted (approx. 70% and 80% respectively) mainly in the urine, the greater part of the excretion occurring in the first 6h period; small amounts (approx. 9% and 8% respectively) were found in the faeces. In contrast, with [3'-methyl-(14)C]streptozotocin a much smaller proportion (approx. 42%) of the injected radioactivity was excreted in the urine, the major proportion appearing in the first 6h, whereas approx. 53% of the injected radioactivity was retained in the carcasses. In whole-body radioautographic studies very rapid renal clearance and hepatic accumulation of the injected radioactivity was observed with all three labelled forms of the drug. There was some evidence for biliary and intestinal excretion. Major differences were apparent in the tissue-distribution studies, with each of the three labelled forms, particularly with [3'-methyl-(14)C]streptozotocin. There was no accumulation of [1-(14)C]streptozotocin in the pancreas for the 6h period after administration. However, with [3'-methyl-(14)C]streptozotocin (and also [2'-(14)C]streptozotocin) there was evidence of some pancreatic accumulation after 2h. The results indicate that streptozotocin is subjected to considerable metabolic transformation and to rapid renal clearance. The implication of these suggestions is evaluated with particular reference to the diabetogenic action of streptozotocin.  相似文献   

15.
Since one of the hypotensive mechanisms of angiotensin-converting enzyme inhibitor (ACEI) has been suggested to be mediated through the renal kinin-prostaglandin (PG) axis, the present study was designed to investigate the effect of captopril (C) or enalapril (E) on renal PGE2 excretion or synthesis. Wistar male rats (BW 200-250 g) were given orally captopril at 30 mg/kg/day or enalapril at 10 or 30 mg/kg for one week. Before and after ACEI, blood pressure (tail cuff method) as well as PRA and urinary PGE2 excretion was determined. Renopapillary slices were obtained from some of the rats including controls and incubated to determine PGE2 synthesis. C or E administration resulted in a blood pressure decrease of 21 to 36 mm Hg with an increase in PRA. Urine volume and sodium excretion increased after daily treatment with C or E at 30 mg/kg. Urinary PGE2 excretion increased 1.4-fold in response to C, but not to E. Papillary PGE2 synthesis demonstrated a marked decrease 2 h after in vivo administration of either ACEI compared to controls. However, when C or enalaprilat was added in vitro to renal slices obtained from controls, only C at 10(-5) M showed a significant 2-fold increase in renal PGE2 synthesis. These results suggest that (1) renal PGE2 synthesis may be dependent on circulating angiotensin II. (2) C, but not enalaprilat, has a direct stimulatory effect on renal PGE2 synthesis and (3) renal PGE2 may not be involved very much in the hypotensive effect of ACEI.  相似文献   

16.
Hepatic uptake and metabolic disposition of leukotriene B4 in rats.   总被引:2,自引:0,他引:2       下载免费PDF全文
1. In isolated perfused rat liver and in vivo, up to 25% of [3H]leukotriene B4 was eliminated from the circulation via hepatic uptake and biliary excretion within 1 h. Total body recovery of 3H amounted to about 60% of infused [3H]leukotriene B4. 2. Hepatobiliary excretion of leukotriene B4 and its metabolites exceeded renal elimination by about 4-fold and depended, in contrast with excretion of cysteinyl leukotriene E4, upon continuous taurocholate supply. 3. Analyses of bile, liver and recirculated perfusate using h.p.l.c. indicated that the liver metabolized leukotriene B4 extensively to omega-carboxyleukotriene B4 and its beta-oxidized derivatives, and no unmetabolized leukotriene B4 appeared in bile. These results substantiate the important contribution of the hepatobiliary system with respect to the metabolic fate of leukotriene B4.  相似文献   

17.
1. The metabolites of (+/-)-2-methylamino-1-phenyl[1-(14)C]propane ([(14)C]methamphetamine) in urine were examined in man, rat and guinea pig. 2. In two male human subjects receiving the drug orally (20mg per person) about 90% of the (14)C was excreted in the urine in 4 days. The urine of the first day was examined for metabolites, and the main metabolites were the unchanged drug (22% of the dose) and 4-hydroxymethamphetamine (15%). Minor metabolites were hippuric acid, norephedrine, 4-hydroxyamphetamine, 4-hydroxynorephedrine and an acid-labile precursor of benzyl methyl ketone. 3. In the rat some 82% of the dose of (14)C (45mg/kg) was excreted in the urine and 2-3% in the faeces in 3-4 days. In 2 days the main metabolites in the urine were 4-hydroxymethamphetamine (31% of dose), 4-hydroxynorephedrine (16%) and unchanged drug (11%). Minor metabolites were amphetamine, 4-hydroxyamphetamine and benzoic acid. 4. The guinea pig was injected intraperitoneally with the drug at two doses, 10 and 45mg/kg. In both cases nearly 90% of the (14)C was excreted, mainly in the urine after the lower dose, but in the urine (69%) and faeces (18%) after the higher dose. The main metabolites in the guinea pig were benzoic acid and its conjugates. Minor metabolites were unchanged drug, amphetamine, norephedrine, an acid-labile precursor of benzyl methyl ketone and an unknown weakly acidic metabolite. The output of norephedrine was dose-dependent, being about 19% on the higher dose and about 1% on the lower dose. 5. Marked species differences in the metabolism of methamphetamine were observed. The main reaction in the rat was aromatic hydroxylation, in the guinea pig demethylation and deamination, whereas in man much of the drug, possibly one-half, was excreted unchanged.  相似文献   

18.
Metabolism of cysteinyl leukotrienes in monkey and man   总被引:1,自引:0,他引:1  
The proinflammatory cysteinyl leukotrienes are inactivated in primates by (a) intravascular degradation, (b) hepatic and renal uptake from the blood circulation, (c) intracellular metabolism of leukotriene E4 (LTE4), and (d) biliary and renal excretion of LTC4 degradation products. We have analyzed cysteinyl leukotriene metabolites excreted into bile and urine of the monkey Macaca fascicularis and of man. In both species, hepatobiliary leukotriene elimination predominated over renal excretion. In a representative healthy human subject at least 25% of the administered radioactivity were recovered from bile and 20% from urine within 24 h. In monkey and man intravenous administration of 14,15-3H2-labeled LTC4 resulted in the biliary and urinary excretion of labeled LTE4, omega-hydroxy-LTE4, omega-carboxy-LTE4, omega-carboxy-dinor-LTE4, and omega-carboxy-tetranor-dihydro-LTE4. Small amounts of N-acetyl-LTE4 were detected in human urine only. Oxidative metabolism of LTE4 proceeded more rapidly in the monkey resulting in the formation of higher relative amounts of omega-oxidized leukotrienes in this species as compared to man. [3H]H2O amounted to less than 2% of the administered dose in monkey and human bile and urine samples. Incubation of isolated human hepatocytes with [3H2]LTC4, [3H2]LTD4, and [3H2]LTE4 showed that only [3H2]LTE4 underwent intracellular oxidative metabolism resulting in the formation of omega- and beta-oxidation products. N-Acetylated LTE4 derivatives were not detected as products formed by human hepatocytes. By a combination of reversed-phase high-performance liquid chromatography and radioimmunoassay, endogenous LTE4 and N-acetyl-LTE4 were detected in human urine in concentrations of 220 +/- 40 and 24 +/- 3 pM, corresponding to 12 +/- 1 and 1.5 +/- 0.2 nmol/mol creatinine, respectively (mean +/- SEM; n = 10). Endogenous LTD4 and LTE4 were detected in human bile (n = 3) in concentrations between 0.2-0.9 nM. Our results demonstrate that LTD4 and LTE4 are major LTC4 metabolites in human bile and/or urine and may serve as index metabolites for the measurement of endogenously generated cysteinyl leukotrienes. Moreover, omega-oxidation and subsequent beta-oxidation from the omega-end contribute to the metabolic degradation of LTE4 not only in monkey but also in man.  相似文献   

19.
17beta-[6,7-3H]Estradiol (E2) was incubated with slices and homogenates of adult human renal tissue. The metabolites formed were identified by chromatography on DEAE-Sephadex, thin layer chromatography and crystallization with carrier steroids or steroid derivatives. The major metabolites formed by slices were estradiol-17-glucuronide (E217G), estrone sulfate and estradiol-3-sulfate. This is the first report of in vitro synthesis of estrogen sulfates by adult renal tissue. Minor quantities of the 3-glucuronides of estrone and estradiol were also found. An oxygen atmosphere appeared to stimulate the production of E217G. A time study with tissue slices showed similarities between the in vitro pattern of glucuronide synthesis and the excretion pattern of these compounds seen in earlier in vivo studies. Homogenates fortified with uridine diphosphoglucuronic acid formed the same pattern of glucuronide products but in lesser amounts. No sulfates were formed under these conditions. Testosterone did not act as a substrate in the experimental conditions used.  相似文献   

20.
After incubation of [4-14C]oestrone (E1) with liver slices from minipigs, the ether-soluble fraction contained [4-14C]oestradiol-17 beta (E2). In the protein-bound fractions, only polar metabolites were found, whereas in the water-soluble fraction the 3-monoglucuronide of oestriol (E1) was the preferred conjugate. When E2 was used as a substrate, E1 was present as main metabolite in the ether-soluble fraction. The radioactive metabolites in the protein-bound and water-soluble fractions were similar to those in the experiments with E1. The metabolism of E1 and E2 was dependent on age. Thus, the rate of conversion of oestrogens was greater in liver tissue of infertile male animals than in fertile males. In contrast, the two steroids were metabolised more rapidly in liver of fertile female minipigs than in infertile female animals. In fertile animals, the metabolic pattern of oestrogens in the ether-soluble, the protein-bound and the water-soluble fractions showed sex dependence: In females, E1 and E2 were metabolised to a greater extent by liver slices than in males. On the other hand, in experiments with male minipigs, E3-3-monoglucuronide was the only metabolite in the water-soluble fraction, whereas liver slices of female animals not only form E3-3-monoglucuronide, but also the 3-glucuronides of E1 and E2. The results described here show that, in liver tissue of minipigs, the oxidoreduction of E2 and E1 is the predominant reaction; in contrast to human liver, hydroxylation reactions play only a minor role. It may be concluded that there are differences in the metabolism of steroid hormones in man and minipig.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号