首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
We have investigated the protein interactions involved in the assembly of pancreatic beta-cell ATP-sensitive potassium channels. The channels are a heterooligomeric complex of pore-forming Kir6.2 subunits and sulfonylurea receptor (SUR1) subunits. SUR1 belongs to the ATP binding cassette (ABC) family of proteins and has two nucleotide binding domains (NBD1 and NBD2) and 17 putative transmembrane (TM) sequences. Previously we showed that co-expression in a baculovirus expression system of two parts of SUR1 divided at Pro1042 between TM12 and 13 leads to restoration of glibenclamide binding activity, whereas expression of either individual N- or C-terminal domain alone gave no glibenclamide binding activity [M.V. Mikhailov and S.J.H. Ashcroft (2000) J. Biol. Chem. 275, 3360-3364]. Here we show that the two half-molecules formed by division of SUR1 between NBD1 and TM12 or between TM13 and 14 also self-assemble to give glibenclamide binding activity. However, deletion of NBD1 from the N-part of SUR1 abolished SUR1 assembly, indicating a critical role for NBD1 in SUR1 assembly. We found that differences in glibenclamide binding activity obtained after co-expression of different half-molecules are attributable to different amounts of binding sites, but the binding affinities remained nearly the same. Simultaneous expression of Kir6.2 resulted in enhanced glibenclamide binding activity only when the N-half of SUR1 included TM12. We conclude that TM12 and 13 are not essential for SUR1 assembly whereas TM12 takes part in SUR1 Kir6.2 interaction. This interaction is specific for Kir 6.2 because no enhancement of glibenclamide binding was observed when half-molecules were expressed together with Kir4.1. We propose a model of K(ATP) channel organisation based on these data.  相似文献   

2.
The ATP-sensitive potassium (K(ATP)) channel plays a key role in controlling beta-cell membrane potential and insulin secretion. The channels are composed of two subunits, Kir6.2, which forms the channel pore, and SUR1, which contains binding sites for nucleotides and sulphonylureas and acts as a channel regulator. Our current studies are aimed at delineating the molecular interactions involved in assembly and ligand binding by K(ATP) channel proteins. We have employed a complementation approach in which SUR1 half-molecules are co-expressed in insect cells using a baculovirus system. Together with data from truncated SUR1 molecules and a fusion protein in which SUR1 is linked to Kir6.2, we have interpreted our findings in terms of a model for the structure of the K(ATP) channel. The main features of the model are: (i) the C-terminal end of SUR1 is close to the N-terminus of Kir6.2; (ii) the two nucleotide binding domains (NBDs) of SUR1--NBD1 and NBD2--are in proximity; (iii) transmembrane helix 12 of SUR1 is orientated in such a way that it can make contact with Kir6.2; (iv) formation of the glibenclamide binding site requires that the two cytosolic loops (CLs) CL3 and CL8 are located close to each other; (v) there are homomeric interactions between the NBD1 domains of neighbouring subunits. We suggest that binding of glibenclamide leads to conformational changes in CL3 and CL8 leading to rearrangement of transmembrane helices. These effects are transmitted to Kir6.2 to result in channel closure.  相似文献   

3.
We have investigated the structure of the glibenclamide binding site of pancreatic beta-cell ATP-sensitive potassium (K(ATP)) channels. K(ATP) channels are a complex of four pore-forming Kir6.2 subunits and four sulfonylurea receptor (SUR1) subunits. SUR1 (ABCC8) belongs to the ATP binding cassette family of proteins and has two nucleotide binding domains (NBD1 and NBD2) and 17 putative transmembrane (TM) sequences. Co-expression in a baculovirus expression system of two parts of SUR1 between NBD1 and TM12 leads to restoration of glibenclamide binding activity, whereas expression of either individual N- or C-terminal part alone gave no glibenclamide binding activity, confirming a bivalent structure of the glibenclamide binding site. By using N-terminally truncated recombinant proteins we have shown that CL3 - the cytosolic loop between TM5 and TM6 - plays a key role in formation of the N-terminal component of the glibenclamide binding site. Analysis of deletion variants of the C-terminal part of SUR1 showed that CL8 - the cytosolic loop between TM15 and TM16 - is the only determinant for the C-terminal component of the glibenclamide binding site. We suggest that in SUR1 in the native K(ATP) channel close proximity of CL3 and CL8 leads to formation of the glibenclamide binding site.  相似文献   

4.
Nucleotide binding domains (NBDs) secure ATP-binding cassette (ABC) transporter function. Distinct from traditional ABC transporters, ABCC9-encoded sulfonylurea receptors (SUR2A) form, with Kir6.2 potassium channels, ATP-sensitive K+ (K ATP) channel complexes. SUR2A contains ATPase activity harbored within NBD2 and, to a lesser degree, NBD1, with catalytically driven conformations exerting determinate linkage on the Kir6.2 channel pore. While homodomain interactions typify NBDs of conventional ABC transporters, heterodomain NBD interactions and their functional consequence have not been resolved for the atypical SUR2A protein. Here, nanoscale protein topography mapped assembly of monodisperse purified recombinant SUR2A NBD1/NBD2 domains, precharacterized by dynamic light scattering. Heterodomain interaction produced conformational rearrangements inferred by secondary structural change in circular dichroism, and validated by atomic force and transmission electron microscopy. Physical engagement of NBD1 with NBD2 translated into enhanced intrinsic ATPase activity. Molecular modeling delineated a complemental asymmetry of NBD1/NBD2 ATP-binding sites. Mutation in the predicted catalytic base residue, D834E of NBD1, altered NBD1 ATPase activity disrupting potentiation of catalytic behavior in the NBD1/NBD2 interactome. Thus, NBD1/NBD2 assembly, resolved by a panel of proteomic approaches, provides a molecular substrate that determines the optimal catalytic activity in SUR2A, establishing a paradigm for the structure-function relationship within the K ATP channel complex.  相似文献   

5.
The ATP-sensitive K+ channel, an octameric complex of two structurally unrelated types of subunits, SUR1 and Kir6.2, plays a central role in the physiological regulation of insulin secretion. The sulfonylurea glibenclamide, which trigger insulin secretion by blocking the ATP-sensitive K+ channel, interacts with both high and low affinity binding sites present on beta-cells. The high affinity binding site has been localized on SUR1 but the molecular nature of the low affinity site is still uncertain. In this study, we analyzed the pharmacology of glibenclamide in a transformed COS-7 cell line expressing the rat Kir6.2 cDNA and compared with that of the MIN6 beta cell line expressing natively both the Kir6.2 and the SUR1 subunits. Binding studies and Scatchard analysis revealed the presence of a single class of low affinity binding sites for glibenclamide on the COS/Kir6.2 cells with characteristics similar to that observed for the low affinity site of the MIN6 beta cells.  相似文献   

6.
Small molecules that correct protein misfolding and misprocessing defects offer a potential therapy for numerous human diseases. However, mechanisms underlying pharmacological correction of such defects, especially in heteromeric complexes with structurally diverse constituent proteins, are not well understood. Here we investigate how two chemically distinct compounds, glibenclamide and carbamazepine, correct biogenesis defects in ATP-sensitive potassium (KATP) channels composed of sulfonylurea receptor 1 (SUR1) and Kir6.2. We present evidence that despite structural differences, carbamazepine and glibenclamide compete for binding to KATP channels, and both drugs share a binding pocket in SUR1 to exert their effects. Moreover, both compounds engage Kir6.2, in particular the distal N terminus of Kir6.2, which is involved in normal channel biogenesis, for their chaperoning effects on SUR1 mutants. Conversely, both drugs can correct channel biogenesis defects caused by Kir6.2 mutations in a SUR1-dependent manner. Using an unnatural, photocross-linkable amino acid, azidophenylalanine, genetically encoded in Kir6.2, we demonstrate in living cells that both drugs promote interactions between the distal N terminus of Kir6.2 and SUR1. These findings reveal a converging pharmacological chaperoning mechanism wherein glibenclamide and carbamazepine stabilize the heteromeric subunit interface critical for channel biogenesis to overcome defective biogenesis caused by mutations in individual subunits.  相似文献   

7.
ATP-sensitive potassium (K(ATP)) channels are composed of an ATP-binding cassette (ABC) protein (SUR1, SUR2A or SUR2B) and an inwardly rectifying K(+) channel (Kir6.1 or Kir6.2). Like other ABC proteins, the nucleotide binding domains (NBDs) of SUR contain a highly conserved "signature sequence" (the linker, LSGGQ) whose function is unclear. Mutation of the conserved serine to arginine in the linker of NBD1 (S1R) or NBD2 (S2R) did not alter the ability of ATP or ADP (100 microM) to displace 8-azido-[(32)P]ATP binding to SUR1, or abolish ATP hydrolysis at NBD2. We co-expressed Kir6.2 with wild-type or mutant SUR in Xenopus oocytes and recorded the resulting currents in inside-out macropatches. The S1R mutation in SUR1, SUR2A or SUR2B reduced K(ATP) current activation by 100 microM MgADP, whereas the S2R mutation in SUR1 or SUR2B (but not SUR2A) abolished MgADP activation completely. The linker mutations also reduced (S1R) or abolished (S2R) MgATP-dependent activation of Kir6.2-R50G co-expressed with SUR1 or SUR2B. These results suggest that the linker serines are not required for nucleotide binding but may be involved in transducing nucleotide binding into channel activation.  相似文献   

8.
ATP-sensitive potassium (K(ATP)) channels play important roles in many cellular functions such as hormone secretion and excitability of muscles and neurons. Classical ATP-sensitive potassium (K(ATP)) channels are heteromultimeric membrane proteins comprising the pore-forming Kir6.2 subunits and the sulfonylurea receptor subunits (SUR1 or SUR2). The molecular mechanism by which hormones and neurotransmitters modulate K(ATP) channels via protein kinase A (PKA) is poorly understood. We mutated the PKA consensus sequences of the human SUR1 and Kir6.2 subunits and tested their phosphorylation capacities in Xenopus oocyte homogenates and in intact cells. We identified the sites responsible for PKA phosphorylation in the C-terminus of Kir6.2 (S372) and SUR1 (S1571). Kir6.2 can be phosphorylated at its PKA phosphorylation site in intact cells after G-protein (Gs)-coupled receptor or direct PKA stimulation. While the phosphorylation of Kir6.2 increases channel activity, the phosphorylation of SUR1 contributes to the basal channel properties by decreasing burst duration, interburst interval and open probability, and also increasing the number of functional channels at the cell surface. Moreover, the effect of PKA could be mimicked by introducing negative charges in the PKA phosphorylation sites. These data demonstrate direct phosphorylation by PKA of the K(ATP) channel, and may explain the mechanism by which Gs-coupled receptors stimulate channel activity. Importantly, they also describe a model of heteromultimeric ion channels in which there are functionally distinct roles of the phosphorylation of the different subunits.  相似文献   

9.
ATP-sensitive potassium (K(ATP)) channels conduct potassium ions across cell membranes and thereby couple cellular energy metabolism to membrane electrical activity. Here, we report the heterologous expression and purification of a functionally active K(ATP) channel complex composed of pore-forming Kir6.2 and regulatory SUR1 subunits, and determination of its structure at 18 A resolution by single-particle electron microscopy. The purified channel shows ATP-ase activity similar to that of ATP-binding cassette proteins related to SUR1, and supports Rb(+) fluxes when reconstituted into liposomes. It has a compact structure, with four SUR1 subunits embracing a central Kir6.2 tetramer in both transmembrane and cytosolic domains. A cleft between adjacent SUR1s provides a route by which ATP may access its binding site on Kir6.2. The nucleotide-binding domains of adjacent SUR1 appear to interact, and form a large docking platform for cytosolic proteins. The structure, in combination with molecular modelling, suggests how SUR1 interacts with Kir6.2.  相似文献   

10.
ATP-sensitive potassium (KATP) channels link cellular metabolism to electrical activity in nerve, muscle, and endocrine tissues. They are formed as a functional complex of two unrelated subunits—a member of the Kir inward rectifier potassium channel family, and a sulfonylurea receptor (SUR), a member of the ATP-binding cassette transporter family, which includes cystic fibrosis transmembrane conductance regulators and multidrug resistance protein, regulators of chloride channel activity. This recent discovery has brought together proteins from two very distinct superfamilies in a novel functional complex. The pancreatic KATP channel is probably formed specifically of Kir6.2 and SUR1 isoforms. The relationship between SUR1 and Kir6.2 must be determined to understand how SUR1 and Kir6.2 interact to form this unique channel. We have used mutant Kir6.2 subunits and dimeric (SUR1-Kir6.2) constructs to examine the functional stoichiometry of the KATP channel. The data indicate that the KATP channel pore is lined by four Kir6.2 subunits, and that each Kir6.2 subunit requires one SUR1 subunit to generate a functional channel in an octameric or tetradimeric structure.  相似文献   

11.
ATP-sensitive K+ channels are an octameric assembly of two proteins, a sulfonylurea receptor (SUR1) and an ion conducting subunit (Kir 6.0). We have examined the role of the C-terminus of SUR1 by expressing a series of truncation mutants together with Kir6.2 stably in HEK293 cells. Biochemical analyses using coimmunoprecipitation indicate that SUR1 deletion mutants and Kir6.2 assemble and that a SUR1 deletion mutant binds glibenclamide with high affinity. Electrophysiological recordings indicate that ATP sensitivity is normal but the response of the mutant channel complexes to tolbutamide, MgADP and diazoxide is disturbed. Quantitative immunofluorescence and cell surface biotinylation supports the idea that there is little disturbance in the efficiency of trafficking. Our data show that deletions of the C-terminal most cytoplasmic domain of SUR1, can result in functional channels at the plasma membrane in mammalian cells that have an abnormal response to physiological and pharmacological agents.  相似文献   

12.
To determine the interaction site(s) of ATP-sensitive K(+) (K(ATP)) channels for G-proteins, sulfonylurea receptor (SUR2A or SUR1) and pore-forming (Kir6.2) subunits were reconstituted in the mammalian cell line, COS-7. Intracellular application of the G-protein betagamma2-subunits (G(betagamma)(2)) caused a reduction of ATP-induced inhibition of Kir6.2/SUR channel activities by lessening the ATP sensitivity of the channels. G(betagamma)(2) bound in vitro to both intracellular (loop-NBD) and C-terminal segments of SUR2A, each containing a nucleotide-binding domain (NBD). Furthermore, a single amino acid substitution in the loop-NBD of SUR (Arg656Ala in SUR2A or Arg665Ala in SUR1) abolished the G(betagamma)(2)-dependent alteration of the channel activities. These findings provide evidence that G(betagamma) modulates K(ATP) channels through a direct interaction with the loop-NBD of SUR.  相似文献   

13.
ATP-sensitive K+ (KATP) channels are unique metabolic sensors formed by association of Kir6.2, an inwardly rectifying K+ channel, and the sulfonylurea receptor SUR, an ATP binding cassette protein. We identified an ATPase activity in immunoprecipitates of cardiac KATP channels and in purified fusion proteins containing nucleotide binding domains NBD1 and NBD2 of the cardiac SUR2A isoform. NBD2 hydrolyzed ATP with a twofold higher rate compared to NBD1. The ATPase required Mg2+ and was insensitive to ouabain, oligomycin, thapsigargin, or levamisole. K1348A and D1469N mutations in NBD2 reduced ATPase activity and produced channels with increased sensitivity to ATP. KATP channel openers, which bind to SUR, promoted ATPase activity in purified sarcolemma. At higher concentrations, openers reduced ATPase activity, possibly through stabilization of MgADP at the channel site. K1348A and D1469N mutations attenuated the effect of openers on KATP channel activity. Opener-induced channel activation was also inhibited by the creatine kinase/creatine phosphate system that removes ADP from the channel complex. Thus, the KATP channel complex functions not only as a K+ conductance, but also as an enzyme regulating nucleotide-dependent channel gating through an intrinsic ATPase activity of the SUR subunit. Modulation of the channel ATPase activity and/or scavenging the product of the ATPase reaction provide novel means to regulate cellular functions associated with KATP channel opening.  相似文献   

14.
Cuong DV  Kim N  Joo H  Youm JB  Chung JY  Lee Y  Park WS  Kim E  Park YS  Han J 《Mitochondrion》2005,5(2):121-133
Mitochondrial ATP-sensitive potassium (mitoKATP) channels play a pivotal role in early and late ischemic preconditioning, but the subunit composition of mitoKATP channels remains unclear. In this study, we investigated the subunit composition of mitoKATP channels in rat hearts using confocal microscopy, immunofluorescence, and Western blot analysis. The green fluorescent probe glibenclamide-BODIPY was colocalized with the red fluorescent mitochondrial marker MitroTracker Red in isolated ventricular myocytes and in ventricular myocyte mitochondria, indicating the presence of sulfonylurea receptors (SURs) in the mitochondria. Anti-Kir6.1, anti-Kir6.2, and anti-SUR2 immunofluorescence was colocalized with that of MitoTracker Red in isolated mitochondria, suggesting that Kir6.1, Kir6.2, and SUR2 subunits are present in the mitochondria. Similarly, Kir6.1 (approximately 46 kDa), Kir6.2 (approximately 46 and approximately 40 kDa), and SUR2 (approximately 140 kDa) proteins were found to be expressed in mitochondria using Western blot analysis. By contrast, SUR1 was not present in mitochondria. These results suggest that mitoKATP channels in rat hearts might comprise a combination of Kir6.1, Kir6.2, and SUR2 subunits.  相似文献   

15.
ATP-sensitive potassium (KATP) channels are inhibited by ATP and activated by phosphatidylinositol 4,5-bisphosphate (PIP2). Both channel subunits Kir6.2 and sulfonylurea receptor 1 (SUR1) contribute to gating: while Kir6.2 interacts with ATP and PIP2, SUR1 enhances sensitivity to both ligands. Recently, we showed that a mutation, E128K, in the N-terminal transmembrane domain of SUR1 disrupts functional coupling between SUR1 and Kir6.2, leading to reduced ATP and PIP2 sensitivities resembling channels formed by Kir6.2 alone. We show here that when E128K SUR1 was co-expressed with Kir6.2 mutants known to disrupt PIP2 gating, the resulting channels were surprisingly stimulated rather than inhibited by ATP. To explain this paradoxical gating behavior, we propose a model in which the open state of doubly mutant channels is highly unstable; ATP binding induces a conformational change in ATP-unbound closed channels that is conducive to brief opening when ATP unbinds, giving rise to the appearance of ATP-induced stimulation.  相似文献   

16.
ATP-sensitive potassium (K(ATP)) channels are inhibited by ATP and activated by phosphatidylinositol 4,5-bisphosphate (PIP(2)). Both channel subunits Kir6.2 and sulfonylurea receptor 1 (SUR1) contribute to gating: while Kir6.2 interacts with ATP and PIP(2), SUR1 enhances sensitivity to both ligands. Recently, we showed that a mutation, E128K, in the N-terminal transmembrane domain of SUR1 disrupts functional coupling between SUR1 and Kir6.2, leading to reduced ATP and PIP(2) sensitivities resembling channels formed by Kir6.2 alone. We show here that when E128K SUR1 was co-expressed with Kir6.2 mutants known to disrupt PIP(2) gating, the resulting channels were surprisingly stimulated rather than inhibited by ATP. To explain this paradoxical gating behavior, we propose a model in which the open state of doubly mutant channels is highly unstable; ATP binding induces a conformational change in ATP-unbound closed channels that is conducive to brief opening when ATP unbinds, giving rise to the appearance of ATP-induced stimulation.  相似文献   

17.
Yang K  Fang K  Fromondi L  Chan KW 《FEBS letters》2005,579(19):4113-4118
The pancreatic ATP-sensitive potassium channels comprise two subunits: SUR1 and Kir6.2. Two SUR1 mutations, A116P and V187D, reduce channel activity causing persistent hyperinsulinemic hypoglycemia of infancy. We investigated whether these mutations cause temperature sensitive misfolding. We show that the processing defect of these mutants is temperature sensitive and these two mutations disrupt the association between SUR1 and Kir6.2 by causing misfolding in SUR1 at 37 degrees C but can be rescued at 18 degrees C. Extensive electrophysiological characterization of these mutants indicated that low temperature largely, if not completely, corrects the folding defect of these two SUR1 mutants observed at 37 degrees C.  相似文献   

18.
The ATP-sensitive potassium (K(ATP) ) channel consisting of sulfonylurea receptor 1 (SUR1) and inward-rectifier potassium channel 6.2 (Kir6.2) has a well-established role in insulin secretion. Mutations in either subunit can lead to disease due to aberrant channel gating, altered channel density at the cell surface or a combination of both. Endocytic trafficking of channels at the plasma membrane is one way to influence surface channel numbers. It has been previously reported that channel endocytosis is dependent on a tyrosine-based motif in Kir6.2, while SUR1 alone is unable to internalize. In this study, we followed endocytic trafficking of surface channels in real time by live-cell imaging of channel subunits tagged with an extracellular minimal α-bungarotoxin-binding peptide labeled with a fluorescent dye. We show that SUR1 undergoes endocytosis independent of Kir6.2. Moreover, mutations in the putative endocytosis motif of Kir6.2, Y330C, Y330A and F333I are unable to prevent channel endocytosis. These findings challenge the notion that Kir6.2 bears the sole endocytic signal for K(ATP) channels and support a role of SUR1 in this trafficking process.  相似文献   

19.
ATP-sensitive potassium (KATP) channels couple the metabolic status of the cell to its membrane potential to regulate a number of cell actions, including secretion (neurons and neuroendocrine cells) and muscle contractility (skeletal, cardiac, and vascular smooth muscle). KATP channels consist of regulatory sulfonylurea receptors (SUR) and pore-forming (Kir6.X) subunits. We recently reported (Pasyk, E. A., Kang, Y., Huang, X., Cui, N., Sheu, L., and Gaisano, H. Y. (2004) J. Biol. Chem. 279, 4234-4240) that syntaxin-1A (Syn-1A), known to mediate exocytotic fusion, was capable of binding the nucleotide binding folds (NBF1 and C-terminal NBF2) of SUR1 to inhibit the KATP channels in insulin-secreting pancreatic islet beta cells. This prompted us to examine whether Syn-1A might modulate cardiac SUR2A/KATP channels. Here, we show that Syn-1A is present in the plasma membrane of rat cardiac myocytes and binds the SUR2A protein (of rat brain, heart, and human embryonic kidney 293 cells expressing SUR2A/Kir6. 2) at its NBF1 and NBF2 domains to decrease KATP channel activation. Unlike islet beta cells, in which Syn-1A inhibition of the channel activity was apparently mediated only via NBF1 and not NBF2 of SUR1, both exogenous recombinant NBF1 and NBF2 of SUR2A were found to abolish the inhibitory actions of Syn-1A on K(ATP) channels in rat cardiac myocytes and HEK293 cells expressing SUR2A/Kir6.2. Together with our recent report, this study suggests that Syn-1A binds both NBFs of SUR1 and SUR2A but appears to exhibit distinct interactions with NBF2 of these SUR proteins in modulating the KATP channels in islet beta cells and cardiac myocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号